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Spin accumulation induced by a singlet supercurrent
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We show that a supercurrent carried by spinless singlet Cooper pairs can induce a spin accumulation in the
normal metal interlayer of a Josephson junction. This phenomenon occurs when a nonequilibrium spin-energy
mode is excited in the normal metal, for instance, by an applied temperature gradient between ferromagnetic
electrodes. Without supercurrent, the spin accumulation vanishes in the Josephson junction. With supercurrent, a
spatially antisymmetric spin accumulation is generated that can be measured by tunneling to a polarized detector
electrode or by a nano-superconducting quantum interference device. We explain the physical origin of the
induced spin accumulation by the combined effect of a Doppler shift induced by a flow of singlet Cooper pairs,
and the spin-energy mode excited in the normal metal. This effect shows that spin control is possible even with
singlet Cooper pairs in conventional superconductors, a finding which could open interesting perspectives in
superconducting spintronics.
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Introduction. Using superconductors to achieve interesting
spin-dependent quantum effects is the central goal in the
growing field of superconducting spintronics [1,2]. Despite
the fact that superconductivity is usually antagonistic to mag-
netism, a series of experiments have in recent years proven
that superconductors can be used to achieve phenomena such
as long-ranged and dissipationless spin currents [3,4], large
thermoelectric effects when combined with spin-polarized
barriers [5], spin Hall signals exceeding the normal-state
value by three orders of magnitude [6], and quantum phase
batteries [7].

A key component of superconducting spintronics has tradi-
tionally been to find ways to generate polarized triplet Cooper
pairs which can transport spin without resistance. In contrast,
conventional superconductors described by Bardeen-Cooper-
Schrieffer theory [8] are condensates of singlet Cooper pairs.
While such condensates support supercurrents of charge, they
do not generate supercurrents of spin. It might therefore seem
as if supercurrents in conventional superconductors do not
have much use in spintronics, where the aim is to control and
detect spin-polarized signals [9].

Here, we show that supercurrents carried by singlet Cooper
pairs can induce a spin accumulation in a normal metal despite
the fact that they have no spin. This phenomenon occurs
when a nonequilibrium spin-energy mode is excited in the
normal metal. We show that the induced spin accumulation
can be understood physically from the combined effect of a
Doppler shift induced by the supercurrent and the existence
of a spin-energy excitation in the normal metal. The fact that
the spin accumulation can be controlled by a superflow of
spinless Cooper pairs opens up for a different way in which
conventional superconductors can merge with spintronics.

Results. The proposed setup for measuring this effect
is shown in Fig. 1. Two thin normal metals are stacked
on top of each other, creating a four-terminal device. Two

ferromagnetic leads with antiparallel magnetizations are at-
tached to opposite terminals, and superconducting leads are
attached to the remaining two terminals, all of which forming
tunneling contacts. When a supercurrent is passed through the
superconducting electrodes, a spin accumulation is generated
in the normal metal separating them. In the absence of super-
current, the spin accumulation vanishes in the region between
the superconductors. The length of each of the normal metals
is assumed to be 3ξ , where ξ is the coherence length of the
superconductors, which then gives the distance between op-
posite terminals. We assume that the system is in the diffusive
limit, with a short mean free path. At the low temperatures
relevant for superconductivity, inelastic electron-electron and
electron-phonon scattering are suppressed [10], meaning that
spin heat relaxation takes place mostly via elastic spin-
flip scattering processes. Furthermore, the spin-flip scattering
length is assumed to be longer than the size of the system, so
that the spin diffusion in the normal metal is negligible. This
is achievable, e.g., by using niobium superconductors, which
have a coherence length of ξ = 10–15 nm in the diffusive
limit, and copper normal metals, in which the spin diffusion
length at low temperatures can be longer than 100 nm, even
with a high concentration of impurities [11,12].

The physical mechanism behind this result can then be
understood by the following simplified picture. Consider a
ferromagnet–normal metal–ferromagnet (FNF) spin valve,
with an antiparallel orientation of the magnetization in the
ferromagnets. We increase the temperature of the right F by a
certain amount �T relative to the temperature T0 of the left F,
thereby producing a gradient in the nonequilibrium effective
temperature of the normal metal. The tunneling amplitude of
particles at the F-N metal interfaces is higher when their spin
is parallel to the magnetization than if it is antiparallel. The
former is therefore influenced by a temperature increase in
the F reservoir to a greater degree than the latter, leading to
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FIG. 1. Two superconducting electrodes (S) are deposited on top
of a normal metal film (purple region). Far away from the super-
conducting electrodes, two antiparallel ferromagnets are in contact
with the normal metal film. When a temperature gradient is applied
between the ferromagnets, a spin-energy mode is excited throughout
the normal metal. In the middle of the normal metal, between the
superconductors, there exists no spin accumulation in the absence
of a supercurrent. This corresponds to zero phase gradient across
the Josephson junction, ∇ϕ = 0. When a supercurrent is applied,
∇ϕ �= 0, an antisymmetric spin accumulation is induced in the nor-
mal metal between the superconductors.

a temperature difference between particles of opposite spin.
The temperature on the right and left side of the normal metal
for spin j, T j

R and T j
L , respectively, is then given as

T ↑
R = T0 +

(
1 − b

2

)
�T, (1)

T ↓
R = T0 +

(
1 − b

2

)
�T − p(1 − b)�T, (2)

T ↑
L = T0 + b

2
�T + p(1 − b)�T, (3)

T ↓
L = T0 + b

2
�T, (4)

where b ∈ [0, 1] represents the thermal resistance indepen-
dent of spin direction at the interface, and the polarization
p ∈ [0, 1] takes into account the spin-direction dependence of
the tunneling. For p = 0, both spin species have identical tem-
perature. For p = 1, T ↓

R and T ↑
L are completely insulated from

the adjacent interface, and thus equilibrate to the temperature
at the opposite end. The temperature distribution throughout
the normal metal is simply given by

T j (x) = 1

2

(
T j

R + T j
L

) + (
T j

R − T j
L

) x

L
, (5)

where L is the distance between the ferromagnets and x ∈
(−L/2, L/2). The temperature difference Ts between spin-up
and spin-down electrons then becomes

Ts(x) = T ↑(x) − T ↓(x) = p(1 − b)�T . (6)

In other words, a spin valve in the antiparallel configura-
tion gives a spatially constant temperature difference between
electrons of opposite spin. We emphasize that while this is
a phenomenological model, it can be derived from the qua-
siclassical theory employed in producing the main results of
this Rapid Communication, as shown in Ref. [13], in the linear
regime of a small �T .

When the superconducting leads are added to the spin valve
as shown in Fig. 1, the picture is modified. Consider first

FIG. 2. Illustration of how a phase gradient in a superconductor
leads to a spin imbalance when there is a gradient in the temperature
difference Ts = T↑ − T↓ between spin-up and spin-down particles.
(a) The energy band of the superconductor when there is no phase
gradient. The gradient ∇Ts breaks the balance between left- and
right-moving quasiparticles. We show here the occupation of quasi-
particles for ∇Ts < 0 where for simplicity a scenario with only
left-moving quasiparticle excitations is considered. (b) The same
energy band when ∇ϕ > 0. The resulting Doppler shift leads to a
net spin imbalance, as the symmetry between left-moving electron
and hole branches is now additionally broken.

a bulk ballistic superconducting material, with a band struc-
ture as shown in Fig. 2. If the superconductor experiences a
constant Ts, then spin-up quasiparticles generally have higher
excitation energies, but there are just as many electronlike
excitations as there are holelike—all four branches are equally
occupied, and so there is no spin accumulation. In contrast, a
gradient in Ts leads to an uneven occupation of the branches.
This is illustrated in Fig. 2(a) for ∇Ts < 0. For simplicity, an
extreme case is shown, where the gradient is so large that only
the electronlike branch at k < 0, and the holelike branch at
k > 0 are occupied. This is, however, still not enough to pro-
duce a spin accumulation, due to the balance of electronlike
and holelike excitations. The final, necessary ingredient is a
phase gradient ∇ϕ parallel to ∇Ts. In that case, a Doppler shift
of the energy band is created, reducing the gap for k < 0, and
vice versa, as shown in Fig. 2(b). This leads to an imbalance
between spin-up and spin-down quasiparticles, resulting in a
spin accumulation.

The numerical simulations of the diffusive system perfectly
corroborate the ballistic band-structure analysis presented in
Fig. 2. At first sight this seems strange, as rampant scattering
would average out any asymmetry of the band structure in
momentum space. However, a reasonable explanation is that
in a proximitized normal metal as considered here, the super-
conducting correlations in the normal metal decay away from
the superconductors. In such an inhomogeneous, diffusive
system, Fick’s first law dictates that the quasiparticles, while
behaving as random walkers, have a net drift towards lower
particle density. Hence, they sample the band structure with
a bias in the direction normal to the superconductor–normal
metal interface. A phase difference between the superconduc-
tors provides a phase gradient which is parallel to this bias,
and thus produces a Doppler shift in the gap induced by the
superconducting correlations in the normal metal.

The inhomogeneous superconducting correlations in the
normal metal have an additional effect. Since the Cooper
pairs have a singlet spin structure, it is clear that the pres-
ence of such correlations has a detrimental effect on the spin
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temperature. This decay in Ts is largest near the superconduct-
ing leads, where the superconducting correlations are greatest,
and smallest near the center of the system. In other words, a
gradient in the, otherwise constant, spin temperature is estab-
lished when the superconducting leads are attached.

To summarize, the simplified analysis above implies the
generation of a spin accumulation in the system shown in
Fig. 1. The role of the singlet superconductors is twofold.
First, they introduce a transversal variation (in the direction
between the superconductors) to an otherwise constant tem-
perature difference between spin-up and spin-down particles.
Second, when a phase gradient is applied, which will be par-
allel to ∇Ts, a net spin imbalance is produced. To prove this,
we have to consider both the superconducting correlations
induced in the normal metal due to the proximity effect as well
as the nonequilibrium population of quasiparticles caused by
the temperature gradient applied across the normal metal. A
suitable theoretical framework for this purpose is the Keldysh-
Usadel theory for nonequilibrium Green’s functions [14,15].
In recent years, this formalism has been used to predict several
interesting phenomena in superconducting hybrid structures
driven out of equilibrium [16–20]. This theory is valid in the
diffusive regime of transport, where impurity scattering ran-
domizes the momentum of quasiparticles, in which case the
Green’s function matrix in the normal metal can be obtained
by solving the Usadel equation,

D∇ · ǧ∇ǧ + i[ερ̌4, ǧ] = 0, (7)

where D is the diffusion constant and ε is the quasiparticle
energy. We note that the Usadel equation takes the form of a
diffusion equation, and Fick’s first law, which describes the
net particle drift in an inhomogeneous system, is given as J =
−Dǧ∇ǧ. The Green’s function matrix has the structure

ǧ =
(

ĝR ĝK

0 ĝA

)
, (8)

in Keldysh space, where ĝX are 4 × 4 matrices in particle-
hole and spin space. Furthermore, we have ρ̌4 = diag(ρ̂4, ρ̂4),
with ρ̂4 = diag(+1,+1,−1,−1). The retarded and advanced
Green’s functions ĝR and ĝA determine the band structure of
the system, and these components satisfy an equation which
is identical in form to Eq. (7). The quasiparticle excitations are
determined by the Keldysh Green’s function ĝK . Without loss
of generality, this matrix can be parametrized as ĝK = ĝRĥ −
ĥĝA, where ĥ is a distribution function. Its matrix structure in
particle-hole and spin space can be further parametrized as

ĥ =
∑

n

hnρ̂n, (9)

where ρ̂0 = Î , ρ̂ j = σ̂ j , and ρ̂4+ j = ρ̂4ρ̂ j for j ∈ {1, 2, 3}. The
matrix Î is the identity, and σ̂ j = diag(σ j, σ

∗
j ) for the Pauli

matrix σ j . In the following, we assume that both ferromagnets
are aligned in the z direction, in which case the only relevant
distribution functions become h0, h3, h4, and h7. Insertion into
Eq. (7) gives

amn∇2hn + bmn · ∇hn = 0, (10)

where amn = D Tr[ρ̂mρ̂n − ρ̂mĝRρ̂nĝA]/4, and bmn = ∇amn +
D Tr[ρ̂nρ̂mĝR∇ĝR − ρ̂mρ̂nĝA∇ĝA]/4. The function h0 is the

FIG. 3. Numerical simulations of the magnetization induced by
the spin accumulation, scaled by M0, in the presence of a temperature
gradient. The superconducting terminals (top and bottom), and the
left ferromagnet have a temperature of Tl = 0.1Tc, whereas the right
ferromagnet has a temperature of Th = 0.5Tc. No magnetization is
induced when �ϕ = 0.

energy mode, and gives the temperature distribution of the
system, with h0 = tanh ε

2kBT , where kB is the Boltzmann con-

stant, being the only nonzero component of ĥ in equilibrium.
h3 is a spin-energy mode. It can be related to an effective
temperature difference between spin-up and spin-down quasi-
particles via the Sommerfeld expansion [21,22], in a similar
fashion as shown in Ref. [13]. The charge mode h4 gives the
quasiparticle charge distribution in the system, and the spin
mode h7 gives the magnetization, through the relation

Ms(r) = M0

∫ ∞

−∞
ds h7(s, r)ν(s, r). (11)

In Eq. (11), we have neglected any triplet superconducting
correlations, as is the case in our system, which would other-
wise also give a contribution. Furthermore, ν(ε, r) is the local
density of states, and M0 = gμBν0�/4, where g is the Landé
g-factor, μB is the Bohr magneton, and ν0 is the density of
states of the normal metal, at the Fermi level. Using typical
values of ν0 ∼ 1028 eV−1 m−3 and � ∼ 10−3 eV, this gives
M0 ∼ 102 A/m.

To describe the interfaces to the reservoirs, we use a gen-
eralization of the Kupriyanov-Lukichev tunneling boundary
conditions, which take spin polarization into account [23,24],

2ζ n̂ · ǧ∇ǧ = [ǧ, ǧ′] + ζmr[ǧ, {σ̌3, ǧ′}] + ζ1[ǧ, σ̌3ǧ′σ̌3], (12)

where n̂ is the interface normal, ζ = ρ/ρc, with ρ the resis-
tivity of the normal metal and ρc the contact resistivity, and
ǧ′ is the reservoir Green’s function. The parameters ζmr =
P/(1 + √

1 − P2) and ζ1 = (1 − √
1 − P2)/(1 + √

1 − P2)
give the spin filtering at the interface, for a given polarization
P. For interfaces to the ferromagnets, we set ζ = 3 and P =
0.6, whereas for the superconductors, we set ζ = 1 and P = 0.
To generate a temperature gradient in the normal metal, we
set the temperature in the left ferromagnetic reservoir, as well
as in the two superconducting leads to be Tl = 0.1Tc, and
the temperature in the right ferromagnetic reservoir to be
Th = 0.5Tc. The retarded and advanced components of Eq. (7),
and subsequently Eq. (10), are solved using the finite-element
method [25], and the resulting magnetization is computed
using Eq. (11). The results are shown in Fig. 3. It is seen that
when the phase difference �ϕ is zero, no magnetization is
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FIG. 4. The effect of varying the temperature in the right fer-
romagnetic reservoir. (a) shows the maximum magnetization as a
function of the interface polarization P, and (b) shows the distribu-
tion of the magnetization along a coordinate y moving in a straight
line between the superconductors. The annotations denote different
Th/Tc, and max(Ms ) is the magnetization located along y.

induced in the normal metal. In stark contrast, an antisymmet-
ric magnetization appears when �ϕ = π/2. Thus, a supercur-
rent carried by spinless Cooper pairs induces a magnetization.

A magnetization can also be generated due to the presence
of the ferromagnets, which in proximity to a superconductor
can produce triplet superconducting correlations [26]. An-
other source of triplet correlations is the spin filtering at the
interfaces, which would polarize the supercurrent if it detours
via the ferromagnets on its way from one superconducting
lead to the other. However, for the present geometry, the
ferromagnets are located sufficiently far away from the super-
conducting leads that these mechanisms can be disregarded.
In other words, the triplet superconducting correlations are
completely negligible in this system, and the magnetization is
induced solely by the interaction between the singlet (spin-0)
Cooper pairs and the nonequilibrium temperature distribution.
The heat injection may also cause a spin accumulation via the
spin-dependent Seebeck effect [10,27], which is not captured
by the quasiclassical formalism employed herein. Such an
effect is, however, independent of the superconducting phase
gradient, and hence not of interest in the present study.

From Fig. 4 it is seen that the induced magnetization is on
the order of Ms ∼ 10−2M0 ∼ 1 A/m, which is equivalent to
a spin accumulation on the order of 10−5 eV. This may be
measured by attaching a ferromagnetic contact to the region
of highest spin accumulation, and measuring the potential as
a function of the orientation of the contact magnetization, in
a similar way as was done in Ref. [27]. Alternatively, the spin
accumulation generates a magnetic flux density on the order
of μ0Ms ∼ 10−6 T. This is well within the sensitivity of an AC
nano-superconducting quantum interference device (SQUID),
which can reach 50 nT [28]. Furthermore, this approach has
the advantage of isolating the signal due to the singlet spin
accumulation. Indeed, since all other contributions are inde-
pendent of the phase difference between the superconducting
leads, an AC magnetic field solely due to the spin accumu-
lation can be generated by varying the phase difference with
a controllable frequency, e.g., through an AC current source.
It is interesting to investigate how the induced magnetization
depends on the system parameters. In Fig. 4(a) we show the

maximum magnetization as a function of the interface po-
larization P, for a variety of different temperature gradients.
Polarizations up to 90% can be obtained, e.g., by replacing
the ferromagnetic reservoirs in Fig. 1 with normal reservoirs
that couple to the central normal metal via a ferromagnetic
insulator such as EuS [29]. It is seen that the magnetization
increases with P, and that this increase is steeper for higher
Th. This result is reasonable, as both parameters combined
generate an effective spin temperature difference Ts, in cor-
respondence with Eq. (6). Figure 4(b) shows the distribution
of the magnetization along a straight line between the super-
conducting leads. For a low-temperature difference Th − Tl ,
the largest magnetization takes place about halfway between
the center of the system and the superconductors. However,
as Th increases these maxima are eventually overtaken by a
larger magnetization at the superconductor interfaces. This is
likely because of the increasing temperature gradient between
the right ferromagnet and the superconductors, which leads
to an increasing heat exchange between the two. Since the
temperature in the latter is spin independent, this serves to
mollify the effective spin temperature difference Ts near the
superconductors, and thus increase the gradient in h3. This, in
turn, leads to a higher magnetization when a phase gradient
is applied. We note, however, that these results are obtained
while assuming the superconductors act as temperature reser-
voirs. A continued increase in Th will likely invalidate this
assumption, and lead to a saturation of the induced magneti-
zation. We also note that a spin-heat accumulation, described
by a finite h3 and Ts, should in general also occur close to the
interface on the ferromagnetic side [30].

Finally, we remark that it is also possible to generate a spin-
dependent temperature difference by applying a voltage bias
between the ferromagnets, rather than a temperature gradient.
In this case, the largest average Ts in the system would be
obtained for a parallel alignment of the ferromagnets. A phase
gradient between the superconducting leads will then produce
a spin accumulation by the same mechanism as previously
described. However, in addition to providing a Ts, the injected
quasiparticles also lead to a spin imbalance, and thus directly
contribute to the spin accumulation. This additional contribu-
tion to the spin accumulation would be independent of the
phase gradient, and hence it would still be possible to isolate
the signal due to the singlet superconducting correlations also
in this case.

Conclusion. We have shown that a supercurrent carried by
spinless Cooper pairs can induce a spin accumulation in a
normal metal. This is possible when a spin-energy distribution
mode is excited in the normal metal out of equilibrium, which
allows a spin accumulation to arise due to the Doppler shift
caused by the supercurrent in the quasiparticle energies. Our
finding shows that spin control is possible even with singlet
Cooper pairs in conventional superconductors, which could
open interesting avenues for further research in superconduct-
ing spintronics.
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