Effects of ³He impurities on the mass decoupling of ⁴He films

Kenji Ishibashi,¹ Jo Hiraide,¹ Junko Taniguchi,^{1,*} Tomoki Minoguchi,² and Masaru Suzuki^{2,†} ¹Department of Engineering Science, University of Electro-Communications, Chofu, Tokyo 182-8585, Japan ²Institute of Physics, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan

(Received 14 January 2020; revised 27 August 2020; accepted 31 August 2020; published 14 September 2020)

We performed quartz crystal microbalance experiments using a 5-MHz AT-cut crystal for superfluid ⁴He films on exfoliated graphite (Grafoil) containing up to 0.40 atom/nm² ³He. We found that the mass decoupling of ⁴He solid layers from the oscillating substrate is considerably sensitive, even with small amounts of ³He. For a ⁴He film of 29.3 atoms/nm², we observed a small drop in resonant frequency at a T_3 of ~0.4 K for a low oscillation amplitude, which is attributed to the sticking of ³He atoms at the ⁴He solid layer. For higher amplitudes, the ⁴He solid layer shows a reentrant mass decoupling at T_R close to T_3 . This decoupling can be explained by the suppression of the superfluid counterflow owing to the adsorption of the ³He atoms on edge dislocations. As the ⁴He areal density increases, T_R shifts to a lower temperature and disappears around the ⁴He film of 39.0 atoms/nm².

DOI: 10.1103/PhysRevB.102.104104

I. INTRODUCTION

It is well established that the surface of graphite is atomically flat and the helium film on graphite grows layer by layer to a film that is more than five atoms thick [1,2]. Because of the quantum nature of helium and its ideal two-dimensional system, helium film on graphite has attracted the attention of many researchers as a model system, with its adsorbed structure [1,3,4], magnetism [5,6], and superfluidity [2,7] all having been extensively studied both experimentally and theoretically.

Recently, the nanofriction, or mass decoupling from oscillation, of films has been widely discussed [8]. Several metal substrate films exhibit partial mass decoupling [9]. Studies have also been conducted on films during the pinningdepinning transition in which a critical driving force is applied to an oscillating substrate [10].

In response to the study on nanofriction, we began to study the mass decoupling of helium films on graphite using a quartz crystal microbalance (QCM) technique. To date, we have reported the following observations [11–14]:

(a) During high oscillation amplitudes, the solid layers above two-atom-thick films were found to undergo partial mass decoupling below a certain temperature T_s .

(b) This decoupling resulted in a low-frictional metastable state when overlaid with normal fluid. After a reduction in amplitude, the solid layer remained in a low-frictional state within a finite lifetime.

(c) For a superfluid overlayer, the mass decoupling was found to vanish rapidly at T_D below T_S .

(d) The mass decoupling behavior was similar for the ³He films up to five atoms thick without an abrupt suppression due to the superfluid.

The film inhomogeneity plays an important role in this decoupling process. We proposed the following scenario [13], with the knowledge that the edge dislocation motion in the solid layer is responsible for mass transport: mass decoupling occurs when the edge dislocation overcomes the potential barriers (i.e., Peierls potential). This explains the external force threshold for mass decoupling and the low-frictional metastable state. The sudden disappearance of this feature below T_D can be explained by the cancellation of mass transport owing to the counterflow of the superfluid overlayer.

As the mass decoupling of helium films has shown various behaviors, in this study, we limit ourselves to examining the ³He impurity effects of the ⁴He films on exfoliated graphite (Grafoil) under a superfluid overlayer using a MHz-range AT-cut crystal. After a brief explanation of the experimental procedure in Sec. II, we present the ³He areal density dependence in Sec. III A for a four-atom-thick film at various oscillation amplitudes. By adding a small amount of ³He to the film, we found that the mass decoupling reappears at a certain temperature (T_R) below T_D , especially at higher amplitudes. In Sec. III B, we reveal the ⁴He areal density dependence on ³He. Here, T_R was found to decrease with increasing ⁴He areal density before disappearing. In addition to these observations, we discuss a possible mechanism for the reentrant mass decoupling at T_R .

II. EXPERIMENTAL PROCEDURE

The QCM technique was used with an AT-cut crystal to measure the mass decoupling of the films. For this QCM technique, the mass coupled to the oscillating substrate is obtained from the change in resonant frequency, Δf , as

$$\frac{\Delta f}{f} = -\frac{m}{M},\tag{1}$$

where m is the coupled mass of the film, M is the oscillating mass of the crystal, and f is the resonant frequency [15].

^{*}tany@phys.uec.ac.jp [†]suzuki@phys.uec.ac.jp

When the film is decoupled from the oscillation, the coupled mass decreases with an increase in resonant frequency.

For these experiments, the resonator consisted of a 5.0-MHz AT-cut crystal. The crystal was commercially sourced, with no additional treatment applied to the Ag electrode. The Grafoil was first baked in a vacuum at 900°C for 3 h, with a 300-nm Ag film subsequently deposited onto its surface. The AT-cut crystal and Ag-plated Grafoil were pressed together before heating in a vacuum at 350°C for 2 h. The Grafoil was then bonded to both sides of the Ag electrode. After bonding, any excess Grafoil was removed to increase the Q value of the crystal. For good thermal contact, the crystal was fixed to the metal holder using an electrically conductive adhesive. After this, the Q value was better than 10^4 when the areal density of Grafoil was 7.30 g/m^2 . Following the heat treatment at 130° C for 5 h under a pressure of 2×10^{-6} Pa, the crystal was mounted onto a sample cell. Here, the mass loading for the ⁴He layers was found to be 3.8 Hz \cdot atoms⁻¹ \cdot nm².

A transmission circuit was used to measure the resonant frequency. In this circuit, the crystal was placed directly across a series of coaxial lines connected to a 50- Ω continuous-wave signal generator and radio-frequency lock-in amplifier. The frequency of the signal generator was controlled with the resonant frequency locked to maintain the in-phase output at 0. The quadrature output at this frequency is the amplitude of resonance.

In these experiments, the ³He areal density only reached 0.4 $atom/nm^2$, which corresponds to an areal density of 5% for one atomic layer of ⁴He.

III. RESULTS AND DISCUSSION

A. ³He areal density dependence

For the temperature sweep experiments, we used ⁴He films approximately four atoms thick under various oscillation amplitudes through a change in the ³He areal density (run A).

Figure 1 shows the variation in resonant frequency for ⁴He films with 29.3 atoms/nm² and various ³He areal densities. It can be seen that the film overlayers undergo superfluidity at low temperatures. All data points were taken during the cooling process, with the oscillation amplitude fixed at 0.018 nm. Here, the onset of superfluidity for the pure ⁴He film was clearly observed at a T_C of 0.80 K, although it is difficult to observe in Fig. 1. As the ³He areal density increased, T_C was found to decrease gradually. For the ⁴He film containing 0.30 atom/nm² ³He, T_C is seen to shift down to 0.75 K. With additional doses of ³He, a small drop in the resonant frequency was found to occur at T_3 below T_C . This drop became more evident as the ³He areal density increased. In contrast, T_3 does not appear to depend too strongly on the ³He areal density, particularly above 0.1 atom/nm².

In the inset in Fig. 1, we compare the variation in resonant frequency and Q value between the pure ⁴He film and the ⁴He film containing 0.20 atom/nm² ³He. For the pure ⁴He film, the onset of superfluidity occurred at a T_C of 0.80 K, in addition to a small increase in $\Delta(1/Q)$. After adding 0.20 atom/nm² ³He, T_C was found to shift slightly downward to 0.76 K. The resonant frequency decreased at a T_3 of 0.41 K from the extrapolated curve at higher temperatures. The differences

FIG. 1. Variation in resonant frequency of a 29.3 atoms/nm² ⁴He film at a 0.018-nm amplitude for various ³He areal densities. Arrows indicate the superfluid onset temperature T_C and the ³He adsorption temperature T_3 . Data are shifted vertically. Inset: Comparison of the resonant frequency and Q value between the pure ⁴He film and the ⁴He film containing 0.20 atom/nm² ³He (run A).

are shown to increase gradually, particularly at the lowest attainable temperature of 0.1 K, where it then becomes 1.5 Hz. Unfortunately, an anomaly in $\Delta(1/Q)$ was not accurately observed at T_3 .

It is natural that the observed drop below T_3 is connected to the addition in ³He. The mass loading of ³He is estimated to be 2.9 Hz · atoms⁻¹ · nm² based on that of ⁴He. The drop of 1.5 Hz at a low temperature corresponds to 0.5 atom/nm² loading in ³He. This value is approximately double that of the ³He dopant. We therefore concluded that the drop below T_3 is caused by the sticking behavior of the ³He atoms on the ⁴He solid layer, as well as through the prevention of ⁴He atom decoupling. Moreover, we found that T_3 is independent of the ³He areal density above 0.1 atom/nm², suggesting that the number of atomic adsorption sites for ³He is approximately 0.1 nm⁻².

It is established that for ${}^{3}\text{He} - {}^{4}\text{He}$ solids, ${}^{3}\text{He}$ atoms are trapped on dislocation cores with an adsorption potential of 0.7 K [16]. One potential adsorption site on the ${}^{4}\text{He}$ solid layers is also from the edge dislocations. Because of the

FIG. 2. (a) Variation in resonant frequency of a 29.3 atoms/nm² ⁴He film containing 0.20 atom/nm² ³He for various oscillation amplitudes (run A). Arrows indicate the decoupling temperature T_s , the sticking temperature T_D , and the reentrant decoupling temperature T_R . Data are shifted vertically. Inset: Variation in resonant frequency of pure ⁴He film at 29.3 atoms/nm² during the cooling process. (b) Variation in $\Delta(1/Q)$ for various oscillation amplitudes.

adsorption potential of graphite, the first atomic layer is approximately 20% denser than the second [1]. From the density difference between the solid layers, it is natural to assume that the second atomic layer consists of commensurate domains separated by domain walls. With domain walls almost characteristic of edge dislocations [13], we refer to these as edge dislocations.

Here, it should be noted that the thickness of the fluid overlayer is at most only one atomic layer, and thus, ³He atoms may not be floated on the free surface, in contrast to bulk liquid ⁴He [17].

Figure 2(a) shows the amplitude dependence of the ⁴He film containing 0.20 atom/nm² ³He. The data points denoted by filled circles were taken during the cooling process,

whereas those denoted by short-dashed lines were from the warming process. As shown in Fig. 1, for an amplitude of 0.018 nm, the onset of superfluidity and a drop in frequency were observed at a T_C of 0.76 K and a T_3 of 0.41 K. As the amplitude increased to 0.056 nm, no drop in frequency at 0.41 K occurred.

For amplitudes of 0.18, 0.25, and 0.56 nm, the resonant frequency is shown to increase clearly at T_S , before terminating abruptly at T_D . As shown in the inset in Fig. 1, this behavior is also observed for the pure ⁴He film and attributed to the decoupling and sticking behavior of the ⁴He solid layer.

Through the addition of small amounts of ³He, we see a new phenomenon appear. Below T_D , the resonant frequency is shown to increase at a certain temperature, T_R , suggesting that the ⁴He solid layer undergoes decoupling. We found the reentrant mass decoupling temperature, T_R , close to T_3 , i.e., the temperature at which the ³He atoms are trapped at an adsorption site on the ⁴He solid layer. For an amplitude of 0.56 nm, T_D and T_R disappear, causing the ⁴He solid layer to decouple at a lower temperature.

Figure 2(b) shows the variation in $\Delta(1/Q)$. As shown in Fig. 1, for an amplitude of 0.018 nm, $\Delta(1/Q)$ increased slightly below a T_C of 0.76 K. As the amplitude increased to 0.25 nm, the slight increase in $\Delta(1/Q)$ remained. This indicates that the heating of QCM does not significantly affect the observed results.

To determine the ³He areal density dependence of T_S , T_D , and T_R , we performed a series of temperature sweep experiments at an amplitude of 0.25 nm. Figure 3 shows the resulting variations in resonant frequency. All data points were taken during the warming process. When 0.05 atom/nm² ³He was added, the decoupling and sticking behaviors were found to drastically change compared with those of the pure ⁴He film. The T_S also decreased to 0.69 K in comparison with that of the pure ⁴He film at 0.74 K, whereas the T_D did not change significantly at 0.50 K. As the temperature decreased, the resonant frequency was found to increase gradually below 0.4 K. This was then shown to rise at a T_R of 0.33 K. With a further decrease in temperature to 0.2 K, the resonant frequency was then found to decrease. Above 0.10 atom/nm² ³He, a sharp increase in frequency at T_R became apparent. The ³He areal density increased with an increase in the T_R . No change was observed for the T_D .

The inset in Fig. 3 shows a phase diagram, divided into four regions, characterized by decoupling and sticking behaviors. At high temperatures, the ⁴He solid layer tends to stick to the oscillating substrate (stick I). As the temperature decreases, this layer undergoes decoupling below T_S (slip I), where it sticks suddenly at T_D (stick II), regardless of whether the film contains ³He. Through the addition of ³He, the reentrant mass decoupling appears below T_R (slip II).

When discussing the potential mechanisms of reentrant mass decoupling, it should be noted that both T_D and T_R appear whenever the film overlayer becomes a superfluid. For the pure ⁴He film, sticking at the T_D is caused by the cancellation of mass transport owing to the counterflow of the superfluid overlayer [13].

To further develop this scenario, we can elucidate the reentrant behavior of mass decoupling. A schematic of the ³He-⁴He mixture films is shown in Fig. 4. Because the ³He

FIG. 3. Variations in the resonant frequency of a 29.3 atoms/nm^{2 4}He film at a 0.25-nm amplitude for various ³He areal densities. Arrows indicate the decoupling temperature T_S , the sticking temperature T_D , and the reentrant decoupling temperature T_R . Data are shifted vertically. Inset: Phase diagram of decoupling and sticking behaviors. Here, T_S , T_D , and T_R are input from Fig. 3, whereas T_C is input from Fig. 1 (run A).

atoms are spread over the entire fluid overlayer at high temperatures, the ⁴He solid layer can decouple at T_S and then stick at T_D , similarly to that of the pure ⁴He film [Figs. 4(a) and 4(b)]. As mentioned previously, sticking at T_D means that the superfluid transport between the edge dislocations cancels the mass transport owing to the dislocation motion. As the temperature decreases, the ³He atoms start to adsorb on the edge dislocation at T_3 , which prevents the exchange between liquid and solid ⁴He atoms [Fig. 4(c)], causing the superfluid transport to cease. The ⁴He solid layer undergoes decoupling at T_R .

B. ⁴He areal density dependence

To determine the dependence of the ⁴He areal density, we conducted temperature sweep experiments for a fixed number of ³He atoms through a change in the ⁴He areal density (run B). Figure 5 shows the variation in resonant frequency for several ⁴He areal densities containing 0.20 atom/nm² ³He. The oscillation amplitude was fixed at 0.18 and 0.018 nm during the temperature sweep.

At an amplitude of 0.18 nm, all data points were taken during the warming process. For a ⁴He film of 28.5 atoms/nm², the resonant frequency was found to increase at a T_S of 0.64 K, which is attributed to the mass decoupling of the ⁴He solid layer. For a ⁴He film of 29.0 atoms/nm², the mass decoupling

FIG. 4. Schematic of the ³He-⁴He mixture films. The position of the edge dislocation is represented by the T symbol. (a) Slip I. The second solid layer undergoes decoupling from the first solid layer owing to the motion of edge dislocations. (b) Stick II. When the film overlayer becomes superfluid, ⁴He atoms dissolve in the overlayer at the densified region, while they condense to the second solid layer in the rarefield region. Between the pair regions, the supercurrent transports ⁴He atoms. This process cancels the mass transport owing to the dislocation motion. (c) Slip II. The exchange between liquid and solid ⁴He atoms is prevented by the adsorption of ³He atoms.

was seen to terminate abruptly at a T_D of 0.52 K, whereas a reentrant mass decoupling occurred at a T_R of 0.39 K, which is similar to the behavior shown in Figs. 2 and 3. As the ⁴He areal density increased, the mass decoupling connected to the T_S was found to disappear, whereas that of the T_R remained. With a further increase in the ⁴He areal density, the T_R was found to shift to a lower temperature before disappearing at approximately 39.0 atoms/nm² ⁴He.

At an amplitude of 0.018 nm, all data points were taken during the cooling process. For a ⁴He film of 28.5 atoms/nm², it was difficult to determine the T_3 accurately. The T_3 was, however, observed at 0.40 K for a ⁴He film of 29.0 atoms/nm². As the ⁴He areal density increased, the T_3 was found to shift to lower temperatures. Above a ⁴He film of 35.0 atoms/nm², the T_3 was also difficult to distinguish. However, it should be noted that T_3 shares a ⁴He areal density dependence similar to that of T_R , although T_3 has a limited range. Nonetheless, the onset of superfluidity was also observed for all areal densities measured. As the ⁴He areal density increased, the T_C was found to move to a higher temperature, reaching 1.23 K at a ⁴He film of 39.0 atoms/nm².

Figure 6 shows the phase diagram of the sticking and decoupling behaviors for a ³He areal density of 0.20 atom/nm². Here, T_S , T_D , and T_R were obtained from an amplitude of 0.18 nm, whereas the amplitudes at T_C and T_3 were measured as 0.018 nm. In contrast to Fig. 3, both regions in sticks I and II and those in slips I and II connect continuously. As previously mentioned, T_3 is adjacent to T_R . This strongly supports the notion that the adsorption of ³He atoms on the edge dislocations causes reentrant mass decoupling.

Moreover, the disappearance of T_R at a high ⁴He areal density may be explained by the competitive adsorption process between the edge dislocation and the free surface. For bulk

FIG. 5. Variation in resonant frequency at amplitudes of (a) 0.18 nm and (b) 0.018 nm for various ⁴He areal densities containing 0.20 atom/nm² ³He. T_R . Data are shifted vertically (run B).

liquid ⁴He, it is well established that ³He atoms are bound to the free surface at low temperatures [17]. The binding energy primarily originates from the difference in the zero-point energy between the bulk liquid ⁴He and that on the free surface. Thus, we propose that, in the case of atomic-thin overlayers, ³He atoms would be located on the ⁴He solid layer because of the lack of advantage of zero-point energy on the free surface. When the ⁴He areal density increases, i.e., the overlayer becomes thick, the ³He atoms tend to move to the free surface, where the adsorption of ³He atoms no longer occurs.

C. Calculation models for ³He adsorption

We discuss the ³He areal density dependence on T_3 using a simple adsorption model. When building this model, we refer to the previous experiments undertaken on a ³He-⁴He mixture thin film [18,19].

Saunders and coworkers conducted heat capacity experiments on ³He above a ³He areal density of 0.4 $atom/nm^2$ in ⁴He films of 33.5 $atoms/nm^2$ on Grafoil. They reported

FIG. 6. Phase diagram for the sticking and decoupling behaviors of 0.20 atom/nm² ³He. Here, T_S , T_D , and T_R were taken at 0.18-nm amplitude. Both T_C and T_3 were derived from an amplitude of 0.018 nm.

that the ³He atoms in the ⁴He thin films behave as a twodimensional (2D) Fermi gas [18]. Hallock and coworkers carried out nuclear magnetic resonance experiments using a 0.1 monolayer of ³He in ⁴He thin films on a Nuclepore [19]. They reported that certain parts of the ³He atoms are immobile below a critical ⁴He areal density. As the ⁴He areal density increased, the ³He atoms were found to experience a mobility edge.

The present observations are similar to those of Hallock and coworkers, in that a small number of ³He atoms localized in the ⁴He thin films were found to vanish at a certain ⁴He areal density. Sanders and coworkers concluded that the ³He atoms in a ⁴He thin film did not adsorb on Grafoil. We postulate, however, that there is a slight possibility that a small number of ³He atoms do adsorb, as the heat capacity is normally independent of the areal density for a 2D Fermi gas.

Because of these considerations, we consider the following model in which the ³He overlayer atoms behave as a 2D Fermi gas, leading to the hydrodynamic effective mass m_3^* . A surface binding state also exists with an adsorption site density N_a and binding energy ε_a , measured from the 2D Fermi gas. In this model, the adsorption density *n* is denoted

$$n = N_a \frac{e^{-\beta(-\varepsilon_a - \mu)}}{1 + e^{-\beta(-\varepsilon_a - \mu)}} + \frac{2}{(2\pi)^2} \int_0^\infty \frac{2\pi k \, dk}{e^{\beta(\varepsilon - \mu)} + 1}, \qquad (2)$$

where $\beta = 1/k_BT$ is the inverse temperature, $\varepsilon = \hbar^2 k^2 / 2m_3^*$ is the kinetic energy of the Fermi gas, and μ is the chemical potential determined from the ³He areal density.

Here, we adopt m_3^*/m_3 as 1.5 from the heat capacity experiments for ⁴He films at 33.5 atoms/nm² [18], although the m_3^* values in thinner ⁴He films are still unknown. The inset in Fig. 7 shows a typical calculation of *n* as a function of temperature for several ³He areal densities with $m_3^*/m_3 = 1.5$, $N_a = 0.06$ sites/nm², and $\varepsilon_a = 1.268$ K. Here, parameters were chosen where n = 0.05 atom/nm² at 0.43 K for ³He

FIG. 7. Comparative graph between the calculation model and T_3 . Open and filled circles denote T_3 in Fig. 1 and T_R in Fig. 3, respectively. The ⁴He areal density was set at 29.3 atoms/nm². Each line represents the temperature at which *n* equals 0.05 atom/nm². For the calculation model, the parameters were chosen as 0.43 K when n = 0.20 atom/nm².

of 0.20 atom/nm². For comparison, we plotted the curve for $m_3^*/m_3 = 10$ at 0.20 atom/nm².

As shown in the inset, *n* increases gradually at high temperatures before becoming almost equal to N_a . As the ³He areal density increases, *n* is seen to shift to a higher temperature. Although it is not clear which value of *n* corresponds to T_3 , it is assumed that $n_C = 0.05$ atom/nm² at T_3 . We plotted the temperature at n_C as a function of the ³He areal density in Fig. 7. It was found that the calculated lines have a stronger dependence than the observed ones on the ³He areal density. This behavior is independent of the parameters N_a , ε_a , and n_C . We therefore conclude that this simple model does not fully describe the dependence of T_3 on the ³He areal density.

As shown in Fig. 7, when we selected $m_3^*/m_3 = 10$, we found *n* to vary rapidly within a small temperature range, i.e., when the number density just above the surface binding energy is sufficiently large for T_3 not to depend strongly on the ³He areal density. This suggests that the ³He atoms in extremely thin overlayers are almost localized on the Grafoil. It has been reported that m_3^* is enhanced with a decrease in the ⁴He areal density for the Nuclepore [19]. Furthermore, when an attractive interaction between the adsorption sites exists, *n* is shown to vary more rapidly. Further studies are required to determine this behavior.

For thicker overlayers, T_3 could not be determined clearly above a ⁴He film of 33.0 atoms/nm³. However, it is natural to assume that T_3 is almost equal to T_R , meaning that T_3 tends to be 0 at a ⁴He film of approximately 39.0 atoms/nm³. As mentioned in Sec. III B, the ³He atoms are bound to the free surface of the bulk liquid ⁴He [17]. Here, the binding energy ε_S was found to be 2.22 ± 0.03 K. This means that ε_a is smaller than ε_S .

IV. SUMMARY

In this study, we used a QCM technique with a 5-MHz AT-cut crystal to determine the mass-decoupling behavior of the ³He-⁴He mixture films on Grafoil. In a four-atom-thick ⁴He film of 29.3 atoms/nm², we observed the following behaviors: (a) For a low, 0.018-nm, amplitude, a slight decrease in resonant frequency occurs at T_3 . (b) For a high, 0.25-nm, amplitude, mass decoupling at T_s and sticking at T_D were observed to be the same as those for the pure ⁴He films. In addition to T_s and T_D , reentrant mass decoupling was found to occur at a T_R adjacent to the T_3 . Here, it was found that both T_3 and T_R are independent of the ³He areal density above 0.1 atom/nm² at ~0.4 K.

From our previous studies on pure ⁴He films, we proposed the following scenario: the mass decoupling below T_S results from the motion of edge dislocations between the first and the second solid layers. The mass sticking at T_D is caused by the cancellation of mass transport owing to the counterflow of the superfluid overlayer [13]. As an extension of this scenario, the observed behaviors can be explained as follows. ³He atoms, which are mobile at high temperatures, are localized on edge dislocations at T_3 . These ³He atoms prevent the exchange between liquid and solid ⁴He atoms, and the reentrant mass decoupling occurs after the superfluid counterflow ceases.

By changing the ⁴He areal density to 0.2 atom/nm² ³He, we found that T_R decreases with increasing ⁴He areal density and disappears above a ⁴He film of 29.0 atoms/nm². This behavior can be explained by competitive adsorption between the edge dislocation and the free surface.

These observations naturally suggest a model that the ³He atoms adsorb on the ⁴He solid layer. However, this model does not explain the weak ³He areal density dependence on T_R using the hydrodynamic effective mass of ³He in the overlayer. Further studies are required to study this behavior.

ACKNOWLEDGMENTS

T.M. wishes to express his thanks for the financial support received from the Yamaguchi Educational and Scholarship Foundation.

- D. S. Greywall and P. A. Busch, Phys. Rev. Lett. 67, 3535 (1991); D. S. Greywall, Phys. Rev. B 47, 309 (1993).
- [2] P. A. Crowell and J. D. Reppy, Phys. Rev. B 53, 2701 (1996).
- [3] M. Pierce and E. Manousakis, Phys. Rev. B 59, 3802 (1999).
- [4] P. Corboz, M. Boninsegni, L. Pollet, and M. Troyer, Phys. Rev. B 78, 245414 (2008).
- [5] M. Neumann, J. Nye'ki, B. Cowan, and J. Saunders, Science 317, 1356 (2007).
- [6] H. Fukuyama, J. Phys. Soc. Jpn. 77, 111013 (2008).
- [7] J. Nyeki, A. Phillis, A. Ho, D. Lee, P. Coleman, J. Parpia, B. Cowan, and J. Saunders, Nat. Phys. 13, 455 (2017).
- [8] J. Krim, Adv. Phys. 61, 155 (2012).

- [9] A. Dayo, W. Alnasrallah, and J. Krim, Phys. Rev. Lett. 80, 1690 (1998); M. Highland and J. Krim, *ibid.* 96, 226107 (2006).
- [10] L. Bruschi, A. Carlin, and G. Mistura, Phys. Rev. Lett. 88, 046105 (2002); A. Carlin, L. Bruschi, M. Ferrari, and G. Mistura, Phys. Rev. B 68, 045420 (2003).
- [11] N. Hosomi, A. Tanabe, M. Suzuki, and M. Hieda, Phys. Rev. B 75, 064513 (2007).
- [12] N. Hosomi and M. Suzuki, Phys. Rev. B 77, 024501 (2008).
- [13] N. Hosomi, J. Taniguchi, M. Suzuki, and T. Minoguchi, Phys. Rev. B 79, 172503 (2009).
- [14] N. Hosomi and M. Suzuki, J. Low Temp. Phys. 148, 773 (2007).

- [15] J. Krim and A. Widom, Phys. Rev. B 38, 12184 (1988).
- [16] F. Souris, A. D. Fefferman, H. J. Maris, V. Dauvois, P. Jean-Baptiste, J. R. Beamish, and S. Balibar, Phys. Rev. B 90, 180103(R) (2014).
- [17] D. O. Edwards and W. F. Saam, *Progress in Low Temperature Physics, Vol. VIIa*, edited by D. F. Brewer (North-Holland, Amsterdam, 1978), pp. 283–369.
- [18] M. Dann, J. Nyéki, B. Cowan, and J. Saunders, J. Low Temp. Phys. **110**, 627 (1998).
- [19] D. T. Sprague, N. Alikacem, and R. B. Hallock, Phys. Rev. Lett. 74, 4479 (1995); P. A. Sheldon and R. B. Hallock, *ibid.* 77, 2973 (1996).