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Skyrmion and tetarton lattices in twisted bilayer graphene
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Recent experiments on twisted bilayer graphene show an anomalous quantum Hall (AQH) effect at filling of
three electrons per moiré unit cell. The AQH effect arises in an insulating state with both valley and ferromagnetic
order. We argue that weak doping of such a system leads to the formation of a novel topological spin texture, a
“double-tetarton lattice.” The building block of this lattice, the “double-tetarton,” is a spin configuration which
covers 1/4 of the unit sphere twice. In contrast to skyrmion lattices, the net magnetization of this magnetic
texture vanishes. Only at large magnetic fields are more conventional skyrmion lattices recovered. But even for
large fields the addition of a single charge to the ferromagnetic AQH state flips hundreds of spins. Our analysis
is based on the investigation of an effective nonlinear sigma model which includes the effects of long-ranged
Coulomb interactions.
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Twisted bilayer graphene (TBG) has emerged as a highly
tunable platform to observe correlated electron behavior,
such as insulating phases or unconventional superconductivity
[1–3]. By twisting two sheets of graphene by an angle θ ,
a moiré pattern emerges and gives rise to a larger super-
lattice unit cell. The corresponding Brillouin zone (BZ) is
much smaller than the BZ of a single graphene sheet and
thus is called mini-BZ. At a “magic” twist angle of θ ≈
1.1◦ the bands near the Fermi energy become exceptionally
flat [4–8]. As the kinetic energy in these bands is small,
electron-electron interactions become increasingly important.
Because of spin and valley degeneracies the bands in the
mini-BZ are fourfold degenerate. Besides controlling the band
structure via the twist angle, the charge-carrier density in
twisted bilayer graphene can also be controlled by external
electrostatic gating.

In the beginning of 2019, Sharpe et al. found experimental
evidence for a ferromagnetic state at filling ν = 3 [9]. They
measured an anomalous Hall effect which shows a hysteresis
in an external magnetic field. There are many publications
suggesting that the interactions may lift spin and valley de-
generacies which could lead to different kinds of magnetic
order [10–16]. Later in 2019, a quantized anomalous Hall
effect was measured by Serlin et al. in TBG on a hexagonal
boron nitride (h-BN) substrate for filling ν = 3 [17]. Because
of the substrate the twofold rotation symmetry of the TBG
is broken, which gaps out the Dirac cones and the electronic
bands aquire a nonzero Chern number C [18–22]. As the
resulting ground state is a fully spin- and valley-polarized
Chern insulator at filling ν = 3 [15,23–26], there can be other
charged excitations besides simple particle-hole pairs, namely,
skyrmions.

In the quantum Hall phase there is a sizable Mott gap
for charge excitations. Experimentally an activation gap of
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30 K has been measured in transport [17,27]. Similarly, the
valley degree of freedom is also gapped as its continuous
rotation triggers a sign change of σxy and thus closes the
charge gap. Therefore, we do not expect topological textures
involving the valley degree of freedom [28] and focus our
study on the only remaining low-energy degree of freedom,
the magnetization. The spin structure can be described by a
continuous vector field describing the classical magnetization
m̂(r, t ). A skyrmion has a nontrivial topology characterized
by its winding number W :

W = 1

4π

∫
R2

d2r m̂(r) ·
(

∂m̂

∂x
× ∂m̂

∂y

)
∈ Z. (1)

If the Chern number of the electronic bands is independent
of the spin orientation (as in the case of TBG), the skyrmion
aquires a charge given by the product of Chern and wind-
ing number [29]. Skyrmions are fermionic (bosonic) for odd
(even) products. Interestingly, it has been argued [30] that
superconductivity can arise from the condensation of bosonic
skyrmions for C = 2.

Long ago, it has been established both theoretically
[31–33] and experimentally [34], that spin-polarized elec-
trons in the Landau levels of quantum Hall systems can form
skyrmions which carry electric charge. The same is true for
flatbands with a finite Chern number. The electric charge den-
sity ρel in this case is proportional to the topological winding
density ρ:

ρel = Ceρ with ρ = 1

4π
m̂ ·

(
∂m̂

∂x
× ∂m̂

∂y

)
. (2)

In the following we will numerically investigate topologi-
cal textures induced by gating. Besides the expected skyrmion
lattices we also find novel textures, which we dub double-
tetarton lattices. We study the phase diagram in a magnetic
field and argue that a rapid change of magnetization as a
function of doping is a smoking gun signature of the double-
tetarton phase.
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The model. The free energy of the magnetic sector can be
described by a nonlinear sigma model [31]:

F [m̂] =J

2

∫
R2

(∇m̂)2d2r −
∫
R2

B · m̂ d2r

+ Uc

2

∫
R2

∫
R2

[ρ(r) − �ν][ρ(r ′) − �ν]

|r − r ′| d2r d2r′.

(3)

Here all lengths are measured in units of LM = √
AM ≈

12 nm, where AM is the area of the moiré unit cell [1]. The
first two terms describe the spin stiffness J of the ferro-
magnetic state and a Zeeman coupling to an external field
B. The third term is the long-ranged Coulomb interaction,
Uc = C2e2

4πε0εLM
, between (topological) charges, where ρ is the

topological charge density defined in Eq. (2). J, B,Uc have
units of energy. �ν is a background charge measured from
filling ν = 3, which can be controlled by an external gate. We
assume that the distance to the gate is much larger than the
average distance of charges. In this limit, the average charge
density is fixed by �ν:∫

R2
[ρ(r) − �ν]d2r = 0. (4)

A scaling analysis, where all lengths are rescaled by the
factor λ, reveals that the Coulomb energy and Zeeman energy
scale with λ−1 and λ2, respectively, while the exchange term
remains invariant. Coulomb repulsion (Zeeman energy) favors
large (small) skyrmions. By minimizing the energy with re-
spect to λ, one obtains an estimate for the radius of a single
skyrmion in a magnetic field

R ∼ LM

(
Uc

B

)1/3

= R∗. (5)

Ground state for B = 0. To determine the ground state
in the absence of a magnetic field at fixed winding number
density, we performed numerical simulations for different
unit-cell geometries (see Supplemental Material [35]). The
lowest energy is found for a triangular lattice with a hexagonal
unit cell shown in Fig. 1. We first note that the total winding
number within the magnetic unit cell (white hexagon in Fig. 1)
is −2, but the resulting spin configuration is not a lattice of
skyrmions. The primary building block is instead the mag-
netic structure in the central black hexagon of Fig. 1. Here
the spins cover exactly one-quarter of the unit sphere twice (a
skyrmion covers the full unit sphere once). When one tracks
the direction of spins moving along the edge of the central
black hexagon, one obtains a path shown in Fig. 2 which
winds twice around the north pole. In analogy to a “meron”
(half of a skyrmion), we call this structure “double-tetarton.”

Moving from one black hexagon to the six next-nearest
neighbors, the magnetic structure is rotated by 180◦ around
one of the three axes shown in Fig. 2. The group of mag-
netic symmetry transformations is—up to the translations—
isomorphic to the octahedral group Oh (see Supplemental
Material [35]). Four double-tetartons thereby give the mag-
netic unit cell which therefore has winding number W =
4 × 2 × (− 1

4 ) = −2. By symmetry, the ground state has no
net magnetization

∫
mi(r)d2r = 0. This is an important ob-

servation which distinguishes our double-tetarton lattice from

FIG. 1. Ground-state spin configuration for B = 0 and
�ν( Uc

J )
2 = 0.098 (gray arrows: magnetization in the x-y plane;

colors: z component of the spin with blue for up and red for down
spins). The total winding number within the magnetic unit cell
(white hexagon) is W = −2. The black hexagons depict the building
blocks of the magnetic structure, a “double-tetarton” (see text and
Fig. 2). The figure also shows contour lines of the topological charge
density.

skyrmion lattices. Furthermore, we can look at the contours
of the electric charge density depicted in Fig. 1. The black
hexagons define the unit cell of the charge density which has
minima in their centers. The spin configuration spontaneously
breaks global spin-rotation invariance and one can thus obtain
other configurations just by rotating all spins (see Supplemen-
tal Material [35]); the charge density remains invariant under
such rotations. In the limit Uc → 0, when the energy is only
determined by the exchange interaction, the energy EUC per
magnetic unit cell of the double-tetarton lattice is in the con-
tinuum limit exactly given by EUC = 8πJ , twice the energy
of the Polyakov skyrmion [36]. This follows from the fact
that the Polyakov skyrmion is a lower bound for the energy
per winding number of topological textures in the presence of
exchange interactions and that one can also construct an upper
bound to the energy using lattices of Polyakov skyrmions.

FIG. 2. The basic building block of the texture shown in Fig. 1
is a “double tetarton”: the spins cover exactly one-quarter of the
unit sphere twice. The red line shows a path along the edge of the
central black hexagon which winds twice around the colored area.
The magnetic texture of the other hexagons in Fig. 1 can be obtained
by rotating the spins by 180◦ around one of the blue axes.
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FIG. 3. Phase diagram for magnetic textures with Coulomb interactions. One representative spin configuration (color scale as in Fig. 1;
arrows indicate the helicity) and the corresponding charge density for each phase is shown. In the case of B = 0 the double-tetarton lattice
(lower left corner) is the ground state. For small magnetic fields a hexagonal lattice has the lowest energy (lower middle picture), while at low
density and large magnetic field the ground state is a triangular lattice of skyrmions with 120◦ helicity order (upper left corner). At intermediate
fields we obtain a triangular lattice with striped helicity order as well as a square lattice with an “antiferromagnetic” helicity order.

It is also consistent with our numerical results where we
obtain for small Uc, EUC ≈ 8πJ + 0.04Uc

√
�ν. If this energy

is smaller than twice the Mott gap (the energy required to add
two electrons into higher bands), then a topological magnetic
texture will form whenever the system is doped slightly.

Phase diagram. In Fig. 3 the phase diagram as a function
of doping and magnetic field is shown. A small magnetic
field in the z direction breaks the O(3) spin-rotation invari-
ance. Numerically we find (see Supplemental Material [35])
that for a small magnetic field in the z direction, the ground
state smoothly evolves from the double-tetarton configuration
shown in Fig. 1. Due to the lowered symmetry, the double-
tetarton lattice can now be smoothly deformed to a hexagonal
lattice of skyrmions located at the six edges of the magnetic
unit cell. Each skyrmion has an internal degree of freedom,
called “helicity,” which can be identified with the in-plane
spin direction when moving from the skyrmion center in the
+x̂ direction. In the hexagonal small-field phase, the helicity
(arrows in Fig. 3) shows an antiferromagnetic order.

In the opposite limit of large magnetic fields and small
densities, the ground state is given by magnetic skyrmions in a
ferromagnetic background. These skyrmions are small and far
apart from each other, so we can treat them as pointlike par-
ticles which interact via Coulomb interactions. To minimize
Coulomb repulsions, they form a triangular lattice. For large
skyrmion distance, the helicity forms a 120◦ order (triangular
phase A), reminiscent of the magnetic order of antiferro-
magnetically coupled spins on triangular lattices. Indeed the
helicities of neighboring skyrmions are weakly (exponentially
suppressed in the skyrmion distance) antiferromagnetically
coupled via the ferromagnetic exchange interaction of spins.
When the skyrmion radius R ∼ (Uc/B)1/3 becomes of the

same order as the skyrmion distance ∼1/
√

�ν, i.e., for B ∼
Uc(�ν)3/2, the skyrmions deform and helicity order changes
to a striped state with opposite helicities (triangular phase B).
Furthermore, we also obtain a centered square lattice between
the hexagonal phase and the triangular skyrmion phases (see
Fig. 1). In this phase the skyrmions show antiferromagnetic
helicity order.

For an order-of-magnitude estimate of experimental pa-
rameters we assume J ∼ 10 meV (of the same order of magni-
tude as the bandwidth) and Uc = e2

4πε0LM
∼ 100 meV (assum-

ing ε ∼ 1). In our units a magnetic field of 1 T is equivalent to
B = 0.06 meV. The triple point in the phase diagram Fig. 3,
where the triangular and the quadratic phases meet, is there-
fore predicted to occur at a doping of �ν ≈ 0.066(J/Uc )2 ∼
10−3 and a field of B ≈ 6.3 J3

μBU 2
c

∼ 10 T. For a larger doping
of a few percent, we expect that the system remains in the
hexagonal phase for all experimentally accessible fields.

Magnetization. A central experimental signature [34] is the
dependence of the magnetization per spin, mz, on the charge
or, equivalently, the skyrmion density. For B = 0 the ground
state with finite winding number has zero net magnetization as
discussed above. This implies that at T = 0 and for B → 0,
the magnetization jumps from a fully polarized state, mz =
1, to a state with zero magnetization for an arbitrarily small
doping, |�ν| > 0. The inset of Fig. 4 shows that at finite B
field this jump is broadened to a crossover. For small �ν the
magnetization per skyrmion is given by

Msky ≈ 28

(
Uc

B

)2/3

∼ R∗2 for �ν → 0, (6)

which diverges for B → 0, consistent with Eq. (5).
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FIG. 4. Magnetization (in units of μB per TBG moiré unit cell)
as a function of the (rescaled) charge density. Inset: For B = 0 the
magnetization jumps to zero for infinitesimal doping. The jump is
broadened at finite B. The shape of the markers (triangular, quadratic,
or hexagonal) indicate the magnetic phases (triangular, quadratic, or
hexagonal). Note that there are tiny jumps at the first-order transi-
tions between two phases. Curves are taken for Uc = 5J .

This result suggests that the magnetization mz is a function
of �ν(Uc

B )
2/3

,

mz ≈ f

[
�ν

(
Uc

B

)2/3]
, (7)

which is confirmed by the scaling plot of Fig. 4. Note that
we obtain only tiny jumps in the magnetization when one
crosses one of the first-order transitions of Fig. 3 and the
magnetization of all phases is approximately described by
the same scaling curve. For B → 0, mz is linear in B and
therefore the scaling ansatz (7) predicts f (x → ∞) ∼ x−3/2

or mz ∼ (�ν)−3/2B/Uc in this limit.
Our analysis has ignored the effects of dipolar interac-

tions. Remarkably, simple power counting arguments show
that dipolar interactions should become important in the limit
of infinitesimal doping �ν → 0. However, an analysis of the
relevant prefactors shows that for realistic parameters the ef-
fects of dipolar interactions are negligible (see Supplemental
Material [35]).

Discussion. Twisted bilayer graphene provides a unique
opportunity to discover new topological states of matter. Im-

portantly, the anomalous quantum Hall effect in this system
observed for ν = 3 is not induced by spin-orbit coupling but
arises from the ordering of the valley degree of freedom. Thus
the spin degree of freedom can rotate without closing the
gap. We have argued that for small doping away from ν = 3,
one therefore naturally realizes a topological magnetic texture
with finite winding number and zero net magnetization best
described as a lattice of double tetartons, i.e., textures which
cover 1/4 of the unit sphere two times and which are con-
nected to neighboring double tetartons by the three twofold
rotation axes of a tetrahedron.

Experimentally, the most direct way to measure topological
textures in twisted bilayer graphene is to use spin-polarized
scanning tunneling microscopy. Also measurements of the
magnetization as a function of the gate voltage can be used:
whenever the number of flipped spins per added charge is
large [according to Eq. (6) about 300 spins flip in a field
of 10 T], this clearly indicates the presence of skyrmionic
excitations. As the double-tetarton lattice carries zero mag-
netization, we predict that this number diverges in the
low-temperature, low-field limit.

An interesting question is whether tetartons can exist as
single particles. Here it is useful to consider the analogy with
merons, half-skyrmions which cover 1/2 of the unit sphere.
They are realized in two-dimensional ferromagnets with an
easy-plane anisotropy as vortex states [37,38]. Similarly, we
have checked that tetartons covering exactly 1/4 of the unit
sphere naturally arise in two-dimensional ferromagnets with
certain cubic anisotropies when, for example, three domains
with orientation (1,1,1), (1,−1,−1), and (−1, 1,−1) meet.
In (anomalous) quantum Hall systems with Chern number 1
such textures naturally carry the charge 1/4.

For the future it will be interesting to investigate how
such topological textures can be controlled by currents and
fields and to explore possible classical and quantum liquids
generated from such states.
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