
PHYSICAL REVIEW B 102, 100505(R) (2020)
Rapid Communications

Spontaneous strain and magnetization in doped topological insulators with nematic
and chiral superconductivity
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We show that spontaneous strain and magnetization can arise in the doped topological insulators with a two-
component superconducting vector order parameter. The details of the effects depend on the symmetry of the
order parameter, whether it is nematic or chiral. The transition from the nematic state to the chiral one can be
performed by application of a magnetic field, while the transition from the chiral state to the nematic is tuned by
the external strain. These transitions are associated with a jump of the magnetic susceptibility and mechanical
stiffness. Possible experimental observations of the predicted effects are discussed.
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I. INTRODUCTION

Topological superconductivity in doped topological insu-
lators, such as AxBi2Se3, where A = Cu, Nb, Sr, possess
unusual properties [1]. Observation of the Knight shift gave
an indication that the Cooper pairing here is a triplet [2].
However, recent experiments show that this result requires
careful verification and the statement about the triplet nature
of the pairing could be controversial [3,4]. Measurements of
the magnetoresistance show a twofold symmetry of the second
critical field Hc2 despite the threefold crystal symmetry [5–7].
These properties are described in the framework of the theory
of nematic superconductivity [8,9]. The nematic superconduc-
tor has a two-component order parameter with Eu symmetry,
which can be presented as a real-valued vector. The nematic
superconductivity could be accompanied by such intriguing
properties as surface Andreev bound states [10], vestigial
order [11], unconventional Higgs modes [12], and Majorana
fermions [13]. Scanning tunneling microscopy measurements
show a full gap in the spectrum [14,15] that can be attributed
to the s-wave order parameter or to the effect of the hexag-
onal warping in the system with nematic superconducting
order [16].

An alternative superconducting state with Eu symmetry is
a chiral phase [16]. In this phase, the time-reversal symme-
try is broken and the order parameter is a two-component
complex-valued vector. The chiral phase is predicted in
thin films of doped topological insulators [17]. Recent ex-
periments show fingerprints that can be attributed to the
existence of the chiral superconductivity in the topological
insulators [18,19].

One of the distinct features of the nematic superconduc-
tivity is a nontrivial coupling with strain. This coupling leads
to the twofold symmetry of Hc2 [9]. In Refs. [6,7] this effect
was observed. In Ref. [7] it was found that strain also affects
twofold symmetric anisotropic magnetoresistance and breaks
threefold crystal symmetry. The x-ray studies reveal that in

most samples an initial strain of about δl/l ∼ 10−5 is pre-
sented at room temperature. In some samples, the deformation
at room temperature is absent up to the experimental accu-
racy, while a twofold symmetry of Hc2 remains. In Ref. [20]
experiment on the magnetostriction reveals that the crystal
lattice is deformed in the superconducting state. The strain
is δl/l ∼ 10−7 and decreases with an increase of temperature
and vanishes in the normal state. These experiments demon-
strate that either spontaneous or initial strain probably exists in
the doped topological insulators in the superconducting state.

In Ref. [21] the existence of a magnetization in the
superconducting state of NbxBi2Se3 has been found. The mag-
netization vanishes in the normal state. The origin of such
magnetization is yet to be clarified. Density functional theory
calculations show that the magnetization can be attributed to
the existence of the free spins in the intercalated Nb adatoms.
However, the spontaneous magnetization has not been ob-
served in subsequent experiments and it is debated whether
it actually exists [1]. Recently, a nonzero magnetization in the
superconducting Sr0.1Bi2Se3 has been observed using muon
spectroscopy [22].

In Refs. [9,16], the Ginzburg-Landau (GL) functional was
derived for the superconducting state in the topological insu-
lator with vector order parameter �η = (η1, η2). The nematic
state corresponds to real order parameter �η = η(cos α, sin α),
while in the chiral state the order parameter is a complex
vector �η = η(1,±i). The GL theory successfully describes
macroscopic properties of the superconductivity in the doped
topological insulators.

The multicomponent structure of the order parameter al-
lows emergence of the subsidiary order parameters. In the
case of D3d point group symmetry of topological insulators,
such as Bi2Se3, the subsidiary point groups have Eg and A2g

symmetries. Corresponding bilinear forms are [9]

Eg → (N1, N2) = (|η1|2 − |η2|2, η∗
1η2 + η1η

∗
2 ),

A2g → M0 = η1η
∗
2 − η∗

1η2.
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As we can see, the nematic state corresponds to Eg subsidiary
order with M0 = 0, while the chiral state corresponds to A2g

bilinear with (N1, N2) = (0, 0). It was pointed out in Ref. [9]
that the existence of the subsidiary order parameters gives rise
to a nontrivial coupling of the superconductivity with mag-
netization and strain. Corresponding contribution to the GL
free energy has a structure 2iMzM0 + (uxx − uyy)N1 + 2uxyN2.
Thus, the nematic state couples with the strain degrees of free-
dom, while the chiral state couples with the magnetization.
In other words, nematicity and deformation compete with the
chirality and magnetization. While we consider theory for the
specific symmetry group, we expect similar effects in other
materials with appropriate symmetry of the superconducting
order.

Here, we show that either spontaneous strain or spon-
taneous transverse magnetization arises in the topological
superconductor depending on the system parameters. The
spontaneous deformation is observed in the case of ne-
matic symmetry of the superconducting order parameter, �η =
η(cos α, sin α), while the spontaneous magnetization exists in
the case of the chiral solution, �η = η(1,±i). We also study the
effects of initial strain and applied magnetic field on the order
parameter symmetry. We show that the growth of the applied
magnetic field gives rise to a transition of the nematic order
to the chiral one, while with the growth of the initial strain,
the chiral state transits to the nematic one. We found that the
magnetic susceptibility and the stiffness experience jumps at
the transition points. We discuss the relation of the obtained
results with recent experimental observations.

II. GL FREE ENERGY

We study the superconducting state in the doped topologi-
cal insulator assuming that the system is spatially uniform and
the order parameter is independent of coordinates. In partic-
ular, we do not consider Abrikosov vortices. In the presence
of the half-quantum vortices with topological charge [23] our
theory is not applicable and a more advanced theory of decon-
fined quantum criticality should be applied [24]. Uniform GL
free energy can be written in the form [9,16]

F0 = A(|η1|2 + |η2|2) + B1(|η1|2 + |η2|2)2

+ B2|η∗
1η2 − η1η

∗
2|2, (1)

where GL coefficients A ∝ T − Tc < 0, B1 > 0, and B2 either
positive or negative. Minimization of this GL free energy
predicts the existence of two different superconducting states
depending on the sign of B2:

|η1|2 + |η2|2 =− A

2B1
, Im(η1, η2) = 0, F0 = − A2

4B1
, B2 > 0,

|η1|2 = −A

4(B1 + B2)
, η1 = iη2, F0 = − A2

4(B1 + B2)
, B2 < 0.

(2)

The state with B2 > 0 is referred to as nematic. This state
has a real order parameter �η = η(cos α, sin α). The state with
B2 < 0 is commonly called chiral. In the chiral state, the time-
reversal symmetry is broken, which is related to the complex
order parameter �η = η(1,±i).

The total GL free energy is a sum

FGL = F0 + Fu + FM, (3)

where F0 is the bare superconducting part given by Eq. (2),
Fu and FM are the symmetry-breaking terms arising due to
coupling of the superconducting order with the strain and the
magnetization, respectively.

The term Fu for the system with D3d group symmetry can
be presented as [16,25]

Fu = gN (uxx − uyy)(|η1|2 − |η2|2) + 2gN uxy(η∗
1η2 + η1η

∗
2 )

+ λ1
[
(uxx − uyy)2 + 4u2

xy

] + λ2(uxx + uyy)2, (4)

where uik are components of the strain tensor, uxx and uyy are
uniaxial components, uxy = uyx is a shear strain, and gN is
a GL coupling constant between superconducting order and
strain. The two last terms in Eq. (4) correspond to the self-
energy of the elastic deformation and λ1, λ2 > 0 are elastic
modules.

The term with the transverse Zeeman magnetization Mz

reads

FM = −2igMMz(η1η
∗
2 − η∗

1η2) + aM2
z , (5)

where gM is a GL coupling constant between superconducting
order and the magnetization, and an empiric coefficient a > 0.
The last term in this equation accounts for the free energy loss
due to magnetization in a nonmagnetic phase.

III. SPONTANEOUS STRAIN AND MAGNETIZATION

We have to minimize the GL free energy with respect to �η,
uik , and Mz. It is convenient to introduce the notations η1 =
η cos α exp(iϕ1), η2 = η sin α exp(iϕ2), and ϕ = ϕ1 − ϕ2. In
these terms we have

F0 = Aη2 + B1η
4 + B2η

4 sin2 2α sin2 ϕ, (6)

FM = 2gMMzη
2 sin 2α sin ϕ + aM2

z . (7)

We consider a uniform two-dimensional strain in the sys-
tem with hexagonal symmetry, which is characterized by three
independent values uxx, uyy, and uxy. Following Ref. [26], we
use their linear combination as new independent variables. We
divide the strain tensor uik into two parts: a vector �u = (uxx −
uyy, 2uxy) = u(cos 2β, sin 2β ) and a scalar Sp uik = uxx + uyy.
In these notations Eq. (4) is rewritten as

Fu = gNη2u(cos 2α cos 2β + cos ϕ sin 2α sin 2β )

+ λ1u2 + λ2(uxx + uyy)2. (8)

To calculate the spontaneous strain and transverse magne-
tization, we should minimize the total free energy with respect
to new independent degrees of freedom: the magnitude of the
order parameter η, the direction of the nematicity α, the phase
difference between components of the order parameter ϕ, the
magnetization Mz, the amplitude of the strain u, the direction
of �u, that is, angle β, and the trace of the deformation tensor
Sp uik . The minimization by the latter variable is trivial: a
minimum of FGL is attained if Sp uik = 0 since this value does
not couple with superconducting order. Thus, uxx = −uyy and
the spontaneous strain occurs without change of the sample
volume.
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The minimization of FGL with respect to the magnetization
means that ∂FM/∂Mz = 0 and from Eq. (7) we derive

Mz = −gM

a
η2 sin 2α sin ϕ. (9)

The spontaneous magnetization, which arises after normal to
superconductor transition, exists only if sin 2α and sin ϕ �= 0,
that is, when both η1 and η2 are nonzero and the order param-
eter is complex.

Minimization by other degrees of freedom is straightfor-
ward but cumbersome. We present only final results. We
obtain that the system has two possible ground states, nematic
and chiral, as in the case when we neglect the spontaneous
strain and magnetization. In the nematic phase, sin ϕ = 0,
we get

η2 = −A

2
(
B1−g2

N/4λ1
) , Fnem = −A2

4
(
B1−g2

N/4λ1
) . (10)

The condition B1 − g2
N/4λ1 > 0 is necessary for the stability

of the nematic state. In the nematic state the spontaneous
magnetization is zero, while the strain is nonzero and u =
usp(−1)n+1, where

usp = gN |A|
4B1λ1 − g2

N

, β = α + πn

2
, Mz = 0, (11)

and n is integer. The deformation vector is parallel to the
nematicity direction if gN > 0,

�u = (uxx − uyy, 2uxy) = |u|(cos 2α, sin 2α), (12)

and orthogonal if gN < 0. The nematic phase is infinitely
degenerate with respect to the angle α, and the ground state
free energy is the same for any direction of the nematic order
parameter �η = η(cos α, sin α). The spontaneous deformation,
usp ∝ A ∝ (Tc − T ), decreases with the increase of tempera-
ture and vanishes at T = Tc.

In the chiral state cos ϕ = 0 and α = π/4 + π l/2, where l
is an integer. In so doing, we derive

η2 = −A

2
(
B1+B2−g2

M/a
) , Fch = −A2

4
(
B1+B2−g2

M/a
) . (13)

The system is stable if B1+B2−g2
M/a > 0. In the case of

chiral phase, the spontaneous strain is zero, while the sponta-
neous magnetization is nonzero and Mz = Msp(−1)l+1, where

Msp = gM |A|
2
[
(B1 + B2)a − g2

M

] , u = 0. (14)

The chiral state is degenerate with respect to the sign of
chirality, η = η(1,±i), and the sign of magnetization Mz. The
spontaneous magnetization, Mz ∝ A ∝ (Tc − T ), decreases
with the increase of temperature and vanishes at T = Tc.

We compare the free energy in the nematic state, Eq. (10),
and in the chiral state, Eq. (13), and conclude that the nematic
phase is the ground state, Fnem < Fch, if

B2 + g2
N

4λ1
− g2

M

a
> 0. (15)

Otherwise, the superconductor is in the chiral phase.

As we can see from Eq. (15), coupling the superconductiv-
ity with the strain shifts the system toward the nematic state,
while the coupling with the magnetization drives the system
to the chiral state. Below, we show how we can switch off the
system from one phase to another by application of a magnetic
field or an external strain.

IV. EFFECT OF THE APPLIED MAGNETIC FIELD

We assume that a uniform transverse magnetic field H =
(0, 0, H ) exists in the sample volume. Such a situation could
be realized, for example, if a corresponding size of the sample
is smaller than the London penetration depth. In this case, the
field H is simply an external magnetic field. Our consideration
is valid if this field is much smaller than the upper critical field
Hc2 when we can neglect the Landau quantization and, conse-
quently, disregard spatial modulations of the order parameter.
In other words, we consider an external Zeeman magnetiza-
tion. We choose the z axis directed along the applied field
and, hence, H > 0. In this section, we neglect the spontaneous
strain since it does not affect the main result but makes the
calculations cumbersome.

We rewrite Eq. (7) for the magnetic part of the GL free
energy as

FM = 2gMMzη
2 sin 2α sin ϕ + aM2

z − HMz. (16)

The minimization of FM with respect to Mz gives

Mz = 1

2a
(H − 2gMη2 sin 2α sin ϕ). (17)

After minimization of FGL by η2 we obtain

η2 = − A + gMH sin 2α sin ϕ/a

2
[
B1 + (

B2 − g2
M/a

)
sin2 2α sin2 ϕ

] . (18)

We substitute expressions for η2 and Mz in Eqs. (6) and (16)
and derive

FGL(t ) = −H2

4a
− (A + gMHt/a)2

4
[
B1 + (

B2 − g2
M/a

)
t2

] , (19)

where t = sin 2α sin ϕ and |t | � 1. Edge values t = ±1 corre-
spond to the chiral phase ϕ = ±π/2, α = ±π/4, and the first
minimum of the free energy is attained if t = −1. As a result,
we have that in the chiral phase

Fch(H ) = −H2

4a
− (A − gMH/a)2

4
(
B1 + B2 − g2

M/a
) (20)

and magnetization

Mz = H

2a

[
1 + g2

M

a
(
B1 + B2 − g2

M/a
)
]

+ Msp. (21)

Here the first term is an induced magnetization and the second
term is the spontaneous magnetization, Eq. (14).

We find the second minimum of the free energy from the
condition ∂FGL(t )/∂t = 0 at

t = gMHB1

aA
(
B2 − g2

M/a
) . (22)

The latter solution exists only if t < 1 or H < |A|(aB2 −
g2

M )/gMB1. This minimum corresponds to the nematic state
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and sin ϕ = 0 if H = 0. In the nematic state, the order param-
eter is independent of H and only induced magnetization is
observed:

η2 = − A

2B1
, Mz = H

2a

(
1 + g2

M

aB2 − g2
M

)
. (23)

The GL energy in the nematic phase is

Fnem(H ) = −H2

4a

(
1 + g2

M

aB2 − g2
M

)
− A2

4B1
. (24)

If we assume that inequality (15) is fulfilled, then, the
nematic phase is the ground state at H = 0. The applied
magnetic field induces a nonzero phase difference sin ϕ =
t/ sin 2α between the components of the order parameter and
drives the nematic state to the chiral one. Using Eq. (22) and
comparing the GL free energies in Eqs. (20) and (24), we
conclude that the value of |t | increases with H and attains its
maximum |t | = 1 at which Fnem(H ) = Fch(H ) when

H = H∗ = |A|(aB2 − g2
M

)
/gMB1. (25)

With further increase of the magnetic field, the nematic state
disappears and the superconducting state becomes chiral. Cor-
respondingly, a spontaneous magnetization arises at H > H∗.
However, at this point the magnetization MZ (H ) is continu-
ous, while the magnetic susceptibility, χ = ∂Mz/∂H , exhibits
a jump:

χnem = 1

2a

(
1 + g2

M

aB2 − g2
M

)
, H < H∗,

χch = 1

2a

[
1 + g2

M

a
(
B1 + B2 − g2

M/a
)
]
, H > H∗. (26)

Thus, the transition from the nematic to chiral phase at H =
H∗ is a type-II phase transition.

V. SYSTEM WITH INITIAL STRAIN

Here we assume that some initial strain �u0 =
u0(cos 2β0, sin 2β0) exists in the system. According to
x-ray measurements [6,7], this strain arises in the process of
the crystal growth and had a characteristic value u0 ≈ 10−5,
which is two orders of magnitude larger than that observed
after normal to superconductor transition [20]. Thus, it is
reasonable to neglect here the spontaneous deformation.

We have to minimize the free energy FGL = F0 + FM +
Fu(u0) [see Eqs. (6), (7), and (8)]. We neglect terms propor-
tional to u2

0 in Fu since they are constant and, for definiteness,
we assume that gN u0 > 0. From the minimization condition
∂F/∂η = 0 and ∂F/∂Mz = 0, we obtain

η2 =−A+gN u0(cos 2α cos 2β0+cos ϕ sin 2α sin 2β0)

2
[
B1+

(
B2−g2

M/a
)

sin2 2α sin2 ϕ
] ,

F =− [A+gN u0(cos 2α cos 2β0+cos ϕ sin 2α sin 2β0)]2

4
[
B1+

(
B2−g2

M/a
)

sin2 2α sin2 ϕ
] .

The free energy F has two minimums. The first of them
corresponds to the nematic state, sin ϕ = 0. In this state the

spontaneous magnetization is absent and the free energy is

Fnem(u0) = − [A + gN u0 cos 2(α − β0)]2

4B1
. (27)

In the ground state we have α = β0 + π (n + 1/2) and Fnem =
−(A − gN u0)2/4B1.

The second minimum of the free energy corresponds to the
chiral state, where

cos 2α = −u0 cos 2β0

u∗ , cos ϕ = −u0 sin 2β0

u∗ sin 2α
,

u∗ = |A|(g2
M − B2a

)
gN

[
(B1 + B2)a − g2

M

] . (28)

The order parameter in the chiral state is the same as in the
case u0 = 0, Eq. (13). For the free energy and magnetization
we have

Fch(u0) =
−A2 + g2

N u2
0

(
1 + B1

B2−g2
M/a

)
4
(
B1 + B2 − g2

M/a
) ,

Mz(u0) = Msp

√
1 −

(u0

u∗
)2

. (29)

Comparing the free energies in Eqs. (27) and (29), we
see that the nematic phase is the ground state at any u0, if
the condition in Eq. (15) is fulfilled. However, changing the
the strain �u0 = (u0xx − u0yy, 2u0xy) = u0(cos 2β0, sin 2β0) we
can govern the nematicity vector �η = η(cos α, sin α) since
α = β0 + π (n + 1/2). For example, if the initial strain has
no shear component, that is, β0 = 0, we have �η = η(0,±1).
In the case of a pure shear strain, β0 = π/4, we get α =
π/4 + π (n + 1/2) and �η = η(1,±1)/

√
2.

If the condition in Eq. (15) is violated, then the ground state
of the system at u0 = 0 is chiral with nonzero spontaneous
magnetization. The applied strain drives the chiral phase to
the nematic one via tuning of the α or ϕ from α = ±π/4 or
ϕ = 0, π [see Eq. (28)]. If u0 > u∗, then Eq. (28) cannot be
fulfilled and the chiral phase becomes unstable and the ground
state becomes nematic with zero ϕ and Mz. Similar to the
magnetic susceptibility, stiffness K = ∂2F/∂u2

0 experiences a
jump here:

Knem = 2λ1 − g2
N

2B1
, u > u∗,

Kch = 2λ1 + g2
N

2
(
B2 − g2

M/a
) , u < u∗, (30)

and the transition from the chiral to nematic state is of the
second order.

VI. DISCUSSION

In the framework of the GL approach, we analyzed the
symmetry-breaking phenomena in the topological supercon-
ductors. We predict that in the nematic state a spontaneous
strain of the crystal occurs due to a nontrivial coupling of the
superconducting order parameter and the strain. This strain
vanishes in the normal state. A spontaneous deformation has
been observed in the measurements of the magnetostriction
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[20]: the lattice strain δl/l = u ∼ 10−7 arises in the super-
conducting state, decreases with temperature growth, and
vanishes in the normal state, which confirms our prediction.
Similar values of the magnetostriction have been observed in
other types of superconductors [27].

In Refs. [6,7], the strain has been measured by the x-ray
technique. In most samples, the initial deformation u0 ∼ 10−5

at room temperature was found. It is much larger than the
spontaneous deformation u ∼ 10−7 reported in Ref. [20]. In
some samples, no strain has been found up to the experi-
mental accuracy. However, in all samples a twofold in-plane
anisotropy of Hc2 was observed. These experiments indicate
that both cases, dominant of either the initial or the spon-
taneous strain, are possible. Initial deformation u0 increases
the critical temperature Tc = Tc0 + |gN u/A0|, where Tc0

is the critical temperature without strain, A = A0(Tc0 − T ).
The spontaneous strain, u ∝ A0(Tc0 − T ), vanishes at T = Tc0

and has no effect on the critical temperature.
We argue that a transverse spontaneous magnetization oc-

curs in the chiral state. This magnetization is tied to the
superconductivity and vanishes in the normal state. The finite

magnetization in the doped topological insulator AxBi2Se3

(A = Nb, Sr) has been measured in Refs. [21,22]. This mag-
netization decreases with an increase in temperature and
vanishes in the normal state, which is in agreement with our
results.

We consider the effects of the applied magnetic field and
the initial strain. We show that the application of the magnetic
field drives the initially nematic superconductor to the chiral
state, while the growth of the initial strain derives the chiral
superconductor to the nematic state. When the applied field
(initial strain) exceeds some threshold value the nematic (chi-
ral) state is changed by the chiral (nematic) phase.
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