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Signatures of a long-range spin-triplet component in an Andreev interferometer
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We analyze the Josephson IJ and dissipative Idis currents in a magnetic Andreev interferometer in the presence
of the long-range spin triplet component (LRSTC). The Andreev interferometer has a crosslike geometry and
consists of a SFl -F-FrS circuit and perpendicular to it a N-F-N circuit, where S, Fl,r are superconductors and
weak ferromagnets with noncollinear magnetizations Ml,r , and F is a ferromagnet with a high exchange energy.
The ferromagnetic wire F can be replaced with a nonmagnetic wire n. In the limit of a weak proximity effect
(PE), we obtain simple analytical expressions for the currents IJ = Ic(α, β ) sin ϕ and Idis = IV (α, β ) cos ϕ. In
particular, the critical Josephson current in a long Josephson junction (JJ) is Ic(α, β ) = Ic0χ (α, β ), where the
function χ (α, β ) is a function of angles (α, β )l,r that characterize the orientations of Ml,r . The oscillating part
of the dissipative current Iosc(V ) = χ (α, β ) cos ϕIV 0(V ) in the N-F/n-N circuit depends on the angles (α, β )l,r

in the same way as the critical Josephson current Ic(α, β ) but can be much greater than the Ic(α, β ). At some
angles the current Ic(α, β ) changes sign. We briefly discuss a relation between the negative current Ic(α, β ) and
paramagnetic response. We argue that the measurements of the conductance in the N-F/n-N circuit can be used
as another complementary method to identify the LRSTC in S/F heterostructures.
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I. INTRODUCTION

The phenomenon of phase coherence in superconducting
systems is especially well studied in Josephson junctions
(JJs). In particular, if the magnetic flux � of an external
magnetic field Hex in a JJ with planar geometry is equal to an
integer number of the flux quanta �0 = hc/2e (� = n�0), the
Josephson current IJ turns periodically to zero [1–3]. Another
example of phase coherence is the so-called Shapiro steps that
arise on the I − V characteristics in a JJ irradiated by an ac
electromagnetic field with a frequency ω. The positions of the
steps Vn are defined by the condition Vn = nh̄ω/2e. Since the
discovery of Josephson effect [4], various aspects of this effect
have been intensively studied on JJs of different types such as
SIS, SNS, and ScS junctions, where S, N, and c stand for a
superconductor, normal metal, and constriction, respectively
[1–3].

In the last few decades great attention was paid to the study
of magnetic JJs, i.e., SFS junctions, where the Josephson
coupling is realized via a ferromagnetic layer(s) F. A number
of interesting phenomena have been predicted and observed
in such JJs. One of them is the sign reversal of the Josephson
critical current with changing temperature or thickness of the
F layer [5–9]. This effect was originally predicted back in the
80s of the 20th century [10–13] but was observed experimen-
tally only much later [14–18].

Another interesting feature of magnetic JJs is the ap-
pearance of the so-called long-range spin triplet component
(LRSTC) of the condensate [6–9,19]. The triplet component
is induced by proximity effect in the F layer in any mag-
netic JJs due to Zeeman interaction of quasiparticles, which
build Cooper pairs, with an exchange field of a ferromagnet.

However, a uniform exchange field produces only a short-
ranged component, which quickly decays inside the F layer.
The wave function or, to be more exact, the quasiclassical
Gor’kov’s Green’s function of this component, f , is given by
f (t, t ′) ∼ 〈ψ↑(t )ψ↓(t ′) + ψ↓(t ′)ψ↑(t )〉 and the total spin of
Cooper pairs lies in the plane perpendicular to the magneti-
zation vector M in F. Such pairs penetrate ferromagnet on
a short distance of the order ξF

∼= √
DF /EF , where DF is the

diffusion coefficient in F and EF is the exchange energy. In ad-
dition, this penetration is accompanied by oscillations of f (x)
in space. At the same time, the actual LRSTC described by
the wave functions f ∼ 〈ψ↑(t )ψ↑(t ′)〉 or f ∼ 〈ψ↓(t )ψ↓(t ′)〉
occurs in magnetic JJs with a nonuniform magnetization M(r)
in the F film [6–9,19,20,22]. The penetration depth of the
LRSTC into a ferromagnet is much longer than ξF and may be
of the order of the Cooper pair penetration length into a nor-
mal metal, ξT = √

DF /2πT . The prediction of a long-range
penetration of the triplet Cooper pairs into a ferromagnet was
observed in multiple experiments [24–34]. Observe that both
components, long and short range, can be described by the
Fourier transform fω of the function f (t, t ′) which should
be an odd function of ω to satisfy the Pauli principle, i.e.,
f (t, t ) = 0 [6–8,19].

The odd-frequency spin-triplet Cooper pairs exist also
in ordinary BCS superconductors in the presence of ho-
mogeneous magnetic or exchange fields acting on the
spin of electrons (Zeeman interaction). Such supercon-
ductors were studied long ago both theoretically [35–37]
and experimentally [38]. The authors of Refs. [35–37]
calculated the Green’s functions of Cooper pairs which
consists of spin-singlet, even-frequency and spin-triplet,
odd-frequency components. These functions were used by
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Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) in their theory of
the LOFF state [39,40]. However in this case, as in the case
of hybrid S/F structures with homogeneous magnetization,
the spin-triplet Cooper pairs co-exist with the spin-singlet
Cooper pairs. On the other hand, the LRSTC that arises
in S/F structures with a nonhomogeneous magnetization
penetrates the ferromagnet F at a distance from the FS
interface that singlet pairs could not reach. Thus, super-
conducting correlations in the F film (or wire) are caused
solely by an odd-frequency spin-triplet component described
by the function fσσ ′ (ω, p) with the following symme-
try properties: fσσ ′ (ω, p) = − fσσ ′ (−ω, p) = fσσ ′ (ω,−p) =
fσ ′σ (ω, p), where p is the momentum and σ, σ ′ are the
spin indices. This fact is quite firmly confirmed in ex-
periments carried out mainly on magnetic JJs, where the
Josephson coupling is due to the LRSTC (see references
above).

Another mechanism of pairing, which also results in triplet
Cooper pairs described by an odd-frequency Green’s func-
tions, has been suggested by Berezinsky [41] to explain the
superfluidity in 3He. However it turned out that superfluidity
of 3He is related to another mechanism. Although the Green’s
function fσσ ′ (ω, p) in the Berezinsky type of superfluidity (su-
perconductivity) has the same symmetry properties as in the
case of the LRSTC, the mechanism proposed by Berezinsky
is quite different. It is based on the assumption of a retarded
electron-electron attraction and leads to a frequency depen-
dent order parameter �B(ω) [�B(ω) is an odd function of ω],
whereas in BCS superconductors with Zeeman interaction �

is constant. One can say that Berezinsky has suggested a new
type of superconductivity or superfluidity that differs drasti-
cally from the BCS case discussed above. However this type
of superconductivity has not been observed yet. As to the odd-
frequency (broken time reversal symmetry) superconductivity,
in principle, it may exist in different systems and is not nec-
essarily related to triplet Cooper pairs. One can imagine the
singlet type of superconductivity with the condensate func-
tion fσσ ′ (ω, p) that obeys the following relation: fσσ ′ (ω, p) =
− fσ ′σ (ω, p) = − fσσ ′ (ω,−p) = − fσσ ′ (−ω, p) [42,43], that
is, the function fσσ ′ (ω, p) describes in this case spin-singlet,
odd-parity, odd-frequency superconducting correlations (for
detailed discussion of this issue, see Refs. [42–46] and re-
views [19,47]).

The sign reversal of the critical Josephson current Ic may
be then related both to the short-range (see reviews [5,6,9])
and long-range triplet components [48–56]. The interest in
the study of magnetic JJs is caused not only by new physical
effects but also by possible applications of these junctions in
spintronics (see a review [9] as well as recent papers [57–59]
and references therein) or in Josephson magnetic random ac-
cess memory [60].

Although it is less known outside of the community, the
phase coherence takes place not only in JJs but also in
multiterminal superconducting structures like the so-called
Andreev interferometers (see Fig. 1), which for a number
of applications may have several important advantages over
some devices based on JJs [61–73]. It has been found that the
conductance between the N reservoirs oscillates with varia-
tion of the phase difference ϕ between the superconducting
reservoirs S. The phase variation is provided either by passing

FIG. 1. Schematic structure of the system under consideration.
The current I is the dissipative current in the N-F/n-N circuit.

a dc current between S reservoirs or by an external magnetic
field Hext applied in a superconducting loop connecting the
S reservoirs. Besides the conductance oscillations other in-
teresting phenomena may arise in Andreev interferometers
[62,65,67,69,71–73] like the change of sign of the Josephson
critical current Ic in multiterminal S-n-N structures. In con-
trast to the change of sign discussed above for the magnetic
JJs, here it is related to an imbalance between the condensate
and the quasiparticles in the S-n-S circuit out of equilibrium.
The effect of sign inversion in S-n-S JJs has been considered
in Ref. [74] in ballistic JJs (see also references in Ref. [75]). In
the more practical case of diffusive JJs the sign change effect
has been predicted in Ref. [76] (for further development of
this idea, see Refs. [77–80]). The predicted effect has been
observed by the Klapwijk group [81,82]. The voltage V ap-
plied between N and S reservoirs leads to a nonequilibrium
distribution function n(V ) which affects strongly the current
Ic if V ≈ �/e.

Despite numerous studies of various phenomena in mag-
netic superconducting heterostructures, the LRSTC in An-
dreev interferometer remains largely unexplored except for
the conductance analysis in an interferometerlike (three-
terminal) superconducting system with a topological insulator
and in the presence of a spin-orbit and Zeeman interactions
[83]. In this paper we study the propagation of the LRSTC in
an Andreev interferometer. Namely, we will obtain:

(A) simple formulas for the dependence of the Josephson
critical current Ic(α, β ) on the angles (α, β ) ≡ (α, β )s char-
acterizing the orientation of the magnetization vectors Ms in
the ferromagnetic layers Fr,l , where the subindex s stands for
the right (left) ferromagnetic layers Fr,l ;

(B) formulas for the phase-coherent oscillating part of
the dissipative current Iosc(ϕ) ≡ Iy(ϕ) = IV (α, β ) cos ϕ in the
N-F/n-N circuit that has the same angle dependence as the
Josephson current Ic(α, β );

(C) much weaker (power-law) decay of the current IV (α, β )
than the exponential decrease of the Josephson current
Ic(α, β ) with increasing the length 2Lx (Fig. 5). This makes
it much easier to detect and study the LRTSC.

As we are mostly interested in propagation of the LRSTC,
our results are equally applied for the normal (n) or ferromag-
netic (F) wire between the reservoirs S or N. It is only assumed
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that its length, Lx, is larger than ξF such that only the LRSTC
penetrates the F wire. Note also that in the case of SFl -n-FrS
junction (horizontal line), not only the LRSTC penetrates in
the n wire but also a spin singlet component.

The calculations are carried out in the approximation of
a weak PE. We show that the conductance GNN contains
a part Gosc which oscillates with the increase of the phase
difference ϕ: Gosc = G0χ (αs, βs) cos ϕ, where χ (αs, βs) is a
function of the angles (αs, βs) which characterize the magne-
tization vectors in the ferromagnetic layers Fl,r [see Eq. (28)].
The Josephson current IJ = Ic(αs, βs) sin ϕ has the standard
phase dependence with the critical current Ic(αs, βs) which
has the same angle dependence as Gosc(αs, βs). In the case of
SFl -F-FrS structure, the critical current turns to zero at αl =
αr ± π/2 and any βs or at βl,r = 0 and any αs. We further
discuss the relation between negative Ic and a paramagnetic
response.

II. BASIC EQUATIONS

We consider the structure shown in Fig. 1. It consists of
two superconducting S and two normal-metal N reservoirs,
respectively. They are connected by ferromagnetic (normal)
wires of length L. The superconductors are covered by thin
magnetic layers. These layers are made of weak ferromagnets
Fl,r (a ferromagnet with a small exchange energy or thin
films), whereas the wire between N or S reservoirs consists of
a “strong” ferromagnet F (ferromagnet with a large exchange
energy) or normal (nonmagnetic) metal. The magnetization
vector Ml,r = (Mn)l,r in the weak ferromagnets are expected
to be not collinear with respect to each other and to the
magnetization M = Mnz in the magnetic wire F so that the
LRSTC arises in the structure due to proximity effect (PE)
[7–9,20]. The unit vector n is characterized by the polar (β)
and the azimuthal (α) angles in the usual way

nr,l = (sin β cos α, sin β sin α, cos β )r,l . (1)

Noncollinearity means that nl×nr �= 0. In principle, for
LRSTC penetration it should not matter whether the F wire is
magnetic or nonmagnetic. However the length of the LRSTC
penetration into the wire F may be reduced due to possible
magnetic inhomogeneities [84]. In what follows we calculate
the conductance between the N reservoirs, G, and its devia-
tion due to the PE from the conductance in the normal state
(above Tc). The voltages in the N reservoirs are assumed to

be ±V , the electric potential in the S reservoirs is set to
zero, and their phases are different and equal to ±ϕ/2. In the
considered symmetric N-F(n)-N circuit the electric potential
V equals zero in the center of the cross, i.e., V (y) = 0 at
y = 0, such that there is no voltage difference between the
S-F(n)-S superconducting circuit and the N-F(n)-N circuit. In
this respect, the case considered here differs from that studied
in Ref. [76], where a voltage drop between the center of the
x circuit [V (x) at x = 0] and the S reservoirs was of the
order of �/e. This means that, unlike the current situation, the
quasiparticles in the S-F(n)-S circuit, considered in Ref. [76],
were not in equilibrium with condensate.

The calculations are carried out on the basis of equations
for generalized quasiclassical Green’s functions Ǧ [85–89],
which are widely and successfully used in the theory of
S/N or S/F structures [86,87,90–92]. Here, the elements of
the matrix Ǧ are the retarded (advanced) Green’s functions
ǧR(A) = Ǧ11,22 as well as the Keldysh function ǧ = Ǧ12, which
in turn are also matrices in the Gor’kov-Nambu (τ̂ matrices)
and the spin (σ matrices) space, respectively. In particular, the
Keldysh function ǧ is written in terms of matrix distribution
functions ň

ǧ = ǧR · ň − ň · ǧA, (2)

where the matrix ň can be represented as

ň = n̂od · τ̂0 + n̂ev · τ̂3, (3)

where n̂od and n̂ev are matrices in the spin space and τi are
matrices in the Gor’kov-Nambu space. The reservoirs S and
N are supposed to be in equilibrium so that the distribution
functions n̂od,ev = σ̂nodd,ev are equal to

nod = tanh(ε/2T ), nev = 0; S reservoirs,

nod,ev(Ly) = F±(V ); N reservoir at the top,

n̂nod,ev(−Ly) = F±(−V ); N reservoir at the bottom, (4)

where F±(ε,V ) = 1
2 [tanh((ε+eV )/2T )± tanh((ε − eV )/2T ].

The subscripts ev,odd denote even (odd) functions of the
energy ε, respectively. ǧ, ǧR(A) also obey the normalization
condition

ǧR · ǧ + ǧ · ǧA = 0, (5)

ǧR(A) · ǧR(A) = 1̌. (6)

In the F wire the matrices ǧ and ǧR(A) satisfy the generalized
Usadel equation [85,86,88,89]

D∇(ǧR · ∇ǧ + ǧ · ∇ǧA) + iε[τ̂3 · σ̂0, ǧ] + iEF [τ̂3 · σ̂3, ǧ] = 0, (7)

D∇(ǧ · ∇ǧ)R(A) + iε[τ̂3 · σ̂0, ǧR(A)] + iEF [τ̂3 · σ̂3, ǧR(A)] = 0, (8)

where EF is the exchange energy, and D is the diffusion coeffi-
cient. Observe that if the wires connecting S and N reservoirs
are nonmagnetic (n metals), the last terms vanish [Eqs. (7) and
(8)]. The charge current density I in a wire with conductivity
σ is expressed conventionally in terms of matrices Ǧ and is a
sum of the condensate current IS and the quasiparticle current

Iqp, I = IS + Iqp, as follows

I = σ

4e

∫
dε{ǧR · ∂xǧ + ǧ · ∂xǧA}3,0, (9)

where {(..)}3,0 ≡ Tr{(σ̂0 · τ̂3) · (..)}/4. In the symmetric case,
considered here, only IS differs from zero in the x wire. It
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is proportional to n̂eq = σ̂0 tanh(ε/2T ) and, as follows from
Eq. (9), is expressed in terms of the condensate functions f̌ω

IS = σx

4e

∫
dε{(ǧR · ∂xǧR − ǧA · ∂xǧA)n̂eq}3,0

= iπσx
T

e

∑
ω�0

{ f̌ω · ∂x f̌ω}3,0, (10)

where σx,y are conductivities in the x and y wires, and
the condensate Green’s function f̌ R(A) are defined below
[see Eq. (11)]; they anticommute with the matrix τ̂3 · σ̂0.
Equation (10) is identical to Eq. (10) in the Matsubara rep-
resentation with ω = πT (2n + 1). Here we represent ǧR(A)

functions as follows

ǧR(A) = ĝR(A)τ̂3 + f̌ R(A). (11)

The condensate matrix Green’s functions f̌ R(A) have the form
f̌ R(A) = τ̂⊥ f̂ R(A with τ̂⊥ ∼ τ̂1,2 (see next section). In the verti-
cal wire there is no supercurrent and the current Iy is carried
by quasiparticles. Equation (9) can be written as

Iy = σy

4e

∫
dε∂y{n̂ev}0[1 − {ǧR · τ̂3 · ǧA}3,0] = σyT

eLy

∫
dζ J̃ (ζ ),

(12)

where {n̂ev}0 ≡ (1/2)Tr(σ̂0n̂ev) and ζ = ε/(2T ). Using
Eq. (11), we can represent the partial current J (ε) in the
following form

J̃ (ζ , y) = Ly

2
(∂yn0)(1 + m(ζ , y)), (13)

where n0 = {n̂ev}0 and

m(ζ , y) = 1
4 {[ f̌ R(ζ , y) + f̌ A(ζ , y)]2}0,0. (14)

Here, we use the approximation ǧR(A) ≈ ±(1 +
(1/2)( f̌ R(A) )2), which follows from Eq. (6) in the case of
a weak PE, i.e., | f̌ R(A)(y)| � 1. Thus, the product (ĝR · ĝA)0 is
equal to

−(ĝR(ζ , y) · ĝA(ζ , y))0
∼= 1 + {

1
2 ( f̂ R(ζ , y) + f̂ A(ζ , y))2

}
0.

(15)

Thus, the currents Ix,y are given by Eq. (10) and Eqs. (11)–
(14), respectively. In order to evaluate further these currents,
we need to determine the condensate Green’s functions f̌ R(A)

in the x and y wires (see Appendix).

III. CONDUCTANCE OF THE y WIRE

In this section we calculate the conductance of the y wire.
If the condition, Eq. (A1), is fulfilled one can neglect the
leakage of the current Iy into the x wire and use Eqs. (12)–(14).
The partial current J (ε) in Eq. (12) does not depend on the
y coordinate as can be seen from taking the trace of Eq. (7)
multiplied by the matrix σ̂0 · τ̂3. Thus, we have

Dy∂y{ǧR · ∂yǧ + ǧ · ∂yǧA}3,0 ≡ Dy∂yJ̃ (ε) = 0. (16)

Since the N/F(n) contacts are assumed to be ideal, the distri-
bution function n0(±Ly) should coincide with the distribution
functions F±V in the N reservoirs, i.e., n0(±Ly) = F±V , where

F±V (ε) are defined in Eq. (4). From Eq. (13) we find the partial
current (see Ref. [86])

J̃ (ζ ) = FV (ζ )

1 − 〈m(ε, y)〉
∼= FV (ζ )(1 + 〈m(ζ , y)〉), (17)

where we used the smallness of the condensate functions.
The distribution function in the upper N reservoir FV (ζ ) is
FV (ζ ) = (1/2)[tanh(ζ + v) − tanh(ζ − v)] with v = eV/2T .
The function 〈m(ε, y)〉 = (1/Ly)

∫ Ly

0 dym(ε, y) can be ex-
pressed as

〈m(ζ , y)〉 = 1
4 〈{( f̌ R(ζ , 0, y))2 + ( f̌ A(ζ , 0, y))2

+ 2 f̌ R(ζ , 0, y) · f̌ A(ζ , 0, y)}0,0〉. (18)

According to Eq. (12), the normalized correction to the current
δĨy ≡ δIeLy/(2T σy) caused by PE is

δĨy ≡ δIeLy/(2T σy) = 1

2

∫ ∞

−∞
dζFV (ζ )〈m(ζ , y)〉, (19)

where f̌ R(A) is defined in Eq. (A14). The average
〈δm(ζ , y)〉 is easily found with the help of Eqs. (A14)
and (A15). In particular, we represent 〈m(ε, y)〉 in the
form

〈m(ζ , y)〉 = mRR(ζ ) + mAA(ζ ) + 2mRA(ζ ), (20)

where

mRR(ζ ) = 1
4 〈{( f̌ R(ζ , 0, y))2}0,0〉 (21)

mRA(ζ ) = 1
4 〈{ f̌ R(ζ , 0, y) · f̌ A(ζ , 0, y)}0,0〉. (22)

The terms mRR(ζ ) and mAA(ζ ) contribute to the so-called
regular part of the current δĨy

δĨreg = 1

2

∫ ∞

−∞
dζFV (ζ )[mRR(ζ ) + mAA(ζ )]. (23)

The anomalous current is given by

δĨan = 2
∫ ∞

0
dζFV (ζ )mRA(ζ ). (24)

The integral in Eq. (23) can be transformed into the sum over
Matsubara frequencies

δĨreg = −2π Im
∑
n�0

m(ζn + 2iv), (25)

where m(ζn) = mRR(εn/2T ), εn = iωn = T ζn, ζn = π (2n + 1).
The special role of anomalous terms like mRA(ζ ) with the

product of retarded and advanced Green’s functions, Eqs. (21)
and (22), has already been noticed by Gor’kov and Eliash-
berg in their famous paper [93] where the nonstationary
Ginzburg-Landau (G-L) equations have been derived. These
terms make it impossible to obtain the G-L equations in the
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nonstationary case for arbitrary superconductors. Thus, the
equations derived by Gor’kov and Eliashberg Ref. [93] are
valid only for gapless superconductors with a high concentra-
tion of paramagnetic impurities.

We need to evaluate mRA(ε) ≡ 〈{ f̌ R(y) · f̌ A(y)}0,0〉 as
mRR(ε) and mAA(ε) can be found directly from it. The function
mRA(ε) can be obtained with the aid of Eq. (A15). In particu-
lar, we find

mRA(ζ ) = sRA(ζ ) exp
(−(

θR
x + θA

x

) ∑
s=l,r

[
CR

s CA
s + CR

s CA
s̄ χ1(α, β ) cos ϕ

]
, case 1 (26)

and

mRA(ζ ) = sRA(ζ ) exp
(−(

θR
x + θA

x

) ∑
s=l,r

[
aR

s aA
s + CR

s CA
s + cos ϕ

(
aR

s aA
s̄ + χ2(α, β )CR

s CA
s̄

)]
, case 2 (27)

with subscripts s = l, r and s̄ = r, l . The coefficients a and C
are also functions of ζ . The function mRR(ε) is obtained from
Eqs. (26) and (27) by replacing A ⇒ R and changing its sign.
The angle-dependent function χ1,2(α, β ) is then determined
as

χ (α, β ) =
{
χ1(α, β ), case 1

χ1(α, β ) + cos βl cos βr, case 2
, (28)

where the function χ1(α, β ) is

χ1(α, β ) = cos(αr − αl ) sin βl sin βr . (29)

The angles αl,r and βl,r determine the orientation of the unit
vector n, see Eq. (18). The coefficients sRA(ζ ) and sRR(ζ ) are
then equal to

sRA(ε) = θ2
B

16
∣∣θR

y (ζ )
∣∣2

Im[θy(ζ ) tanh θ∗
y (ζ )]

Reθy(ζ )Imθ∗
y (ζ )

, (30)

sRR(εn) = θ2
B

16θ2
y (ε) cosh2 θy(ε)

[
sinh(2θy(ε))

2θy(ε)
− 1

]
, (31)

where θB = (κ2
Bw)Ly, θx,y(ζ ) = Px,y

√
ζ , Px,y = √

2T/Ex,y,
Ex,y = {D/L2}x,y.

The most interesting parts of the current δĨ = δĨreg + δĨan

are the parts which depend on the phase ϕ and angles {α, β}.
We represent them in the form

δĨreg = piIreg(v) cos ϕχi(α, β ), (32)

δĨan = piIan(v) cos ϕχi(α, β ), (33)

where the subindex i = 1, 2 stands for the cases 1,2. The
amplitudes Ireg, Ian are given by Eqs. (A16)–(A20) in the
Appendix.

Equations (32) and (33) describe the oscillating part δĨ
of the current in the y wire. It turns out that the function
Ireg is much less than Ian: Ireg/Ian � 10−3 for Px = 2, Py =
1, and λ1 = 0.5. One can show that, with increasing Px,
the anomalous part decays slower than the regular part (see
Fig. 5). Whereas the regular part decays with Px exponen-
tially, Ireg ∼ exp[−2Px(π2 + 4v2)1/4], the anomalous part Ian

decreases in a power-law fashion. Earlier the slow decrease of
anomalous contribution in space has been obtained in other
problems [65,94]. We elucidate different behavior of δĨreg

and δĨan considering the integrals of the functions mRR(ε)
and mAA(ε). Unlike the functions mRR(ε) and mAA(ε), the
function mRA(ε) is not an analytical function in any half

plane of the variable ε. The integral IRR = ∫
mRR(ε)dε can

be reduced to a sum over Matsubara frequencies so that
IRR ∼ 2πT

∑
exp(−(2n + 1)2Lx/ξT ). Thus, this term is ex-

ponentially small at large ratio 2Lx/ξT . On the other hand,
the integral IRA = ∫

mRA(ε)dε ∼ ∫
dε exp(−2

√
ε/εT h)R(ε)

decreases with Lx in power-law fashion, i.e., much slower than
IRR(Lx ), where εT h = DF /L2

x and R(ε) is some nonexponen-
tial function.

In Figs. 2–5 we plot the dependence the normalized cur-
rent Jan = Ian/IJ,n and the differential conductance Gan =
(dIan(v)/dv)/IJ,n vs different variables, i.e., vs the voltage v,
the parameter λ. We plot Fig. 2 for λ = λ1 ≡ κ2

l /κF κT ; a qual-
itatively similar form has the curve for λ = λ2=κl/κT . The
parameter λ1,2 is proportional to the amplitude of the LRSTC
and therefore to transparency of the ferromagnetic layers Fr,l

[see Eqs. (A1), (A2), and (A10) in the Appendix]. The current

FIG. 2. The normalized amplitude of the oscillating part of the
current Jan = Ian(Px, Py, v, λ)/Ic,n(Px ) as a function of the param-
eter λ for Px = 1(black), and Px = 2(blue) with different scaling
factors: 1 ∗ Jan(1) and 0.02 ∗ Jan(2). Other parameters are: Py = 5,
v = 1, where Px = Lx

√
2T/Dx .

094517-5



ANATOLY F. VOLKOV PHYSICAL REVIEW B 102, 094517 (2020)

FIG. 3. The same quantity as in Fig. 2 as a function of the
dimensionless voltage v = eV/2T for Px = 1 (black), Px = 2 (blue),
and Px = 3 (red). The scaling factors are: 30 ∗ Jan(1), 1 ∗ Jan(2), and
0.03 ∗ Jan(3).

Jan(λ) increases from zero (no LRSTC in the absence of fer-
romagnetic films Fl,r with noncollinear magnetizations, i.e.,
at λ = 0), reaches a maximum, and then decreases to zero at
large λ. As a function of the normalized voltage v the current
Jan(v) increases to a constant value whereas the differential

FIG. 4. The normalized differential conductance Gan vs the di-
mensionless voltage v = eV/2T for the same parameters as in Fig. 3.

FIG. 5. Comparison of the amplitude of oscillatory part of the
current Jan = 0.23 ∗ Ian(Px )/Ic,n(2) and the Josephson critical cur-
rent JJos = Ic,n(Px )/Ic,n(2) in S-n-S junction as functions of the
parameter Px . One can see that the phase-coherent part of the current
in the N-F(n)-N circuit is much larger than the Josephson critical
current Ic in the S-n-S junction.

conductance Gan drops to zero. The corresponding curves are
shown in Figs. 3 and 4 for different values of the parameter
Px ≡ Lx/ξT ; Px = 1, 2, and 3 from top to bottom.

Figure 5 demonstrates the most remarkable result of
the work—much steeper decrease of the critical Josephson
current JJos(Px ) ≡ Jc(Px ) in comparison with the phase-
coherent current in the N-F/n-N circuit JV 0, where JV (α, β ) =
JV 0χ (α, β ). Both curves are normalized currents, and the nor-
malization current is chosen to be equal to JJos(2) (at Px � 1,
the theory is not applicable). One can see that at Lx � ξT , the
current JV 0 ≈ Jan is much larger than the Josephson current
Jc0. Figure 6 shows the dependence of the normalized criti-
cal Josephson current JJos(Px, λ) = IJos(Px, λ)/ISnS(Px, λ) on
λ, where ISnS is the critical Josephson current in the same
Josephson junction where the ferromagnetic F wire is replaced
by normal metal wire.

IV. JOSEPHSON CURRENT

In this section we calculate the Josephson current in an
SFl /Fst /FrS and SFl /n/FrS junctions using formulas for the
condensate functions [see Eqs. (A9)–(A12)]. Note that the ob-
tained formulas for the Josephson current are also applicable
to fully planar structures. The Josephson current in mag-
netic junctions was calculated in many theoretical papers. The
ballistic regime was considered in Refs. [55,95,96] and the
diffusive case was analyzed in many papers for equilibrium
[48–53,97–101] and nonequilibrium cases [80,102–104].
Since we assume that the length between superconductors 2Lx

is larger than ξF = √
DF /EF , we need to take into account
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only the LRSTC, i.e., the latter term in Eq. (A9) and both
components in Eq. (A11). Substituting these components in
Eq. (10), we obtain

IJ = Ic(α, β ) sin ϕ, (34)

where ϕ is the phase difference and the critical current Ic =
Ic(α, β ) depends on orientation of the magnetization vectors
Ml,r in the left and right layers Fl,r . This dependence has
different forms in the cases 1 and 2.

The critical current Ic is equal to

Ic(α, β ) = −(4πT/e)σxχ1(α, β )
∑

ω

|CrCl |κω exp(−2κωLx ), case 1 (35)

Ic(α, β ) = (4πT/e)σx

∑
ω

[alar − χ2(α, β )CrCl ]κω exp(−2κωL), case 2, (36)

where the coefficients Cl,r are defined in Eqs. (A10) and the
function χ (α, β ) in Eq. (28). The coefficients al,r and Cl,r are
given in Eq. (A12).

Interestingly, the sign of the critical current Ic(α, β ) of
the system under consideration is connected with topologi-
cal properties of the Fl -F-Fr magnetic texture. Indeed, let us
assume that the vector n, Eq. (1), lies in the (x, y) plane of
the spin space, i.e., βl = βr = π/2. Then, the critical current
Ic(α, β ) equals

Ic(α, β ) = −Ic cos(αr − αl ), (37)

with Ic > 0. Without loss of generality, we can set αl = 0.
When going from the Fl layer to F wire and further to Fr , one
can imagine two ways of the vector n rotation: (a) it rotates
clockwise or counterclockwise by the angle π ; (b) it rotates by
π/2 when going from Fl to F and by −π/2 when going from
F to Fr . The case (a) corresponds to a topological magnetic
texture with αr = π , when the vector n rotates by π so that
the winding number αr/π = 1. In this case the critical current

FIG. 6. The ratio of the critical Josephson current in the sys-
tem under consideration and in a S-n-S Josephson junction, JJos =
IJos(Px, λ)/Ic,n(Px ), with equal S/n or S/Fl,r interface transparency
as a function of the parameter λ for Px = 1 (black) and Px = 2 (blue).

Ic is positive. The case (b) corresponds to a nontopological
(trivial) magnetic texture with αr = 0, when the full angle of
the vector n rotation is zero. In this case the critical current Ic

is negative.
The first term in Eq. (36) is due to the singlet component.

The second term that changes sign by varying the angles α

is caused by the triplet component. If the parameter κl,r is
small compared to κω, i.e., κl,rξT � 1, then the first term in
square brackets dominates and the critical current is positive.
In the opposite limit, κl,rξT � 1, the second term in Eq. (36)
is larger than the first one and the sign of Ic depends on
orientations of the vector Ml,r .

In analogy with Eqs. (32) and (33), the angle-dependent
part of the critical current Ic(α, β ) can be written as

Ĩc(α, β ) = pJIJosχ (α, β ), (38)

IJos = 2π
∑
n�0

|C(ζn)|2
√

ζn exp(−2Px

√
ζn), (39)

where pJ1,2 are given in the Appendix [Eq. (A21)]. In order
to compare the formulas for the currents Ian, IJos, it is useful
to write down the formula for the critical current Ic,n in an
S-n-S junction. The formula for Ic,n can be directly found from
Eq. (36) by setting C = 0

Ic,n = 2π

(
κb

κT

)2 ∑ exp(−2Px
√

ζn)√
ζn

�̃2

�̃2 + ζ 2
n

, (40)

where �̃ = �/(2T ).
At ϕ = 0, the Josephson current IJ turns to zero for any

angles α and β. In the terminology of Ref. [105], the ob-
tained result corresponds to the nematic case in contrast to
the ferromagnetic one when the Josephson current IJ �= 0
even for ϕ = 0. The phase-current relation in the latter case
has the form IJ = Ic sin(ϕ + ψ ), where ψ is an angle depen-
dent constant. The unusual phase dependence of the critical
Josephson current may arise in the presence of spin-orbit
interaction [106–111], in the case of spin filters [105,112],
or in S/AF/S Josephson junctions with an antiferromagnetic
(AF) layer [113].

In the considered nematic case, the angle dependence of
the current Ic is determined by the function χ (α, β ). For
βl = βr = π/2 and αl = −αr = α, the angle dependence of
Ic, Eq. (40), coincides with that obtained by Braude and
Nazarov [see Eq. (8)] for the critical current Ic = I↑ + I↓ in
Ref. [99]). However, the amplitudes of Ic are different because
the models considered here and in Ref. [99] are different (a
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weak PE, a long JJ in our model and a strong PE and a
short JJ in Ref. [99]). For αl = αr the angle dependence of
the critical current Ic, Eq. (40), is the same as obtained by
Buzdin and Houzet [100] for a three magnetic layer SFlFFrS
Josephson junction. This model has been studied experimen-
tally by Aguilar et al. in a recent paper [58]. Similar angle
dependence of the Josephson critical current was obtained,
mostly numerically, in Ref. [54].

In Fig. 6 we show the normalized critical current Jc =
Ic(λ)/Ic,n as a function of λ. One can see that the critical
current reaches a maximum value at λ ∼ 1 and decreases to
zero at large λ.

A. Negative Josephson current and paramagnetic response

In this section we discuss the analogy between negative
critical Josephson current Ic and a paramagnetic response of
a superconducting system to an external magnetic field. As
we mentioned before, the negative Ic may arise in a mag-
netic S-F-S Josephson junctions and in multiterminal S-n-S
Josephson junctions with a nonequilibrium distribution func-
tion n̂(ε). The negative Ic in magnetic JJs has been predicted
in Refs. [10,12] and observed in Refs. [14,15]. In a recent
paper [114], the possibility of a paramagnetic response of S-n
bilayer with a nonequilibrium distribution function was ana-
lyzed. Here we point out the close analogy between negative
Ic and paramagnetic response. We show that the response of a
JJ with negative Ic to external fields (ac electric or magnetic) is
paramagnetic regardless of the mechanism of negative critical
current. Indeed, it is well known that at low temperatures, a JJ
in an electric circuit plays a role of an inductance L. For small
variation δϕ = ϕ − ϕ0 and IJ , Eq. (34) can be written

∂IJ/∂t ∼= Ic∂ (2δϕ)/∂t cos ϕ0 = Ic
2eV

h̄
. (41)

As follows from this equation, L = Ich̄/(2e) cos ϕ0. Thus, at a
fixed ϕ0 the inductance L changes sign if Ic becomes negative.
On the other hand, the London equation yields

∂IJ/∂t = −�∂A/∂t = c�E (42)

= c(�/lch)V , (43)

where lch is a characteristic length which is determined by a
concrete type of a system. The effective inductance is L =
lch/(c�). The positive coefficient � corresponds to a dia-
magnetic response while negative � describes a paramagnetic
response. The negative inductance L means a paramagnetic
response of a JJ which has a negative Ic.

V. CONCLUSIONS

We have studied propagation of the LRSTC in a magnetic
Andreev interferometer. The LRSTC is created by two thin
ferromagnetic layers Fl,r deposited on the superconductors S.
For the propagation of the LRSTC it does not matter whether
the wires connecting the normal metal reservoirs N or super-
conducting reservoirs S are made of normal (n) or magnetic
(F) metals. The magnetic layers Fl,r have magnetizations Ml,r

which are characterized by the angles (α)l,r in the spin space.
The oscillating part of the dissipative current between the

N reservoirs Iosc = IV 0χ (α, β ) cos ϕ has the same angle de-
pendence as the Josephson current between the S reservoirs
IJ = Ic0χ (α) sin ϕ. However, the current Iosc decreases with
increasing temperature T or the length Lx much slower than
the critical current Ic0 (see Fig. 6). In the first case the decrease
follows the power law behavior, while in the second case the
decrease is exponential: Ic0 ∼ exp(−2Lx/ξ (T )). The critical
current Ic = Ic0χ (α, β ) has different signs in topological JJ’s
(αr − αl = π ) and in nontopological ones (αr − αl = 0). At
certain angles, the Josephson and phase-dependent dissipa-
tive currents turn to zero, for example, for angles αr − αl =
(π/2)(2n + 1) and βr,l = π/2. Note that we assumed that
the proximity effect is weak. This is true if the parameters
κb,B/κω � 1. However the obtained results remain qualita-
tively valid if this ratio is of the order of 1.

In the language of Ref. [105], the obtained current-phase
dependence, IJ = Ic sin ϕ, corresponds to a nematic case con-
trary to a ferromagnetic case, IJ = Ic sin(ϕ + ψ ), that is, the
Josephson current is equal to zero for the phase difference
ϕ = 0. Therefore, it is of interest experimentally to investigate
the angle and phase dependence of the currents IJ and Iosc.
The obtained results for the Josephson current IJ are valid
not only for the JJ shown in Fig. 1 but also for a planar
geometry used in Refs. [27,28]. Measurements of the Iosc in
Andreev interferometers provide an additional opportunity to
study the propagation of LRSTC in magnetic superconducting
structures.

The system studied in this work can be considered as a
platform for further research on the LRSTC propagation in
various conditions. It would be of interest to investigate this
propagation and related phenomena in the presence of thermal
current, which has been studied in other hybrid S/F structures
[115,116]. Note that the ferromagnets Fr,l can be replaced by
thin magnetic insulators. At present, the implementation of
these structures is quite feasible [57,115–119].
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APPENDIX

1. Condensate Functions in the x Wire

In order to simplify the calculation, we assume that the
interface resistance of the cross is larger than the resistance
of the Fx,y or nx,y wires, i.e.,

RB/wx,y � Lx,y/σx,y, (A1)

where RB is the resistance of the interface between x and
y wires per unit area, wx,y is the width of these wires.
This assumption means that when determining the conden-
sate function in the x wire, we can neglect the leakage of
Cooper pairs from the x wire into the y wire. On the other
hand, the condensate into the y wire is determined by a small
leakage from the x wire. The generalization for the case of
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arbitrary RB is straightforward and does not change the results
qualitatively.

In what follows we evaluate the condensate function
f̌ω(x, y) in the x and y wires. In the SFl -n(F)-FrS wire, the
condensate functions in the Matsubara representation f̌ω(x, 0)
obey the linearized Usadel equation, Eq. (8),

−∂2
xx f̌ω + κ2

ω f̌ω + i
(
κ2

F

/
2
)
[σ̂3, f̌ω]+

+ i(κl/2)δ(x + Lx )[σ̂1, f̌ω]+
+ i(κr/2)δ(x − Lx )[σ̂r, f̌ω]+ = 0, (A2)

where κ2
ω = 2|ω|/DF , κ2

F = EF sign (ω)/DF , κl,r =
(wE )l,rsign(ω)/DF . Here, EH and El,r are the exchange
energy in the strong or left (right) ferromagnetic films,
respectively, and w is the thickness of the Fl,r films. The
matrices σ̂l,r ≡ (σ̂n)l,r are defined in the following way

σ̂l,r = {(σ̂1 cos α + σ̂2 sin α) sin β + σ̂3 cos β}l,r . (A3)

The unit vector n has the components nl,r =
(cos α sin β, sin α sin β, cos β )l,r . It is important to note that
the spin and the orbital degree of freedom are decoupled
in our model as no spin-orbit interaction is included.
Therefore, the components of the vectors nl,r = (nx, ny, nz )
are arbitrarily oriented independent of the coordinate system
shown in Fig. 1. In particular, we would like to stress that the
magnetization vector M = M0n is not necessarily oriented
along the x axis shown in Fig. 1 if α = 0 and β = π/2. The δ

functions in Eq. (A2) refer to the thickness of the Fl,r layers,
wl,r , which is assumed to be thinner than κ−1

l,r . In addition,
Eq. (A2) is supplemented by boundary conditions [120,121]

∂x| f̌±L = ±κbFS τ̂r,l · σ̂0, (A4)

where κb = 1/(Rbσx ), Rb and σx are the S/F interface resis-
tance (per unit area) and the conductivity of the x wire. The
matrices τ̂l,r are defined as follows

τ̂l,r = τ̂1(cos(ϕ/2) ± iτ̂3 sin(ϕ/2)). (A5)

The Green’s functions FS have a standard BCS form: FS =
�/

√
ω2 + �2. The quantities ±ϕ/2 are the phases of the

order parameter in the right (left) superconductors.
By integrating Eq. (A2) over x in the vicinity of the

left (right) SF l,r interfaces, we can get rid of the δ func-
tions from this equation and obtain new effective BCs
for ∂x f̌

∂x f̌ω(±L, 0) = ±{κbFS τ̂r,l · σ̂0 + i(κr,l/2)[σ̂r, f̌ (±L, 0)]+}.
(A6)

Finally, in order to find the function f̌ω(x) in the SFl -F-FrS
circuit, one has to solve the following equation

−∂2
xx f̌ω + κ2

ω f̌ω + iκ2
F [σ̂3, f̌ω]+ = 0, (A7)

with the boundary condition (A6). In the case of the SFl -n-F
rS circuit, the third term should be dropped.

For simplicity we assume that the distance between Fl

and Fr , 2Lx, is larger than ξT = √
DF /2πT . Then, a solution

f̌ω(x, 0) can be written as a sum

f̌ω(x, 0) = f̌l (x, 0) + f̌r (x, 0), (A8)

where the functions f̌l,r (x, 0) ≡ f̌l,r (x, y|0) decay expo-
nentially from the left (right) superconductors. We discuss
them for the cases of SFl -F-FrS and SFl -n-FrS structures
below.

(1) SFl -F-FrS structure: A solution for the case of the SFl -
F-FrS circuit has the form

f̌l,r (x, 0) = τ̂l,r ·
∑
s=±

[(σ̂0As + σ̂3Bs)l,r

× exp(−κs(L ± x) + Cl,r ((σ̂n)l,r

− σ̂3nz ) exp(−κω(L ± x))], (A9)

where κ2
± = κ2

ω ± iκ2
F , and the matrices τ̂l,r are defined in

Eq. (A4). Note, the presence of the term σ̂3nz means that
only a triplet component with noncollinear spin directions
penetrates the F wire over the length κ−1

ω .
The constants A and B which characterize the singlet

and Bl± triplet short-range components are equal to Al− =
Al+, Bl+ = Al+, Bl− = −Al−, Al+ = (κbFS − iκlCl )/2κ+ =
(κ−/κl )A. The amplitude of the LRSTC C, which we are
mostly interested in, is

Cl = −i
κbκlReκ+

κ2
l Reκ+ + κω|κ+|2 FS. (A10)

The coefficients f̌r (x, 0) are equal to those in Eqs. (A9) and
(A10) upon replacing l ⇒ r. The constants Al± (singlet) and
Bl± (triplet) are the amplitudes of the short-range components
of the condensate. They decay over the length ξF

∼= κ−1
F ,

which is much shorter than the length ξT = κ−1
ω

∼= √
DF /2πT

in the case of a strong ferromagnet F (T,� � EF ). The last
term in Eq. (A9) refers to the LRSTC. It penetrates the F wire
on the distance of the order of ξT .

(2) SFl -n-FrS structure: Here, the solution is given by

f̌l,r (x, 0) = τ̂l,r · {al,r σ̂0 + Cl,r σ̂l ) exp(−κω(Lx ± x)). (A11)

The coefficients al and al can be found from the boundary
condition (A6)

al,r = κbκω

κ2
l,r + κ2

ω

FS , Cl,r = −i
κbκl,r

κ2
l,r + κ2

ω

FS. (A12)

In this case, both components, singlet and triplet, decrease
over a long distance of the order ξT .

2. Condensate Functions in the y Wire

To find the condensate function in the y wire induced by
PE we assume that the widths of the wire wx,y are less than
ξT . Then one can write Eq. (A7) for the LRSTC in the y wire
as follows

−∂2
yy f̌ω(0, y) + κ2

ω f̌ω(0, y) = κ2
Bwx f̌ω(0, 0)δ(y) , (A13)

where the term on the r.h.s. is a source of the Cooper pairs
leaking from the x wire. The coefficient κB = 1/(RBσy) is
related to the interface resistance Fx/Fy (or nx/ny) per unit area.
The contact of the y wire with the N reservoirs is supposed
to be ideal so that the boundary conditions for the f̌ω(0, y)
function is f̌ω(0,±Ly ) = 0. Then the solution to Eq. (A13)
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satisfying this boundary condition is given by

f̌ω(0, y) = κ2
Bwx

2κω

sinh(κω(Ly − |y|))
cosh θωy

f̌ω(0, 0), (A14)

where θωy = κωLy, and f̌ω(0, 0) is given by Eqs. (A9)–(A11)
and can be expressed as

f̌ω(0, 0) =
{∑

s=l,r τ̂s · (σ̂s − σ̂3nz )Cs exp(−κωL), case 1∑
s=l,r τ̂s · (asσ̂0 + Csσ̂s) exp(−κωL), case 2

.

(A15)

Knowing the condensate functions, we find the Josephson
current IJ between the superconductors S and correc-
tions to the conductance between the N reservoirs due to
the PE.

3. Normalized Currents

The formulas for the amplitudes Ireg, Ian [Eqs. (32) and
(33)] can be readily obtained from Eqs. (24) and (25). We find

Ireg(v) = π

4
Im

∑
n�0

{
creg(ζn) exp(−2θx(ζn))

(ζn + 2iv) cosh2 θy(ζn)

[
sinh(2θy(ζn))

2θy(ζn)
− 1

]}
(A16)

Ian(v) = −1

8

sinh(2v)

Py

∫ ∞

0

can(ζ )dζ

ζ 3/2

Im[(1 − i) tanh(Py(1 + i)
√

ζ )]

cosh(ζ + v) cosh(ζ − v)

}
exp(−2Px

√
ζ ), (A17)

where θx,y(ζn) = Px,y
√

ζn + 2iv. The functions jreg,an are
given by equations

creg(ζn) = − λ2
1,2[

λ2
1,2 + √

ζn + 2iv
]2

(
F R

S

)2
, (A18)

can(ζ ) = λ2
1,2(

λ2
1,2 + √

ζ
)2 + ζ

F R
S F A

S , (A19)

and the constants λ1,2 are equal to: λ1=κl/
√

κF κT , λ2=κl/κT .
The constants pi and pJ1,2 are defined as follows

p1 = 1

2

(
κBκb

κ2
T

)2(
κT

κF

)
, p2 = 1

2

(
κBκb

κ2
T

)2

, (A20)

pJ1 =
(

κb

κT

)2(
κT

κF

)
, pJ2 =

(
κb

κT

)2

. (A21)

We also write the expression of the critical current Ĩc = Ic(..)
of a S-n-S Josephson junction with the same S/n interface
penetrability as in the considered structure. This quantity can
serve as a reference scale of the current

δĨc,n = pnIc,n sin ϕ, (A22)

where pn = (κb/κT )2 and the function In is

Ic,n = 2π
∑
n�0

exp(−2Px
√

ζn)√
ζn

(A23)

with ζn = π (2n + 1).
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