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Second-order topological superconductors (SOTSs) host localized Majorana fermions and provide a new
platform for topological quantum computation. We propose a feasible way to realize networks based on SOTSs
which allow one to nucleate and braid Majorana bound states (MBSs) in an all-electrical manner without
fine-tuning. The proposed setups are scalable in a straightforward way and can accommodate any even number of
MBSs. Moreover, the MBSs in the networks allow defining qubits whose states can be initialized and read out by
measuring Josephson currents flowing between SOTS islands. Our proposal can be implemented in monolayers
of FeTe1−xSex , monolayers of 1T ′-WTe2, and inverted Hg(Cd)Te quantum wells in proximity to conventional
superconductors.
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Introduction. Second-order topological superconductors
(SOTSs) are characterized by topologically protected midgap
bound states with zero excitation energy and codimension
two [1–12]. These midgap states behave like Majorana
fermions which constitute their own antiparticles [13]. They
obey non-Abelian exchange statistics and could find promis-
ing applications in topological quantum computation [14–20].
Recently, SOTSs have been predicted in certain candidate sys-
tems [6–10,21–37]. Hence, they provide a feasible platform
for implementing topological quantum gates [38–40]. A few
theoretical proposals have been made to explore the exchange
of Majorana bound states (MBSs) in SOTSs [40–43]. How-
ever, they are restricted to only a single pair of MBSs or
require one to locally tune magnetic fields. To define a mul-
tidimensional computational ground-state manifold suitable
for implementing non-Abelian quantum gates, four or more
MBSs are required [16,44]. Moreover, simpler manipulation
schemes based on electrical controls are advantageous in ex-
perimental implementation and runtime for quantum gates.

In this Rapid Communication, we propose a way to realize
electrically tunable networks of MBSs based on SOTSs. We
take full advantage of the special role played by the sample ge-
ometry in SOTSs and conceive setups whose building blocks
consist of isosceles right triangle islands (IRTIs) of SOTSs. By
modulating local gate voltages on the islands, it is possible to
nucleate an arbitrary even number of MBSs and control their
positions on the networks, allowing for non-Abelian braiding.
The magnetic order in our proposal can be uniform. It can,
for instance, be realized by in-plane ferromagnetism (FM),
antiferromagnetism (AFM), Zeeman fields, or a mixture of
them. Moreover, the qubit states defined by the MBSs in
the network can be initialized and read out, for instance,
by measuring Josephson currents flowing between the SOTS
islands. Importantly, our proposal can be implemented in a va-
riety of candidate systems, including 1T ′-WTe2 monolayers,
inverted Hg(Cd)Te quantum wells with proximity-induced

superconductivity, and FeTe1−xSex monolayers with intrinsic
superconductivity.

MBSs on open boundaries of SOTSs. We consider two-
dimensional SOTSs which are realized by introducing s-wave
pairing potential in combination with in-plane FM or AFM to
quantum spin Hall insulators. The SOTSs can be described by

H(k) = m(k)τzσz + A sin kxszσx + A sin kyτzσy

−μτz + �0τysy + HM (1)

in the basis (ca↑, cb↑, ca↓, cb↓, c†
a↑, c†

b↑, c†
a↓, c†

b↓), where cσ s

is the fermion operator with orbital (or sublattice) index
σ ∈ {a, b} and spin index s ∈ {↑,↓}; m(k) = 2m cos kx +
2m cos ky + m0 − 4m with m0m > 0; μ is the chemical po-
tential controllable by external gates. The Pauli matrices s,
σ, and τ act on spin, orbital, and Nambu spaces, respec-
tively. HM describes the magnetic order. It can be induced
by close proximity to ferromagnets or antiferromagnets or
by applying in-plane magnetic fields. For concreteness, we
focus on the case of FM with strength M0 in the x direction,
HM = M0τzsx [45].

The SOTSs feature zero-energy MBSs when open bound-
ary conditions are enforced. To better understand this, it is
instructive to derive a low-energy effective Hamiltonian on
boundaries. We start with the low-energy limit of H(k) and
consider the SOTSs in a disk geometry of radius R. In the
absence of M0 and �0, we can find helical states (�e,↑, �e,↓,
�h,↑, �h,↓) on the disk boundary. Using these helical states
as a basis and projecting the full Hamiltonian H(k) on these
states, the boundary Hamiltonian is constructed as

˜H(ϕ) = −Apϕsz + �0τysy − ˜Me−iτzszϕsy − μτz, (2)

where ϕ is the azimuthal coordinate and pϕ ≡ −i∂ϕ/R the
corresponding momentum defined along the boundary. The
boundary states possess effective pairing potential �0 and
magnetization ˜M = M0 sin ϕ, as induced from the bulk. When
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TABLE I. Fusion strength Fγi :γi′ of MBSs {γi} and {γ ′
i } belonging

to two SOTS islands. The table displays the dependence of Fγi :γi′ on μ

and μ′ and on δ
. We define ϑ± = (ϑ ± ϑ ′)/2, ϑ = arctan(μ/�0 ),
and ϑ ′ = arctan(μ′/�0 ). Results for the fusion of MBSs belonging
to the same island can be obtained by taking γ ′

i = γi, δ
 = 0, and
μ′ = μ.

γ1 γ2 γ3 γ4

γ ′
1 sin ϑ− sin δ
 cos ϑ+ cos δ
 cos ϑ− sin δ
 sin ϑ+ cos δ


γ ′
2 cos ϑ+ cos δ
 sin ϑ− sin δ
 sin ϑ+ cos δ
 cos ϑ− sin δ


γ ′
3 cos ϑ− sin δ
 sin ϑ+ cos δ
 sin ϑ− sin δ
 cos ϑ+ cos δ


γ ′
4 sin ϑ+ cos δ
 cos ϑ− sin δ
 cos ϑ+ cos δ
 sin ϑ− sin δ


M0 > �̄ ≡ (�2
0 + μ2)1/2, we find that the energy bands of

Eq. (2) change their order at the angles

ϕ1/4 = ±arcsin(�̄/M0) and ϕ2/3 = ϕ4/1 + π (3)

along the boundary. The changes of band order indicate the
appearance of four MBSs γi with i ∈ {1, 2, 3, 4}, exponen-
tially localized at ϕi. When they are well separated from each
other, the four MBSs are at zero energy and it is possible to
analytically derive their wave functions �i [46]. Importantly,
the chemical potential μ controls the angles ϕi, according
to Eq. (3). This enables us to manipulate the positions of
the MBSs, and eventually their fusion and braiding in an
all-electrical manner, as discussed below.

Fusion properties of MBSs. When two MBSs are brought
close together, their wave functions start to overlap and their
energies become finite. This process, known as fusion, is
mediated by the electron hopping in the SOTSs. According
to Eq. (1), the hopping corresponds to the operator T̂ =
iA(szσx + τzσy)/2 + 2mτzσz. Thus, the fusion strength be-
tween two MBSs, say γi and γ j , can be estimated as Fγi :γ j =
|〈�i|T̂ |� j〉|. On a single island, we find that the fusion
strengths Fγ1:γ2 and Fγ3:γ4 are proportional to cos ϑ , while Fγ1:γ4

and Fγ2:γ3 to sinϑ , where ϑ = arctan(μ/�0). By contrast, the
fusion between γ1 and γ3 (or γ2 and γ4) is strictly forbidden,
due to inversion symmetry of the SOTSs [46].

The fusion properties become richer when we consider two
sets of MBSs {γi} and {γ ′

i } (with i ∈ {1, 2, 3, 4}) belonging to
two different islands, featuring a finite pairing phase differ-
ence. In this case, when two MBSs from different islands are
brought close together, they can always fuse in general. The
mutual fusion strengths Fγi :γ ′

j
are summarized in Table I and

depend sinusoidally on the pairing phase difference 2δ
 and
the chemical potentials μ and μ′ of the two islands.

Manipulation of MBSs in IRTIs. In order to obtain a scalable
platform hosting any even number of MBSs which are manip-
ulable by purely electrical means, it is essential to go beyond
the simple disk geometry presented so far. Particularly, we
focus on IRTIs, the short sides of which are orientated in the
x and y directions, as depicted in Fig. 1. To develop some
intuition about the appearance of MBSs in the IRTIs, one can
relate the latter to the disk geometry in the following way: the
dotted lines normal to the triangle sides define three arcs of
the disk boundary (dashed curves); all the points belonging to
the same arc reduce to the corresponding vertex of the triangle
(colored arrows); conversely, each side of the triangle reduces

FIG. 1. Positions of two MBSs (blue dots) in an IRTI for
(a) |μ| < μc and (b) |μ| > μc, respectively. The gray dots denote the
four MBSs on a disk boundary (dashed curve). The magnetic order
(M) is fixed in the x direction. By increasing μ from 0 < μ < μc to
μ > μc, the angle ϕ1 (in red) increases and one MBS is moved from
one sharp-angle vertex to the other one. Schematics of IRTIs with
small concavity (c) or convexity (d) on the diagonals.

to a single point on the disk. Out of the four MBSs (gray dots)
hosted by the disk, two of them must locate on the same arc
meaning that, in the triangle, they fuse on the same vertex.
By contrast, the two remaining MBSs locate on different arcs
and thus stay robustly as zero-energy corner states (blue dots)
in the IRTI. Which vertices host the MBSs crucially depends
on the angles ϕi (ϕ1 is depicted in red) and, therefore, on the
value of the chemical potential μ.

For |μ| < μc ≡ (M2
0/2 − �2

0)1/2, the four MBSs on the
disk are sketched in Fig. 1(a). For |μ| > μc, the MBSs are
located as shown in Fig. 1(b). By slowly tuning μ across μc,
say from μd(< μc) to μu(> μc), we can thus adiabatically
move one MBS between two sharp-angle vortices while the
other one stays fixed at the right-angle vertex. We observe
that a finite μc requires M0 >

√
2�0. When μ is close to

μc, the localization length of the movable MBS along the
diagonal is approximately proportional to A�0/(μc|μ − μc|).
Therefore, larger islands pose weaker constraints on the dif-
ference μu − μd. The possibility to move MBSs between two
vertices is confirmed numerically [46]. These results apply to
any IRTIs with the short sides in the x and y directions.

To get more insight into the fundamental role played by
the SOTS geometry and to make further use of it, we con-
sider a small bending on the diagonal. Interestingly, we find
that small concavity on the diagonal allows us to smoothly
move the MBS along the diagonal [Fig. 1(c)]. It also helps
to enhance the excitation gap that protects the MBSs since
the diagonal becomes fully gapped everywhere except for one
point in space even at μc [46]. By contrast, small convexity
tends to nucleate an extra Majorana pair and thus momentarily
increases the ground-state degeneracy [Fig. 1(d)].

Building networks of MBSs. By properly connecting several
IRTIs, networks of diagonals can be defined, for instance,
as sketched in Fig. 2 (more examples are given in the Sup-
plemental Material [46]). When two or more vertices get in
contact, there is a finite overlap between the wave functions
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FIG. 2. Networks of connected IRTIs. The cyan and yellow col-
ors distinguish between two pairing phases on the islands. The white
regions are vacuum or trivial insulator. The dashed lines mark the
boundaries between the IRTIs. In (a), all μ j = μd and the network
hosts four MBSs indicated by the blue dots. In (b), the chemical
potentials of triangles marked by the shadow pattern have been tuned
to μu, resulting in the movement of the top-right MBS and in the
nucleation of two additional MBSs.

of different MBSs, which fuse according to the inter- and
intraisland fusion strengths summarized in Table I. The latter
clearly depends on the chemical potential and the supercon-
ducting phases 
 j of adjacent IRTIs. For concreteness, in
the following, we focus on the configuration illustrated in
Fig. 2, where we apply 
 j = 0 for the cyan triangles and

 j = 
0 
= pπ (with p ∈ Z) for the yellow ones. As a result,
we observe that every time an even number of MBSs approach
the same point, they completely fuse. Conversely, when an
odd number of MBSs approach the same point, a single MBS
is left at zero energy.

By tuning the chemical potentials of individual IRTIs
across μc, it is therefore possible to either nucleate, fuse, or
move MBSs on the network. Two clarifying examples are
illustrated in Fig. 2. In Fig. 2(a), all chemical potentials are
set to μd < μc, resulting in the presence of four MBSs. In
Fig. 2(b), the chemical potentials of two IRTIs (highlighted by
a shadow pattern) have been tuned to μu > μc. Consequently,
the top-right MBS is moved while a new pair of MBSs has
been nucleated in the left-bottom of the network.

It is important to stress that the Majorana manipulation
does not rely on fine-tuning of parameters. The proposed
setup can therefore be easily scaled up, just by adding more
IRTIs, in order to accommodate an arbitrary number of MBSs.
Since each MBS is exponentially localized on a specific node
of the network, the lifting of the ground-state degeneracy is
exponentially small in the size of each island.

Braiding a Majorana qubit. To illustrate the capabilities of
our networks, we now show how to braid a couple of MBSs,
thus implementing a phase gate on a Majorana qubit. The
latter consists of four MBSs, which can be hosted by the
six-island structure depicted in Fig. 3. We label the IRTIs
by Tj (with j ∈ {1, . . . , 6}) and the corresponding chemical
potentials and superconducting phases by μ j and 
 j , respec-
tively. For the numerical simulation illustrated in Fig. 3, we
considered 
5 = 
6 = π/2 and 
 j = 0 otherwise.

The initial configuration, Fig. 3(a), features μ j = μu for
j ∈ {1, 5, 6} and μ j = μd otherwise. We can observe four
MBSs which are indicated by the black localized densities
and labeled by γa, γb, γc, and γd . In order to braid γa and γb,
the chemical potentials μ4, μ5, and μ6 must be adiabatically

FIG. 3. Numerical simulation of braiding γa and γb. (a)–(g)
Seven subsequent snapshots show the positions of the four MBSs
(black localized densities). During the protocol, μ4, μ5, and μ6 are
varied in time, according to (i), while μ1 = μu and μ2 = μ3 = μd

are fixed. (h) The energy spectrum of the system during the process.
It is symmetric with respect to zero energy. The parameters are
μu = 0.15m0, μd = 0.05m0, M0 = 0.4m0, �0 = 0.25m0, and A =
m = 0.5m0; the short-side length of the IRTIs is L = 35a.

tuned in time, according to Fig. 3(i). This results in the motion
of γa and γb along the diagonals of T4, T5, and T6, as shown in
Figs. 3(a)–3(g). At the end of the protocol, while the system
has the same parameters as in the initial state, the positions
of γa and γb are exchanged. Importantly, during the whole
process, the four MBSs stay robustly at zero energy [red bands
in Fig. 3(h)]. They are always separated from excited states
(blue bands) by an energy gap. Similar procedures apply to
exchange other MBS pairs [46].

Because of the non-Abelian nature of MBSs, the braiding
of γa and γb results in a nontrivial unitary operation Uab =
exp(πγaγb/4) on the Majorana qubit [14]. It corresponds to
a quantum gate that implements a π/2 rotation on the Bloch
sphere. This can be experimentally confirmed by measuring
the parity of two different couples of MBSs, Pbc = iγbγc and
Pac = iγaγc. The former one can be used to initialize the qubit,
say in the eigenstate of Pbc|0〉 = |0〉. Then, the braiding rotates
the initial state to Uab|0〉 which is an eigenstate of PacUab|0〉 =
Uab|0〉. The validity of this result can be straightforwardly
verified by measuring Pac.

Remarkably, our all-in-one setup allows for initialization,
braiding, and readout. Indeed, because of the possibility to
move and fuse arbitrary couples of MBSs on the network, we
can measure a generic parity operator Pαβ . For concreteness,
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FIG. 4. (a) Detection of the parity Pbc of γb and γc by measuring
the Josephson current. (b) Ground-state energy Eg (orange curves)
of the two coupled MBSs, γb and γc, and the Josephson current
(blue curves) across the junction as functions of the pairing phase
difference. Solid and broken curves correspond to the two parity
states, Pbc|0〉bc = |0〉bc and Pbc|1bc〉 = −|1bc〉.

we describe the measurement of Pbc in the six-island architec-
ture. In this case, one must fuse γb and γc by moving them in
the region which defines a Josephson junction between islands
with different pairing phases [Fig. 4(a)]. The effective Hamil-
tonian which describes the coupling between the two MBSs
reads Hbc = � cos(δ
)Pbc, where 2δ
 is the pairing phase
difference and � is the coupling strength that depends on
the chemical potentials and wave-function overlap. The two
eigenenergies are therefore Eg = ±� cos(δ
) [orange curves
in Fig. 4(b)]. At zero temperature, the Josephson current
across the junction is I = I0 ∓ e� sin(δ
)/2h̄ = I0 ∓ Imbs,
where Imbs and I0 are the contributions from the MBSs and
ordinary fermions, respectively [47]. As long as 2δ
 
= 0, by
probing I flowing between the islands one can therefore mea-
sure Pbc [Fig. 4(b)]. In principle, other measurement schemes
based on quantum dots are also possible [46,49].

Experimental feasibility and summary. Remarkably,
FeTe1−xSex monolayers have been shown to possess a
band inversion at the � point [50–52] and intrinsic high-
temperature superconductivity [53]. The magnetic order may
be induced by putting (anti)ferromagnets, e.g., FeSe or FeTe
layers [54–56], on top of FeTe1−xSex monolayers or by apply-
ing in-plane magnetic fields. We note that the sustenance of
superconductivity under strong in-plane magnetic fields in this
material has been reported experimentally [57]. Interestingly,
FeSe monolayers coupling to substrates may have all the
desired ingredients for realizing SOTSs (namely, band inver-
sions at the M points, superconductivity [58–60], and AFM

order [61]) intrinsically within one material. Quantum spin
Hall insulators, such as monolayers of 1T ′-WTe2 [62–68],
inverted Hg(Cd)Te, and InAs/GaSb quantum wells [69–75],
in proximity to conventional superconductors could of-
fer another candidate system. Notably, electric gating on
superconducting 1T ′-WTe2 monolayers has already been
demonstrated [66,67].

In general, the control of local chemical potentials on the
islands might be a challenging task. However, it is by no
means necessary to fine-tune the chemical potentials to spe-
cific values of μu and μd. The only requirements are (i) the
possibility to tune μ across its critical value, i.e., μd < μc <

μu, and (ii) that, at μu and μd, the MBSs are well localized
at the vertices of IRTIs. Importantly, we numerically prove
that inhomogeneities of chemical potential within each IRTI
are not detrimental to our proposal [46]. Finally, we remark
that field effects on (superconducting) thin films have proven
to be a valid alternative to conventional chemical doping in
order to tune the carrier density [76–78], suggesting the fea-
sibility of controlling local chemical potentials with external
gates.

An important issue, when it comes to Majorana-based
quantum computation, is represented by quasiparticle poi-
soning (QP) [79–81], causing detrimental flips in the total
fermion parity of individual qubits. In this respect, the
large superconducting gap of FeTe1−xSex monolayers (up to
16.5 meV [53]) represents a prime advantage: (i) It is likely
to decrease the QP rate. (ii) It allows for faster adiabatic
qubit operations. Moreover, it might be possible to imple-
ment quasiparticle filters which have proven, at least for
quantum wires, to increase the characteristic QP time up to
(1/200) s [82].

In summary, we have proposed a feasible way to realize
networks of SOTSs which can accommodate any even number
of topologically protected MBSs. The MBSs can be gener-
ated, moved, and fused by all-electrical means. Our proposal
allows one to define a qubit, braid the corresponding MBSs,
and measure the nontrivial outcome of this operation.
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