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In this Rapid Communication we will show that, in the presence of a properly modulated Dzyaloshinskii-
Moriya (DM) interaction, a U (1) vortex-antivortex lattice appears at low temperatures for a wide range of the DM
interaction. Even more, in the region dominated by the exchange interaction, a standard Berezinskii-Kosterlitz-
Thouless (BKT) transition occurs. In the opposite regime, the one dominated by the DM interaction, a kind
of inverse BKT transition takes place. As temperature rises, the vortex-antivortex lattice starts melting by the
annihilation of vortex-antivortex pairs, in a sort of “inverse” BKT transition.
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Motivation. Since the seminal works from Berezinskii,
Kosterlitz, and Thouless (BKT) [1–3], the BKT transi-
tion (a topological defect-mediated phase transition) and
the existence of U (1) vortices in the disordered phase of
two-dimensional (2D) Heisenberg XY ferromagnets have dis-
ruptively influenced the physics of condensed matter, giving
topology a central role in the physics beyond the Landau
paradigm. The existence of periodic arrangements of these
topologically singular excitations [U (1) vortices], on the other
hand, is also very well established both from theoretical and
experimental points of view, and they have played a cen-
tral role in condensed matter since they were postulated by
Abrikosov in 1957 [4], and observed in type-II supercon-
ductors 10 years later by Essmann and Träuble [5]. These
U (1)-vortex lattices appear in many different materials, from
high critical temperature (HTC) superconductors to 4He su-
perfluids, and BECs, or in the so-called fully frustrated XY
model (FFXY) used to model periodic arrays of Josephson
junctions [6–11]. Nevertheless, the existence of such lattices
as stable states of two-dimensional pure magnetic materials is
not so well known.

In the past years, a new kind of magnetic materials, known
as chiral magnets, has captured the attention of the condensed
matter community, due to their capability for supporting peri-
odic arrangements of another type of topologically nontrivial
magnetic excitation, in this case, a smooth kind of topological
excitation named skyrmions, relevant for memory devices
and quantum computing technology. The key ingredient to
stabilize these lattices seems to be chirality. In these magnets,
it is widely assumed that this chirality is a consequence of
an antisymmetric exchange interaction, the Dzyaloshinskii-
Moriya (DM) interaction, originated in the spin-orbit coupling
of noncentrosymmetric magnetic materials. The technological

*sturla@fisica.unlp.edu.ar

implication of these chiral magnets, and in particular of the
skyrmion crystal phases they support, has motivated a race
for the enhancement and modulation of the DM interaction by
different methods, leading to the emergence of a new research
field named “spin orbitronics”[12]. Recent studies show that
in carefully designed heterostructures of chiral magnets, and
by the proper application of electric fields, among other tech-
niques, it is possible to achieve DM interactions of the same
order of magnitude as the exchange one [12–14]. Also, it has
been shown that the DM magnitude could grow linearly with
the applied electric fields and can also be modulated [12],
opening new technological possibilities.

In this context, we will revisit the XY models for ferromag-
nets, now in the presence of strong DM interactions. We will
show in this Rapid Communication that for values of the DM
interaction slightly stronger than the exchange interaction, a
vortex-antivortex lattice can be stabilized at low temperatures.
Even more surprisingly, in the region dominated by the DM
interaction, the system undergoes a finite-temperature phase
transition in the same universality class as the BKT transition.
By mapping the system to a 2D Coulomb gas, we interpret this
transition as a sort of inverse BKT transition (iBKT), in which
the vortex lattice starts melting, as the temperature rises, by
the annihilation of vortex-antivortex pairs. In what follows,
we derive the results leading to this conclusion.

Model. We will start by considering a ferromagnetic XY
Hamiltonian in the presence of an antisymmetric DM interac-
tion on a square two-dimensional lattice,

H = −
∑
ri,μ̂

Jiμ̂Si · Si+μ̂ + Diμ̂ · (Si × Si+μ̂), (1)

where μ̂ represents the unit vectors along positive axis direc-
tions, the spin S is a two-component unimodular vector, J > 0
is the ferromagnetic exchange coupling, and the Diμ̂ vectors
pointing outside the plane of the lattice (let us say the XY
plane) represent the DM interaction.
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FIG. 1. (a) shows the direction of the D vectors, represented by
red and light blue out-of-plane arrows of a given plaquette, when
circulating the lattice in the positive direction of the axes. The
colors of the bonds indicate the corresponding directions for the
remaining D vectors. (b) shows a vortex lattice of 10 × 10 spins
obtained through a standard Metropolis Monte Carlo method, where
the X and Y axes represent the direction on the lattice in units of
the lattice spacing. Green plaquettes hold a counterclockwise vortex
while blue plaquettes hold a clockwise vortex, and spins in each sites
are represented with blue arrows.

We define new variables ϕi,μ̂ and Ji,μ̂, in terms of which
the original variables read Ji,μ̂ = cos(ϕi,μ̂)Ji,μ̂ and Di,μ̂ =
sin(ϕi,μ̂)Ji,μ̂, and the Hamiltonian can be recast in the
following way,

H = −
∑
ri,μ̂

Ji,μ̂ cos(θi − θi+μ̂ − ϕi,μ̂), (2)

where θi represents the angle with respect to a given fixed
direction of the Si vector. This Hamiltonian has been previ-
ously studied by Teitel and collaborators in the context of
Josephson junction arrays (see, for example, Ref. [11] and
references therein), showing that it supports a vortex lattice
at low temperatures. The ϕ configuration that will be studied
here explicitly breaks the Z2 symmetry present in the models
studied by Teitel, and the phenomenology derived from it, as
far as we know, has not been previously reported [15]. The
stable configurations, of course, will depend on the particular
field configuration ϕi,μ̂ chosen. A simple nontrivial choice for
ϕi,μ̂ corresponds to a constant value, |ϕi,μ̂| = ϕ, with alter-
nating signs along the bonds, as depicted in Fig. 1(a). This ϕ

configuration, the only one that we consider here [16], leads
to a lattice of minimal vortices [17]. The energy condition
imposed by Hamiltonian (2) for a given plaquette with D
vectors pointing down along the lower and right bonds and
pointing up in the other two bonds reads

0 = sin

(
2θ1 − θ2

2

)
cos

(
θ2 − 2ϕ

2

)
,

0 = 2 sin

(
2θ2 − θ1 − θ3

2

)
cos

(
θ3 − θ1 − 2ϕ

2

)
, (3)

0 = 2 sin

(
2θ3 − θ2

2

)
cos

(
θ2 + 2ϕ

2

)
,

FIG. 2. Illustrative: The figure shows a configuration in which
only one vortex, a positive one, has been eliminated from the lattice,
and the remaining vortex-antivortex lattice has not been affected; D-
dominated regime.

where a possible global phase has been set to zero, because of
U (1) global invariance. The angles θ1, . . . , θ4 are numerated
counterclockwise starting at the lower left-hand corner of the
plaquette. Ferromagnetic and counterclockwise vortex config-
urations with �θi+1,i = π/2 satisfy the condition (3) for any
value of ϕ, with the corresponding energies

E f = −4 cos(ϕ), (4a)

Ev = −4 cos(π/2 − ϕ). (4b)

It is straightforward to check that the four adjacent plaque-
ttes (two corners sharing) to the one considered, have the same
both trivial and nontrivial solutions with the same energies,
but with a clockwise vortex instead of anticlockwise. That
means that for ϕ ∈ [0, π

4 ) the ground state becomes ferro-
magnetic, while for ϕ ∈ ( π

4 , π/2] a vortex-antivortex lattice is
stabilized, as in Fig. 1(b). The high symmetry in Fig. 1(b) can
lead us to mistakenly conclude that a plaquette surrounded by
four plaquettes with vortices of one type only admits a vortex
of the opposite type. The illustrative Fig. 2 can clarify this
aspect. Finally, for ϕ = π

4 the possibility of a coexistence of
both phases cannot be discarded [18].

Low-temperature effective theory. We will start the analysis
of the system by performing a low-temperature expansion
following Savit [19]. We notice that Ji,μ̂ is independent of
bond and lattice site, and representing ϕi,μ̂ as a vector ϕi
with components ϕx̂,i = (−1)xi+yiϕ and ϕŷ,i = (−1)xi+yi+1ϕ

on each site i, the partition function associated with the Hamil-
tonian (2) can be written as

Z =
∫ π

−π

∏
j

dθ j

2π
exp

[
βJ

∑
i,μ

cos(θi − θi+μ − ϕi · μ̂)

]
.

(5)
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Expanding each exponential in a series of Bessel func-
tions [20], this partition function can be recast as

Z =
∑
{n}

(∏
i,μ

Ini,μ (βJ ) exp[−ini,μϕi · μ̂]

)

×
∫ π

−π

(∏
j

dθ j

2π

)
exp

[∑
i,μ

ini,μ(θi − θi+μ)

]
, (6)

where {n} represents a sum over all possible integer configura-
tions, one ni,μ per bond, and In(βJ ) are the modified Bessel
functions of the first kind of order n. In this factorized way,
integration over each angular variable can be done, and a
theory on the discrete variable n, with the condition

� · ni = ni,x − ni−x̂,x + ni,y − ni−ŷ,y = 0, (7)

is obtained. Of course, this null discrete divergence condi-
tion can be immediately fulfilled by a discrete rotor nj,μ =
εμν�νφ j , where {φ} is a set of integers defined on the dual
lattice, that is, the square lattice formed by the center of the
original plaquettes. Introducing Dirac’s deltas,

∑∞
k=−∞ δ(φ −

k) = ∑∞
m=−∞ ei2πmjφ j , the sum over discrete variables can be

turned into integrals of now continuous φ j and, at sufficient
low temperature, the low-energy partition function can be
written as

Z =
∫

Dφ
∑
{m}

exp

[∑
μ, j

− 1

2βJ (�μφ j )
2 + i2πMjφ j

]
, (8)

where Mj = mj − (−1)x j+y j 2ϕ

π
has been introduced.

Performing the Gaussian integrals by Fourier transforming
the fields, the partition function reads

Z = Z0
∑
{m}

exp

[
−βJ

8

∑
i, j

MiVi jMj

]
, (9)

where

Z0 = exp

[
−

∫ π

−π

d2q
1

2
ln

(
2K (q)

π

)]
,

Vi j =
∫ π

−π

d2q
ei �q(�i−�j)(

1 − 1
2

∑
μ cos(�q · μ̂)

) , (10)

with K (q) approximated by

K (q) = 1

2βJ π2

(
1 − 1

2

∑
μ

cos(�q · μ̂)

)
.

For small |q| the potential reduces to the Coulomb gas po-
tential, Vi j � ∫ π

−π
2 eiq(i− j)

|q|2 d2q, that, after proper regularization
by imposing charge neutrality

∑
i Mi = 0 [21], leads to the

low-temperature partition function,

Z = Z0
∑
{m}

exp

[
βJ π

∑
i, j

Mi ln(
∣∣Ri − R j

∣∣)Mj

−βJ π
∑

l

(
1

2
ln(8) + γ

)
M2

l

]
, (11)

where γ is the Euler-Mascheroni constant.

This low-temperature effective theory is, in fact, an exten-
sion of the well-known description of the XY model (ϕ = 0)
as a two-dimensional Coulomb gas [19,22].

It is clear now that the system at low temperatures can
be understood as a neutral Coulomb gas of excitations of
charges M, regardless of the value of ϕ. More precisely, at
each value of ϕ the ground state of the system corresponds
to a configuration in which the charges M take their minimal
possible absolute value. It is interesting to note that, both in a
pure exchange regime and in a pure DM regime, the charges
become an integer and the minimal possible values for M cor-
respond to Mi = 0,∀i. In the pure exchange regime, ϕ → 0,
the charge Mi = mi, where mi represents the ith topological
charge in the low-temperature theory [19]. The condition
Mi = 0,∀i implies that no topological excitation is present at
sufficiently low temperatures, as expected for a ferromagnetic
ground state, Eq. (4). On the other hand, in the pure DM
regime, ϕ → π

2 , the charge becomes Mi = mi − (−1)xi+yi .
The condition Mi = 0,∀i implies that mi = (−1)xi+yi at each
site, and a fully populated vortex-antivortex lattice emerges at
a sufficiently low temperature, again as expected from the mi-
croscopical theory, Eq. (4). At any intermediate value of ϕ, the
condition that |M| must be the minimal possible shows that the
ferromagnetic background extends to all the region dominated
by the exchange interaction, and the vortex-antivortex lattice
background extends to all the region dominated by the DM
interaction, also as predicted by the microscopic theory. The
relevance of the effective theory relies on the interpretation of
the excitations at low temperature. The study of the excitations
in the microscopical theory could be very cumbersome, and
the effective theory can shed some light on this matter. Exci-
tations correspond to values of the charges different from their
minimal values, and behave as a neutral Coulomb gas. On the
exchange-dominated regime, the minimal energy excitation
corresponds to one pair of nonminimal charges M = ±μ,
which implies that a pair of one vortex and one antivortex has
been created, i.e., m = ±1, and the well-known phenomenol-
ogy of the XY model follows. Very interesting features not
present in the standard XY model appear for ϕ < π/4, but
they will be discussed in a forthcoming paper. In this Rapid
Communication we will discuss the phenomenology in the
DM-dominated regime.

DM-dominated regime and helicity modulus. As we have
already mentioned, in the DM-dominated regime the ground
state corresponds to a regular arrangement of vortices and
antivortices, as depicted in Fig. 1(b). This can be seen from
the minimal charge condition for Mj = mj − (−1)x j+y j 2ϕ

π
, for

2ϕ

π
> 1

2 . Regardless of the value of ϕ > π/4, the minimal
condition is achieved by mj = (−1)x j+y j . Again, the mini-
mal excitation is given by one pair of nonminimal opposite
charges M = ±μ, but in this case it corresponds to m = 0
in both charges [23]. That is to say, the minimal excitation
corresponds to a pair of opposite charges that now have a
trivial winding number, one where before there was a vortex,
and another one where before there was an antivortex, or
rephrasing, the excitation corresponds to the annihilation of
a pair of a vortex and an antivortex. This conclusion is not
easy to reach from the microscopical theory since, although
difficult, configurations with only one annihilated vortex can
be constructed (see the illustrative Fig. 2). On the effective
theory, on the other hand, it is an immediate conclusion from
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the neutrality charge. We notice that the “effective charge”
oscillates with the position in such a way that it is not possible
to move only one charge without violating charge neutrality.

As the temperature starts to rise, more pairs of opposite
charges are created (more vortex-antivortex pairs are an-
nihilated) and eventually, at some temperature, they could
decouple and decorrelate the systems much in the same way
as the vortices do in the XY model. We remark here that,
although the transition shares many aspects with the BKT
transition, the melting of the lattice goes in a direction inverse
to the one in the BKT transition. In the present case, the
system goes from topologically nontrivial entities in the stable
state, to a decorrelated state dominated by topologically trivial
excitations, so that we call this transition the inverse BKT
transition (iBKT). In order to support this picture, we compute
the helicity modulus, as it is standard in the BKT transition,
and show that the iBKT transition has the same universal
jump as the standard BKT transition, and numerically show
that vortices are annihilated by pairs. The introduction of a
λ0 long-wavelength “twist” on the local order parameter, with
k0 = 2π/λ0, should raise the free energy by O(k2

0 ) over their
ground-state value, if the system is correlated, and should have
no appreciable effect if the system is not [24]. That is to say,
the helicity modulus ϒ [25],

ϒ ≡ ∂2F (T, k0)

∂k2
0

∣∣∣∣
k0=0

, (12)

where F (T, k0) = −T ln[Z (�, T )]/N is the free energy per
unit volume, must be finite if the system is in the correlated
phase and zero if it is not. In fact, the BKT transition is
characterized by a finite jump in ϒ/Tc of 2/π . In what fol-
lows, we will show the numerical results for the helicity (12)
for all values of the couplings and theoretical computations
of the helicity modulus, following Ohta and Jasnow [24]
(see Supplemental Material [27]), for extreme values of the
parameters.

Helicity and phase transition. The Kosterlitz-Thouless
renormalization group equations show that the helicity modu-
lus ϒ of a system of infinite size has a universal jump from
the value (2/π )Tc to zero at the critical temperature Tc. In
Fig. 3, the behavior of ϒ as a function of the temperature is
shown for different values of D/J , where an abrupt jump in the
helicity modulus at sufficiently high temperatures is observed.
These results were obtained by a standard Metropolis Monte
Carlo method with periodic boundary conditions on a square
lattice of 32 × 32 sites. For extreme values, the theoretical
prediction of the helicity in the correlated phase is also shown.
We also compute numerically the positive and negative vortex
densities for different values of D/J and we observe that, as
temperature rises, both densities decrease at the same time,
which implies that the vortices are annihilated by pairs. In
Fig. 4, both densities as a function of the temperature are
shown for J = 0. At each calculated temperature the densities
have the same value. This is a nontrivial numerical result that
coincides with the neutrality charge condition of the effec-
tive theory and rules out the possibility depicted in Fig. 2.
The behavior of ϒ is the one qualitatively expected for a
BKT transition. The softening observed in the figure is due
to the finite-size effect of the sample. Using the solution to

FIG. 3. The BKT behavior of ϒ(T ) for the chiral XY model in
the D-dominated regime is shown. A jump in ϒ is appreciated at
each value of J , and the theoretical prediction for J → 0 is shown
in purple. In the inset, the characteristic XY ϒ(T ) behavior for the
J-dominated regime is also shown, and the curves with a lower
intercept correspond to lower values of D/J .

the Kosterlitz-Thouless renormalization group equations and
the 2D Coulomb gas duality, it has been shown that BKT
transitions obey a particular scaling law with the sample size,
that allows us to determine the transition temperature Tc [26],

ϒ(N, T )

TJ = ϒ∞(T )

TJ

(
1 + 1

2

1

ln(N ) + C

)
, (13)

where ϒ(N, T ) is the helicity modulus of the square lattice
of N sites, C is an undetermined constant, and ϒ∞(T ) is
the helicity modulus in the limit of N → ∞. If the system
undergoes a Kosterlitz-Thouless transition at a temperature Tc,
we should obtain ϒ∞(Tc)/(J Tc) = 2/π .

For the determination of Tc in the D 	 J case, we fol-
low the strategy developed by Weber and Minnhagen [26].
We calculate ϒ(N, T ) for lattice sizes ranging from 32 × 32

FIG. 4. The picture shows vortex and antivortex densities as tem-
perature rises, for D 	 J . In the inset, the same densities show that
standard phenomenology for D = 0.
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FIG. 5. Qualitative phase diagram of the studied model. The
vertical axis represents the variable ϕ that goes from ϕ = 0 (J-
dominated regime) up to ϕ = π/4 (D-dominated regime). The value
ϕ = π/4 (where D = J) is depicted with a dashed horizontal line.
We identify three regions: The region VL where the system stays in
a vortex lattice configuration, the FM where the system stays in a
ferromagnetic configuration, and the decorrelated high-temperature
phase. As mentioned in the text, the possibility of a coexistence of
both VL and FM phases at the dashed line cannot be discarded.

to 128 × 128 and temperatures ranging from T = 0.885D
to T = 0.91D. For a given T , we make a least-squares fit of
ϒ(N, T )/T to (13). We find that the quantity ϒ∞/T lies in the
interval 0.61 < ϒ∞/T < 0.65 for 0.885 < T/D < 0.9. By
this method ϒ∞/Tc is determined to be ϒ∞/Tc = 2/π ± 0.03
and we can estimate Tc to be Tc = 0.892(8)D. For complete-
ness, we include a qualitative phase diagram shown in Fig. 5.

We conclude that when D 	 J , the system undergoes a
finite-temperature phase transition with the same universal
jump as the BKT transition, but now mediated by topo-
logically trivial excitations. In the extreme DM-dominated
regime, it is not difficult to show that the charge-charge cor-
relation function decays exponentially with temperature [27]
and became less sensitive to charge positions, exactly in the
same way that the vortex-antivortex correlation function does,
and therefore a decoupling of the neutral pair of topologically
trivial excitations is expected at a sufficiently high tempera-
ture. The existence of a vortex-antivortex lattice, and the iBKT
transition it suffers, are the main results of this work.
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