
PHYSICAL REVIEW B 102, 094516 (2020)

Interplay between superconductivity and non-Fermi liquid behavior at a quantum
critical point in a metal. III. The γ model and its phase diagram across γ = 1

Yi-Ming Wu,1 Artem Abanov ,2 and Andrey V. Chubukov 1

1School of Physics and Astronomy and William I. Fine Theoretical Physics Institute, University of Minnesota,
Minneapolis, Minnesota 55455, USA

2Department of Physics, Texas A&M University, College Station, Texas, USA

(Received 28 July 2020; accepted 3 September 2020; published 23 September 2020)

In this paper we continue our analysis of the interplay between the pairing and the non-Fermi liquid behavior
in a metal for a set of quantum-critical models with an effective dynamical electron-electron interaction
V (�m ) ∝ 1/|�m|γ (the γ model). We analyze both the original model and its extension, in which we introduce an
extra parameter N to account for nonequal interactions in the particle-hole and particle-particle channel. In two
previous papers [A. Abanov and A. V. Chubukov, Phys. Rev. B 102, 024524 (2020) and Y. Wu et al. Phys. Rev.
B 102, 024525 (2020)] we considered the case 0 < γ < 1 and argued that (i) at T = 0, there exists an infinite
discrete set of topologically different gap functions �n(ωm ), all with the same spatial symmetry, and (ii) each �n

evolves with temperature and terminates at a particular Tp,n. In this paper we analyze how the system behavior
changes between γ < 1 and γ > 1, both at T = 0 and a finite T . The limit γ → 1 is singular due to infrared
divergence of

∫
dωmV (�m ), and the system behavior is highly sensitive to how this limit is taken. We show that

for N = 1, the divergencies in the gap equation cancel out, and �n(ωm ) gradually evolve through γ = 1 both
at T = 0 and a finite T . For N �= 1, divergent terms do not cancel, and a qualitatively new behavior emerges
for γ > 1. Namely, the form of �n(ωm ) changes qualitatively, and the spectrum of condensation energies Ec,n

becomes continuous at T = 0. We introduce different extension of the model, which is free from singularities
for γ > 1.

DOI: 10.1103/PhysRevB.102.094516

I. INTRODUCTION

In this paper we continue our analysis of the competition
between non-Fermi liquid (NFL) physics and superconductiv-
ity (SC) near a quantum-critical point (QCP) in a metal with
four-fermion interaction, mediated by a critical soft boson. We
consider a class of models, for which soft bosons are slow
modes compared to dressed electrons. In this situation, the
low-energy physics at a QCP is governed by an effective dy-
namical interaction V (�m) = ḡγ /|�m|γ integrated along the
Fermi surface (the γ model). This interaction is singular, and
gives rise to two opposite tendencies: NFL behavior in the
normal state, with fermionic self-energy �(ωm) ∝ ω

1−γ
m , and

an attraction in at least one pairing channel. The two tenden-
cies compete with each other as a NFL self-energy reduces the
magnitude of the pairing kernel, while the feedback from the
pairing reduces fermionic self-energy.

In the first paper in the series, Ref. [1], we listed quantum-
critical systems, whose low-energy physics is described by the
γ model with different γ and presented an extensive list of
references to earlier publications on this subject. In this and in
the subsequent paper, Ref. [2], hereafter referred to as Paper I
and Paper II, respectively, we analyzed the behavior of the
γ model for 0 < γ < 1 at T = 0 (Paper I) and at a finite
T (Paper II). We found that the system does become unsta-
ble towards pairing. However, in qualitative distinction with
BCS/Eliashberg theory of superconductivity, in which there

is a single solution of the gap equation �(ωm), here we found
an infinite discrete set of solutions �n(ωm). All solutions have
the same spatial symmetry, but are topologically distinct as
�n(ωm) changes sign n times as a function of Matsubara
frequency (each such point is a center of a dynamical vortex).
The gap functions �n(ωm) with finite n tend to finite values at
zero frequency, but the magnitude of �n(0) decreases with
n and at large enough n scales as �n(0) ∝ e−An, where A
is a function of γ . In the limit n → ∞, �∞ is the solution
of the linearized gap equation. We found the exact form of
�∞(ωm). It oscillates as a function of log(|ωm|/ḡ) down to
the lowest frequencies and up to ωmax, which is generally of
order ḡ, except for the smallest γ , where ωmax ∼ ḡ(1/γ )1/γ .
At ω > ωmax, �∞(ωm) decays as 1/|ωm|γ . A function �n(ωm)
with a finite n saturates at �n(0) below ωm ∼ �n(0), and at
larger ω retains the functional form of �∞(ωm). At a finite
T , each �n(ωm) evolves with T and terminates at its own
Tp,n ∼ �n(0).

In this paper we extend the analysis to larger γ . We will
be particularly interested in the evolution of the system be-
havior between γ � 1 and γ � 1. At T = 0, the frequency
integral

∫
d�mV (�m) ∝ ∫

d�m/|�m|γ diverges at small �m

for γ � 1, and from a general perspective one could expect
that this divergence introduces qualitative changes in the sys-
tem behavior. Indeed, the pairing vertex and the fermionic
self-energy at T = 0 do become singular for γ � 1. We show,
however, that singular terms cancel out in the equation for
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the gap function �(ωm). As a consequence, for both γ � 1
and γ � 1 the full nonlinear gap equation has an infinite
number of solutions �n(ωm) at T = 0 and each �n terminates
at its own Tp,n. All functions �n(ωm) evolve smoothly through
γ = 1. The corresponding condensation energies Ec,n form a
discrete set in which Ec,0 is the largest.

We next analyze a more general model with different inter-
action strength in particle-particle and particle-hole channels.
A natural way to account for this is to multiply the interaction
in the pairing channel by a factor 1/N leaving the interaction
in the particle-hole channel intact [1–5]. Another way to split
the strength of the two interactions is to extend the original γ

model to a matrix SU(N ) model [6–8].
The factor N plays the role of the eigenvalue in the lin-

earized matrix gap equation, and understanding the system
behavior for N �= 1 is also essential for the interpretation
of the flow of the eigenvalues and the eigenfunctions in the
numerical analysis of the gap equation even for N → 1. We
show that for γ → 1, the system behavior becomes very
sensitive to small deviations from N = 1, because the T = 0
divergencies in the self-energy and the pairing vertex do not
cancel for any N �= 1. As a consequence, the limits γ → 1
and N → 1 do not commute, and the structure of the gap
function strongly depends on the ratio (N − 1)/(1 − γ ). We
show that the behavior at γ → 1 and N < 1 is qualitatively
different from that for N ≡ 1. Namely, for N < 1 the set
of condensation energies becomes a continuous one at γ =
1: Ec,n for all finite n become the same as Ec,0 and Ec,∞
form a continuous one-parameter gapless spectrum, similar to
how a continuous phonon spectrum emerges in a continuum
limit. This opens up a channel of massless “longitudinal” gap
fluctuations, in a truly qualitative distinction from BCS-type
physics. We show that this behavior holds at T = 0 for γ > 1,
and that the structure of �n(ωm) at a finite T also becomes
qualitatively different from that for γ < 1 and gives rise to a
highly unconventional form of the density of eigenvalues for
N < 1, as we show both analytically and numerically.

We also discuss another extension of the theory, which
does not introduce singular contributions that were responsi-
ble for qualitatively different behavior at N = 1 and N �= 1.
This extension also allows one to vary the relative strength
of the interactions in the particle-hole and particle-particle
channels (although in a less obvious way), and tune between
NFL and SC states for γ > 1, similar to how it was done
before for γ < 1 in Refs. [1–8].

The structure of the paper is the following. In Sec. II we
briefly review the γ model and present the equations for the
pairing vertex, the self-energy, and the gap function, which
we will use later in the paper. In Sec. III we show that the
singularities, imposed by the divergence of

∫
d�mV (ωm) for

γ � 1, cancel out in the gap equation for N = 1. We argue
that the full nonlinear gap equation at T = 0 has an infinite
set of solutions �n(ωm) both for γ � 1 and γ � 1, and show
that the solutions vary smoothly through γ = 1. In Sec. IV we
extend the γ model to N �= 1 and show that for a generic N
the system behavior changes qualitatively between γ < 1 and
γ � 1. We discuss the double limit γ → 1, N → 1 at T = 0,
show how the set of the condensation energies Ec,n becomes
continuous at γ > 1, and discuss the new structure of �n(ωm)
at γ > 1 and a finite T .

Several technical details are discussed in the Appendices.
In particular, in Appendix C we discuss another extension
of the γ model, specific to γ > 1, which does not introduce
divergencies and allows one to get better analytical under-
standing of the physics of the original γ model by zooming
into ranges of M where either analytical or numerical analysis
is simplified.

In Paper IV, the next in the series, we consider the case N =
1, 1 < γ < 2 in more detail, and argue that as γ increases, the
dynamical vortices emerge one by one and form an array in
the upper frequency half-plane. The number of vortices tends
to infinity for γ → 2.

II. γ MODEL, ELIASHBERG EQUATIONS

The γ model was introduced in Paper I and in earlier pub-
lications as a low-energy model for the interaction between
soft bosons and electrons [1–6,9–17], and we refer the reader
to these works for the justification of the model and its rela-
tion to various quantum-critical systems. The model describes
low-energy fermions with an effective dynamical interaction
V (�m) = ḡγ /|�m|γ , averaged over momenta on the Fermi
surface with a proper weight. The case γ ≈ 1 corresponds to,
e.g., pairing by a weakly damped soft optical phonon with
static susceptibility peaked some finite momentum Q0 [18].
The coupled equations for the fermionic self-energy �(ωm)
and the pairing vertex �(ωm) in the most attractive pairing
channel are similar to Eliashberg equations for the case of a
dispersionless phonon, and we will use the term “Eliashberg
equations” for our case.

At a finite T the coupled Eliashberg equations for �(ωm)
and �(ωm) are, in Matsubara formalism,

�(ωm) = ḡγ πT
∑
m′ �=m

�(ωm′ )√
�̃2(ωm′ ) + �2(ωm′ )

1

|ωm − ωm′ |γ ,

�̃(ωm) = ωm+ḡγ πT
∑
m′ �=m

�̃(ωm′ )√
�̃2(ωm′ )+�2(ωm′ )

1

|ωm−ωm′ |γ ,

(1)

where �̃(ωm) = ωm + �(ωm). In these notations, �(ωm) is a
real function, odd in frequency.

The SC gap function �(ωm) is defined as

�(ωm) = ωm
�(ωm)

�̃(ωm)
= �(ωm)

1 + �(ωm)/ωm
. (2)

The equation for �(ωm) is readily obtained from (1):

�(ωm) = ḡγ πT
∑
m′ �=m

�(ωm′ ) − �(ωm)ωm′
ωm√

(ωm′ )2 + �2(ωm′ )

1

|ωm − ωm′ |γ .

(3)
This equation contains a single function �(ωm), but at the cost
that �(ωm) appears also on the right-hand side (r.h.s.). Both
�(ωm) and �(ωm) are defined up to an overall U (1) phase
factor, which we set to zero for definiteness. Equations (1)
and (3) exclude the self-action term with m′ = m. This term
cancels out by Anderson theorem [19], because scattering
with zero frequency transfer mimics the effect of scattering
by nonmagnetic impurities.

094516-2



INTERPLAY BETWEEN SUPERCONDUCTIVITY AND … PHYSICAL REVIEW B 102, 094516 (2020)

Below we will analyze the full nonlinear equations and
the linearized equations, for infinitesimally small �(ωm) and
�(ωm). The latter determine, e.g., critical temperatures Tp,n.
The linearized gap equation is

�(ωm) = ḡγ πT
∑

m′

�(ωm′ ) − �(ωm)ωm′
ωm

|ωm′ |
1

|ωm − ωm′ |γ . (4)

The linearized equation for the pairing vertex �(ωm) is

�(ωm) = ḡγ πT
∑
m′ �=m

�(ωm′ )

|ωm′ + �norm(ωm′ )|
1

|ωm − ωm′ |γ , (5)

where �norm(ωm) is the self-energy of the normal state,

�norm(ωm) = ḡγ (2πT )1−γ

m∑
m′=1

1

|m′|γ = ḡγ (2πT )1−γ Hm,γ ,

(6)
and Hm,γ is the harmonic number. This expression holds
for ωm �= ±πT . For the two lowest Matsubara frequencies,
�norm(±πT ) = 0. We emphasize that �norm(ωm) in (6) is not
the full normal state self-energy, as the summation in (5)
excludes the term m′ = m.

At T = 0,

�(ωm) = ḡγ

2

∫
dω′

m

�(ω′
m) − �(ωm)ω′

m
ωm√

(ω′
m)2 + �2(ω′

m)

1

|ωm − ω′
m|γ ,

�(ωm) = ḡγ

2

∫
dω′

m

�(ω′
m)√

�̃2(ω′
m) + �2(ω′

m)

1

|ωm − ω′
m|γ .

(7)

The linearized equations are

�(ωm) = ḡγ

2

∫
dω′

m

�(ω′
m) − �(ωm)ω′

m
ωm

|ω′
m|

1

|ωm − ω′
m|γ ,

�(ωm) = ḡγ

2

∫
dω′

m

�(ω′
m)

|ω′
m + �norm(ω′

m)|
1

|ωm − ω′
m|γ , (8)

where

�norm(ωm) = ω
γ

0 |ωm|1−γ sgn(ωm) (9)

and

ω0 = ḡ/(1 − γ )1/γ . (10)

At small γ , ω0 = ḡe. At γ → 1, ω
γ

0 diverges as 1/(1 − γ ).

III. TRANSFORMATION FROM γ � 1 to γ � 1

A. A generic γ < 1

We found in Papers I and II that
(1) The nonlinear gap equation has an infinite discrete set

of solutions �n(ωm), n = 0, 1, 2, . . . . All �n(ωm) with finite n
tend to finite �n(0) at zero frequency and decay as 1/|ωm|γ at
large frequencies. The function �n(ωm) changes sign n times.
At large n, �n(0) ∝ e−An, where A = O(1) is a function of γ .

(2) The end point of the set �∞(ωm) is the solution of the
linearized gap equation. At small ωm 
 ω0,

�∞(ωm) = C|ωm|γ /2 cos

[
β log

( |ωm|
ω0

)γ

+ φ

]
, (11)

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

FIG. 1. The solution of εiβ = 1, with εiβ given by Eq. (12), as a
function of the exponent γ .

where β depends on γ [see Eq. (12) below and Fig. 1], and
φ is some γ -dependent number. Eq. (11) is readily obtained
if one neglects ωm compared to �norm(ωm) ∝ ω

1−γ
m in Eq. (8)

for the pairing vertex. The corrections to log-oscillating form
hold in powers of z = (|ωm|/ω0)γ = ωm/�norm(ωm).

(3) We found the exact form of �∞(z) for all z. It os-
cillates up to z = O(1) and decays as 1/z at larger z. A gap
function �n(z) with a finite n also decays as 1/z for z > 1,
oscillates n times at smaller z, and saturates at the lowest
frequencies at a finite �n(0).

(4) At a finite T , each �n(ωm) develops at the onset tem-
perature Tp,n ∼ �n(0). At large n, Tp,n ∝ e−An. The magnitude
of �n(ωm) increases with decreasing T , and at T = 0 it coin-
cides with the nth solution of the nonlinear gap equation.

B. γ ≈ 1

1. Linearized gap equation, T = 0

We now analyze what happens when γ increases and ap-
proaches 1. We begin with the linearized gap equation for
�∞(ωm). At low frequencies, the solution is Eq. (11). The
pre-logarithmic factor β there is the root of εiβ = 1, where

εiβ = 1 − γ

2

|�[γ /2(1 + 2iβ )]|2
�(γ )

(
1 + cosh(πγβ )

cos(πγ /2)

)
. (12)

The solution exists for all γ < 1, and β approaches a finite
value 0.792 when γ → 1 (Fig. 1). However, other quantities
do become singular at γ → 1. We see from (9) and (10) that
the normal state self-energy diverges because ω0 = ḡ/(1 −
γ )1/γ → ∞. Accordingly, z = ωm/�norm(ωm) remains small
at frequencies of order ḡ and becomes O(1) only at a much
larger ωm ∼ ω0. We show this in Fig. 2. Taken at face value,
this would imply that at γ = 1, the corrections from the ex-
pansion in ωm/�norm(ωm) become totally irrelevant, and log
oscillations of �∞(z) extend to all frequencies. This would
have a profound effect on the behavior of all other �n(z) and
on Tp,n, as it is set by a frequency at which log oscillations
end.

We show that this is not the case, and �∞(ωm) evolves
smoothly through γ = 1. Namely �∞(ωm) displays log oscil-
lations only up to ωm = O(ḡ), even at γ → 1, and decays as
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FIG. 2. The dimensionless parameter z = ωm/�norm as a function
of ωm for various γ . As γ → 1, the slope of z(ωm ) decreases, and z
becomes O(1) at progressively larger ωm.

1/z at larger frequencies. We show that this happens because
the expansion in ωm/�norm(ωm) in the limit γ → 1 actually
holds in

y = z

1 − γ
=

( |ωm|
ḡ

)γ

(13)

so that the singularity in z is canceled in this limit.
To demonstrate this, we analyze the structure of the correc-

tions to the log-oscillating form of �∞(z). As we discussed in
Paper I, there are two types of corrections from the expan-
sion in ωm/�norm(ωm): local corrections, which come from
fermions with frequencies of order ωm, and nonlocal correc-
tions, which come from fermions with frequencies of order ḡ:

�∞(ωm) = �∞,L(ωm) + �∞,NL(ωm). The expansion in pow-
ers of ωm/�norm(ωm) comes from the local corrections, and
we analyze now the structure of these corrections for γ → 1.

The series of local corrections can be obtained analytically
in the order-by-order expansion. For a generic γ < 1, this
expansion holds in powers of z with prefactors of order one.
Specifically,

�∞,L(z) ∝
√

z

1 + z
Re

[
e(iβ log z+iφ)

∞∑
m=0

Cmzm

]
. (14)

Here Cm, subject to C0 = 1, are complex coefficients given by

Cm>0 = Im

m∏
m′=1

1

Im′ − 1
, (15)

where

Im′ = (1 − γ )

2

�[(m′ + 1/2)γ + iβγ ]�[(1/2 − m′)γ − iβγ ]

�(γ )

+ �(2 − γ )

2

(
�[(m′ + 1/2)γ + iβγ ]

�[1 − (1/2 − m′)γ + iβγ ]

+ �[(1/2 − m′)γ − iβγ ]

�[1 − (m′ + 1/2)γ − iβγ ]

)
, (16)

and �(· · · ) are Gamma functions. The phase φ is a free pa-
rameter in �∞,L(z). Its value is set by the requirement that the
total �∞(z) = �∞,L(z) + �∞,NL(z) decay as 1/z at large z.

For γ ≈ 1, all Im′ tend to 1, and the coefficients Cm be-
come singular. Expanding Im′ in (16) near γ = 1, we obtain

m g

m
m

m

m

m g

FIG. 3. The exact �∞(ωm ) for γ → 1. Log oscillations of �∞(ωm ) exist up to ωm ∼ ḡ, like for smaller γ . At larger frequencies �∞(ωm )
decays as 1/ωγ

m (the upright inset).
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FIG. 4. The “local” part of the gap function �∞,L (ωm ), along
with the exact �∞(ωm ) at γ → 1. Over the whole frequency
range where �∞(ωm ) oscillates, it is almost exactly reproduced by
�∞,L (ωm ).

Im′ = 1 + (1 − γ )Īm′ , where

Īm′ = [(−1)m′ − 1]π

2 cosh (πβ )
+ 1

2
[(1/2 + iβ ) + (1/2 − iβ )

−(1/2 + m′ + iβ ) − (1/2 − m′ − iβ )]

= [(−1)m′ − 1]π

2 cosh (πβ )
−

m′−1∑
p=0

1

1/2 + iβ + p
, (17)

where (· · · ) is a di-Gamma function. Substituting into (15),
we find that the coefficients Cm scale as Cm ∝ 1/(1 − γ )m.
Substituting these Cm into (14) we find that the expansion

actually holds in z/(1 − γ ) = (|ωm|/ḡ)γ , which is noncritical
at γ = 1. The corrections to log-oscillating behavior then be-
come relevant at a finite characteristic frequency ωm ∼ ḡ. The
same behavior can be detected by plotting the exact solution
for �∞(ωm) for γ → 1. We present the plot in Fig. 3. We
see that �∞(ωm) indeed oscillates up to ωm ∼ ḡ and then
decays as 1/|ωm|. We emphasize again that the largest scale
for the oscillations is a finite ḡ, despite that the expansion in
frequencies in the exact solution formally holds in powers of
z ∝ (1 − γ ). We discuss this issue in Appendix A.

We also note that at m � 1, zmCm ∝
(−1)m[(|ωm|/ḡ)/ log m]m (ωm is a convinuous Matsubara
frequency, m is an integer). Because of log m in the
denominator, the series in (14) converge absolutely, i.e.,
one can obtain �∞,L(ωm) for any |ωm|/ḡ by summing up
enough terms in the perturbation series, although in practice
it can be done only up to some ω/ḡ � 1. We plot the result
of the summation of 1000 terms in Fig. 4 along with the
exact �∞(ωm) for γ = 0.9999. We see that over the whole
frequency range where �∞(ωm) oscillates, it practically
coincides with �∞,L(ωm). To reproduce the 1/|ωm| behavior
at larger frequencies we would need to include the nonlocal
part �∞,NL(ωm).

2. Nonlinear gap equation, T = 0

We now look at the evolution of �n(ωm) with some finite n.
At T = 0, �n(ωm) tends to a finite value at ωm → 0, and we
first check whether �n(0) remain continuous through γ = 1.

The gap function �n(ωm) is the solution of the nonlinear
gap equation (8). For γ < 1, one can safely move the term
with �(ωm) to the l.h.s. of the gap equation and reexpress
it as

�n(ωm)

[
1 + ḡγ

2ωm

∫ ∞

0

dω′
mω′

m√
�2

n(ω′
m) + (ω′

m)2

(
1

|ωm − ω′
m|γ − 1

|ωm + ω′
m|γ

)]

= ḡγ

2

∫ ∞

0

dω′
m�n(ω′

m)√
�2

n(ω′
m) + (ω′

m)2

(
1

|ωm − ω′
m|γ + 1

|ωm + ω′
m|γ

)
. (18)

Each integral is nonsingular in the infrared limit, provided that �n(0) is finite. Then relevant ω′
m are finite, and at small ωm, one

can expand in the integrands as

1

|ω′
m ∓ ωm|γ ≈ 1

|ω′
m|γ

(
1 ± γ

ωm

ω′
m

)
. (19)

Substituting the expansion into (18) and taking the limit ωm → 0, we obtain the condition on �n(0):

�n(0)

[
1 + ḡγ γ

∫ ∞

0

dω′
m

|ω′
m|γ √

�2
n(ω′

m)2 + (ω′
m)2

]
= ḡγ

∫ ∞

0

dω′
m�n(ω′

m)

|ω′
m|γ √

�2
n(ω′

m) + (ω′
m)2

. (20)

At γ → 1, each integral diverges as 1/(1 − γ ), but the divergent terms cancel each other. As the result, �n(0) remain finite at
γ → 1. To see this more explicitly, consider the solution with n = 0. A sign-preserving �0(ωm) remains roughly equal to �0(0)
up to ωm ∼ �0(0), at which both integrals in (20) already converge. Approximating then �0(ω′

m) by �0(0), we obtain from (20)

1 = ḡγ (1 − γ )
∫ ∞

0

dω′
m

|ω′
m|γ √

[�0(0)]2 + (ω′
m)2

= (1 − γ )
( ḡ

�0(0)

)γ �
(

1
2 − γ

2

)
�

(
γ

2

)
2
√

π
. (21)

This yields

�0(0) = ḡ

[
(1 − γ )�

(
1
2 − γ

2

)
�

(
γ

2

)
2
√

π

]1/γ

≈ ḡ[1 + (1 − γ ) log 2]. (22)
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We see that �0(0) = ḡ at γ → 1 from below. At smaller γ , �0(0) increases in the same way as Tc,0, and the ratio 2�0(0)/Tc,0

remains of order one. This is consistent with the more detailed study of 2�0(0)/Tc,0 ratio in Ref. [20].
For γ > 1,

∫
dx/|x|γ diverges, and one cannot separate the two terms on the r.h.s. of (8). However, we can now use the

identity ∫ ∞

−∞
dω′

m

1 − ω′
m

ωm

|ωm − ω′
m|γ = 0. (23)

This identity holds for γ > 1, but not for γ � 1. Using (23), we reexpress the equation on �n(ωm) as

�n(ωm) = ḡγ

2

∫ ∞

−∞

dω′
m[�n(ω′

m) − �n(ωm)]√
�2

n(ω′
m) + (ω′

m)2|ωm − ω′
m|γ − ḡγ

2

∫ ∞

−∞
dω′

m

1 − ω′
m

ωm

|ωm − ω′
m|γ

[√
�2

n(ω′
m) + (ω′

m)2 − �n(ω′
m)

]
. (24)

Each integral in (24) is now regular. In the limit ωm → 0, one can again use (19) and obtain

�n(0) = ḡγ

∫ ∞

0

dω′
m[�n(ω′

m) − �n(0)]√
�2

n(ω′
m) + (ω′

m)2|ω′
m|γ + ḡγ (γ − 1)

∫ ∞

0
dω′

m

√
�2

n(ω′
m) + (ω′

m)2 − �n(ω′
m)√

�2
n(ω′

m) + (ω′
m)2|ω′

m|γ . (25)

Like we did for γ < 1, we set n = 0 and approximate �0(ωm) by �0(0). Substituting into (25), we obtain

�0(0) = ḡγ (γ − 1)
∫ ∞

0
dω′

m

√
�2

0(0) + (ω′
m)2 − �0(0)√

�2
0(0) + (ω′

m)2|ω′
m|γ

= �0(0)
( ḡ

�0(0)

)γ
[

(1 − γ )
�

(
1
2 − γ

2

)
�

(
γ

2

)
2
√

π

]
. (26)

This gives exactly the same �0(0) as (22). This proves that
�0(0) evolves continuously through γ = 1.

The verification that the same holds for �n with a finite n >

0 requires more effort as one has to solve the actual nonlinear
gap equation for γ < 1 and γ > 1 and check whether the
solutions match at γ = 1. This is technically quite challeng-
ing, but from physics perspective one should indeed expect
�n(ωm) to vary continuously through γ = 1.

3. Linearized gap equation, finite T

We next analyze how the onset temperatures for the pairing
Tp,n change around γ = 1. For a generic γ < 1, we found in
Paper II that at large n, Tp,n ∝ e−πn/(γ β ). We now show that
this relation holds also for γ � 1, but the derivation requires
more efforts than for γ < 1.

The computations are more transparent when done
for the pairing vertex �(ωm), expressed via the
normal state �̃norm(ωm). The gap function �(ωm) =
�(ωm)ωm/�̃norm(ωm). We have from (5),

�(ωm) = ḡγ πT
∑
m′ �=m

�(ωm′ )

|�̃norm(ωm′ )|
1

|ωm − ωm′ |γ ,

�̃norm(ωm) = ωm + ḡγ πT
∑
m′ �=m

sgn(ωm′ )

|ωm − ωm′ |γ . (27)

Evaluating �̃norm(ωm) ≡ �̃norm(m), we obtain

�̃norm(m) = πT [2m + 1 + KA(m)sgn(2m + 1)], (28)

where

A(m) = 2
m∑
1

1

nγ
, m > 0,

A(m) = A(−m − 1), m < −1,

A(0) = A(−1) = 0, (29)

and

K =
( ḡ

2πT

)γ

. (30)

The expression for A(m) is the same for γ < 1 and γ > 1. The
distinction is in that for γ < 1, A(m) ∝ m1−γ , and for γ > 1,
A(m) tends to finite value at m → ∞: A(m → ∞) = 2ζ (γ ),
where ζ (γ ) is a Zeta function. Substituting the self-energy
into the equation for �(ωm) = �(m) and expressing �(0) via
�(m > 0), we obtain

�(m > 0) =
∞∑

n=1,n �=m

�(n)

A(n) + 2n+1
K

1

|n − m|γ

+
∞∑

n=1

�(n)

A(n) + 2n+1
K

1

(n + m + 1)γ

− K

K − 1

∞∑
n=1

�(n)

A(n) + 2n+1
K

( 1

nγ
+ 1

(n + 1)γ

)

×
( 1

mγ
+ 1

(m + 1)γ

)
. (31)

At small T , when K � 1, we obtain from (31):

�(m > 0) =
∞∑

n=1,n �=m

�(n)

A(n)

1

|n − m|γ +
∞∑

n=1

�(n)

A(n)

1

(n + m + 1)γ

−
∞∑

n=1

�(n)

A(n)

( 1

nγ
+ 1

(n + 1)γ

)

×
( 1

mγ
+ 1

(m + 1)γ

)
. (32)
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For m � 1, Eq. (32) reduces to

�(m > 0) =
∞∑

n=1,n �=m

�(n)

A(n)

1

|n − m|γ +
∞∑

n=1

�(n)

A(n)

1

(n + m)γ

− 2

mγ

∞∑
n=1

�(n)

A(n)

( 1

nγ
+ 1

(n + 1)γ

)
. (33)

One can easily verify that relevant n in the sums are of order
m, are also large. It is tempting to replace the sum by the
integral, with the lower limit of order T . However, this can
be done only for γ < 1, when the integral does not diverge.
Keeping γ < 1, replacing the summation by integration, and
restoring Matsubara frequencies ωm instead of Matsubara
numbers, we obtain

�(ωm) = 1 − γ

2

∫ ∞

−∞
dω′

m

�(ω′
m)

|ω′
m|1−γ |ωm − ω′

m|γ

− 2(1 − γ )(2πT )γ

|ωm|γ
∫ ∞

O(T )
dω′

m

�(ω′
m)

ω′
m

. (34)

At ωm � T , the last term is irrelevant, and
�(ωm) has the same form as at T = 0: �(ωm) ∝
|ωm|−γ /2 cos [β log (|ωm|/ḡ)γ + φ]. The phase φ is set by
matching this form and �(ωm) ∝ |ωm|−γ at ωm ∼ ḡ. At
ωm ∼ T , i.e., at Matsubara numbers m = O(1), the last term
cannot be neglected. However, it vanishes for certain T , then
log-oscillating �(ωm) is the solution of the full Eq. (34).
Substituting log-oscillating form into the last term we find

that it vanishes when

βγ log
T

ḡ
= nπ + const, n = 0, 1, 2, . . . . (35)

This yields the set of Tp,n ∝ e−πn/(βγ ). Because we assumed
that K � 1, i.e., 2πT 
 ḡ, Eq. (35) is, strictly speaking, valid
for n � 1.

For γ > 1, one cannot convert the summation in (33) into
integration as the integral over 1/|n − m|γ is divergent. In-
stead, we do the following trick:

(i) Replace �(n)/A(n) by �(n)/A(n) − �(m)/A(m) in the
first two terms in (33) and subtract the corresponding terms
from the l.h.s. of (33).

(ii) Use that

∞∑
n=1,n �=m

1

|n − m|γ +
∞∑

n=1

1

|n + m|γ = A(∞) − 1

mγ
. (36)

(iii) Introduce

�̄(m) = �(m)
(

1 − A(∞)

A(m)

)
= −�(m)

A(∞) − A(m)

A(m)
. (37)

(iv) Use that

�(m)

A(m)
= − �̄(m)

A(∞) − A(m)
. (38)

Reexpressing (33) in terms of �̄, we obtain

�̄(m > 0) =
∞∑

n=1,n �=m

(
�̄(m)

A(∞) − A(m)
− �̄(n)

A(∞) − A(n)

)
1

|n − m|γ +
∞∑

n=1

(
�̄(m)

A(∞) − A(m)
− �̄(n)

A(∞) − A(n)

)
1

(n + m)γ

+ 1

mγ

[
2

∞∑
n=1

�̄(n)

A(∞) − A(n)

( 1

nγ
+ 1

(n + 1)γ

)
+ �̄(m)

A(∞) − A(m)

]
. (39)

Converting the summation over n into integration, we see that the integral is now free from divergencies. Using that at large m,
A(∞) − A(m) = 2m1−γ /(γ − 1) and replacing m by ωm, we obtain

�̄(ωm) = γ − 1

2

∫ ∞

−∞
dω′

m[�̄(ωm)|ωm|γ−1−�̄(ω′
m)|ω′

m|γ−1]
1

|ωm − ω′
m|γ +(γ − 1)

{
2

[(2πT

|ωm|
)γ ∫ ∞

O(T )

�̄(ω′
m)

ω′
m

]
+πT

�̄(ωm)

ωm

}
.

(40)

At ωm � 2πT , the last term can be neglected, and we obtain

�̄(ωm) = γ − 1

2

∫ ∞

−∞
dω′

m[�̄(ωm)|ωm|γ−1 − �̄(ω′
m)|ω′

m|γ−1]
1

|ωm − ω′
m|γ . (41)

The solution of this equation is the same log-oscillating
function �(ωm) ∝ |ωm|−γ /2 cos [β log (|ωm|/ḡ)γ + φ] as for
γ < 1, and β is again determined by εiβ = 1, where εiβ is
given by Eq. (12). Like for γ < 1, the set of Tp,n, where
Eq. (40) is valid, is determined by the condition that the last
term in (40) vanishes. Substituting the log-oscillating form of
�(ωm), we find the same condition on Tp,n as in Eq. (40):
Tp,n ∝ e−πn/(γ β ). In Fig. 5 we show numerical result for Tp,n

for γ = 1.5 as a function of n. We see that its dependence on
n is exponential, like for γ < 1.

The computation of the prefactor for Tp,n requires more
effort, and we did not find it analytically. In Fig. 6 we show
numerical results for the onset temperatures Tp,n for γ around
one and n = 0, 1, 2. We see that all Tp,n evolve smoothly
through γ = 1.

4. Nonlinear gap equation, finite T

We did not attempt to solve the nonlinear gap equation
at a finite T < Tp,n. Given that �n(ωm) with different n are
topologically distinct, and that there is a set of �n(ωm) at
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FIG. 5. Tp,n as a function of n for γ = 1.5. The onset temperature
depends on n exponentially, as Tp,n ∝ e−nπ/(βγ ), like for γ < 1. The
slope of log(Tp,n/ḡ) vs n is −3.716, in good agreement with the
analytical result 3.785.

T = 0, we conjecture that the amplitude of �n(ωm), which
emerges at Tp,n, increases as T decreases, and at T = 0 it
coincides with the nth solution of the nonlinear gap equation.
We illustrate this in Fig. 7.

IV. EXTENSION TO N �= 1

We now extend the model and introduce a parameter N ,
which controls the relative strength of the interactions in the
particle-hole and particle-particle channels. Like we said in
the Introduction, we treat N as a continuous variable. With
this extension,

�(ωm) = ḡγ

N
πT

∑
m′ �=m

�(ω′
m)√

�̃2(ω′
m) + �2(ω′

m)

1

|ωm − ω′
m|γ ,

FIG. 6. Variations of the onset temperatures for the pairing Tp,n,
through γ = 1 for n = 0, 1, 2.

FIG. 7. The sketch of the behavior of �n(ωm ∼ T ). The gap
functions with different n emerge at different onset temperatures Tp,n

and at T = 0 have different overall magnitudes. The behavior of
�n(ωm ∼ T ) in the extended γ model with N �= 1 is different, see
Fig. 21.

�̃(ωm) = ωm+ḡγ πT
∑
m′ �=m

�̃(ω′
m)√

�̃2(ω′
m)+�2(ω′

m)

1

|ωm − ω′
m|γ ,

(42)

and

�(ωm) = ḡγ

N
πT

∑
m′ �=m

�(ωm′ ) − N�(ωm)ωm′
ωm√

(ωm′ )2 + �2(ωm′ )

1

|ωm − ωm′ |γ .

(43)
Note that here, like in earlier papers, we extend Eliashberg
equations to N �= 1 after canceling out the divergent con-
tribution from thermal fluctuations (the m′ = m term in the
sum over Matsubara frequencies). An alternative approach,
suggested in Ref. [8], is to extend to N �= 1 without first
subtracting the m′ = m terms in Eq. (43). In this case, one has
to regularize the divergencies on the r.h.s of these equations
and also in the gap equation. In general, the contribution from
thermal fluctuations has to be computed differently from other
terms in the frequency sum because one cannot factorize the
momentum integration based on the separation between fast
electrons and slow bosons. We refer a reader to Refs. [4,5,8],
where this issue has been addressed in detail.

We now consider how the solutions of the gap equation
�n(ωm) evolve near γ = 1. For this we consider separately
the cases γ < 1 and γ > 1.

A. A generic γ < 1

We first briefly summarize the results for a generic γ < 1
(Papers I and II) and then move to γ → 1.

1. Linearized gap equation, T = 0

The linearized gap equation at T = 0 is

�∞(ωm)= ḡγ

2N

∫
dω′

m

�∞(ω′
m)−N�∞(ωm)ω′

m
ωm

|ω′
m|

1

|ωm−ω′
m|γ ,

(44)
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N

SC

NFL

FIG. 8. Ncr from Eq. (46) as a function of γ . This critical N
separates a SC state at N < Ncr and a NFL normal state at N > Ncr.
At γ → 1, Ncr → 1.

or, equivalently,

D∞(ωm)ωm

[
1 + λ

( ḡ

|ωm|
)γ ]

= ḡγ

2N

∫
dω′

m

D∞(ω′
m) − D∞(ωm)

|ωm − ω′
m|γ sgnω′

m, (45)

where D(ωm) = �(ωm)/ωm and λ = (1 − 1/N )/(1 − γ ).
A nonzero solution �∞(ωm) exists for N < Ncr, where

Ncr = 1 − γ

2

�2(γ /2)

�(γ )

(
1 + 1

cos(πγ /2)

)
. (46)

We plot Ncr vs γ in Fig. 8. For all γ < 1, Ncr > 1. Similar to
the case N = 1, �∞(ωm) undergoes log oscillations at ωm <

ḡ: �∞(ωm) ∝ |ωm|γ /2 cos[βN log (|ωm|/ḡ)γ + φ], where βN is
the solution of εiβN = N and εiβ is given by (12). A nonzero
βN exists for N < Ncr. For N � Ncr, βN ∝ (Ncr − N )1/2.

2. Linearized gap equation, T �= 0

At a finite T , the solution of the linearized gap equation
exists for a set of critical temperatures Tp,n, like for N = 1. An
eigenfunction �n(ωm) changes sign n times as a function of
discrete Matsubara frequency ωm = πT (2m + 1). All critical
lines Tp,n(N ) for n > 0 terminate at T = 0 at N = Ncr, while
Tp,0 scales as 1/N1/γ for large N [3]. At N = O(1), Tp,n ∝
e−An for large n.

B. The limit γ → 1

1. Linearized gap equation, T = 0

In the limit γ → 1, Ncr = 1 + [π/2 + log(4)](1 − γ ) +
O(1 − γ )2 tends to 1, i.e., relevant N < Ncr become N � 1.
Simultaneously, the function εiβ becomes flat:

εiβN ≈ Ncr − (1 − γ )R(βN ) = 1 +
(π

2
+ log(4) − R(βN )

)
,

where

R(βN ) = 1

2
[(1/2 + iβN ) + (1/2 − iβN )] − (1/2)

− π

2

(
1 − 1

cosh πβN

)
. (47)

FIG. 9. R(βN ) from Eq. (47) as a function of βN . At large βN ,
R(βN ) ≈ log |βN |.

We plot R(βN ) in Fig. 9. At large βN , R(βN ) ≈ log |βN |.
Because εiβN becomes flat, βN remains finite for N = 1, but
exponentially grows for any N < 1 and becomes infinite
at γ = 1. This implies that the system behavior at N = 1
and N < 1 changes discontinuously at γ = 1. To understand
this change, it is instructive to consider the double limit
when both γ and N tend to one, and βN is a continuous
function of the ratio (1 − N )/(1 − γ ), or, equivalently, of
(Ncr − N )/(1 − γ ) = R(βN ). For N = Ncr, βNcr = 0, for N =
1, βN=1 = β tends to 0.792, and for 1 − N � (1 − γ ), βN ≈
0.561/N1/(1−γ ) � 1. The case N < 1 and γ → 1 corresponds
to the limit βN → ∞. We emphasize that a continuous evolu-
tion is only possible if we keep N as a continuous parameter.

The exact solution for �∞(ωm) can be obtained for any
βN . We plot �∞(ωm) for different βN in Fig. 10. To demon-
strate the behavior over a large range of frequencies, we use
log(ωm/ḡ) as a variable. We see that for βN = O(1), �∞(ωm)
oscillates on the logarithmic scale for ωm � ḡ and decreases
as 1/|ωm| at larger frequencies. This agrees with our earlier
result for N ≡ 1. However, as βN increases, new nonlogarith-
mic oscillations develop at ωm � 1 and extend up to ωmax.
Numerical results strongly indicate that for large enough βN ,
ωmax ∼ ḡ log βN , see Fig. 11. This is expected on general
grounds because ḡ log βN ∼ ḡ(1 − N )/(1 − γ ), and the latter
is the scale at which divergencies in the gap equation are
cut when N � 1. We also see from Fig. 10(b) the overall
magnitude of �∞(ωm) decreases with ωm, while the period
of oscillations increases.

To rationalize this observation we again compute the local
series �∞,L(ωm). We have

�L(ωm) ∝ |ωm|1/2Re

[
ei(βN log |ωm|/ḡ+φ)

∞∑
m=0

C̃N
m

( |ωm|
ḡ

)m
]
,

(48)
where C̃N

m = ∏m
m′=1

1
ĪN
m′

, and

ĪN
m′ = [(−1)m′ − 1]π

2 cosh (πβN )
−

m′−1∑
p=0

1

1/2 + iβN + p
. (49)

The series again converge absolutely, i.e., �L(ωm) can be ob-
tained for any ωm by summing up enough terms in the series.
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FIG. 10. The exact �∞(ωm ) for γ → 1, N → 1 and different βN , which depends on the ratio (1 − N )/(1 − γ ). Right panel:
�∞(ωm )/|ωm|1/2 as a function of log (|ωm|/ḡ). As βN increases, oscillations of �∞(ωm ) extend to larger frequencies. Left panel: Color plot of
�(ωm ), normalized to max [|�∞(ωm )|]. The lines show the positions of the first maximum of the oscillations (blue dotted line) and the first
minimum (red dashed line).

In Fig. 12 we show both the exact �∞(ωm) and �∞,L(ωm).
We see that they nearly coincide over the full range where
�∞(ωm) oscillates. We can also expand the series in (48)
in 1/βN and obtain the analytical expansion in ωm/ḡ for the
overall factor of �∞,L(ω) and the period of oscillations. To
leading order in βN we find after straightforward but lengthy

2 3 4 5 6 7

log N

1.5

2

2.5

3

3.5

4

4.5

5

m
ax

/g

=0.999

FIG. 11. Numerical results for the dependence of the largest fre-
quency for oscillations of �∞(ωm ), ωmax, on βN . The data show that
ωmax ∝ log βN .

calculation:

�∞,L(ωm) ∝ |ωm|1/2 f1(|ωm|
ḡ

)
cos

{
βN

[
log |ωm|/ḡ+ f2

(|ωm|
ḡ

)
+ φ

]}
,

(50)
where

f1(x) = 1 − x

2
+ x2

8
+ · · · , f2(x) = −x + x2

4
+ · · · .

(51)

We see that the envelop of �∞,L(ωm) varies at |ωm| =
O(ḡ), while the argument of cos[· · · ] deviates from the low-
frequency form βN log |ωm|/ḡ + φ already at much smaller
|ωm| ∼ ḡ/βN . In Fig. 13 we compare �∞(ωm) with Eq. (50).
We see that the envelope of �∞(ωm) is well described by
Eq. (50), while oscillations become nonlogarithmic already
at small |ωm| ∼ ḡ/βN and are captured by Eq. (50) up to
ωm � ḡ/β1/3

N .

2. Nonlinear gap equation, T = 0

From a generic point of view, the behavior of �n(ωm) for
γ � 1 qualitatively similar to that for smaller γ . Namely,
�n(ωm) form a discrete, infinite set. A function �n(ωm) be-
haves as 1/|ωm|γ at the highest frequencies, oscillates n times
at smaller ωm, and at even smaller ωm approaches a finite
�n(0). The condensation energy Ec,n is different for different
n and is the largest for n = 0.
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FIG. 12. Comparisons between �∞(ωm ) and �∞,L (ωm ) at γ → 1 for different βN . Both are plotted as functions of y = log (ωm/ḡ). We
adjusted a free phase factor in �∞,L (ωm ) to match �∞(ωm ) at small ωm. The two functions nearly coincide up to ymax, over the full frequency
range where �∞,L (ωm ) oscillates. The scale ymax increases with increasing βN .

On a more careful look, we find that new features in
�n(ωm) gradually develop as γ approaches one. To see this,
consider the nonlinear gap equation at N �= 1:

�n(ωm) = ḡγ

2N

∫
dω′

m

�n(ω′
m) − N�n(ωm)ω′

m
ωm√

�2
n(ω′

m) + (ω′
m)2

1

|ωm − ω′
m|γ .

(52)
For γ → 1 and N �= 1, the dominant contribution to the r.h.s.
of (52) comes from ω′

m ≈ ωm. Keeping only this contribution,
we obtain

�2
n(ωm) + ω2

m = �2(0), (53)

where �(0) ≈ ḡγ (1 − N )/[N (1 − γ )] ∼ ωmax.
We see that at ωm 
 �(0), �n(ωm) ≈ �(0) is nearly in-

dependent on frequency and is also independent on n. The
corrections to Eq. (53) do depend on n, but these correc-
tions are small in (1 − γ )/(1 − N ) ∼ ḡ/ωmax. At ωm � �(0),
�n(ωm) oscillates n times and then decreases as 1/|ωm|. Be-
cause in this range �n(ωm) < ωm, the oscillating term is the
same as for �∞,L(ωm) in Eq. (50). A simple analysis then
shows that the relative width of the frequency range for n
oscillations compare to �(0) is n/nmax, where nmax ∼ βN up
to a prefactor, which depends on log βN . As long as n < nmax,
this width is smaller that ωmax, although the upper boundary
of oscillations increases with n. We illustrate this in Fig. 14.
As a result, the range, where �n(ωm) oscillates, accounts

only for a subleading contribution to the condensation energy
Ec,n, the leading one comes from frequencies ωm � ωmax,
where �n ∼ ωmax is independent on n, up to corrections of
order 1/ log βN ∼ (1 − γ )/(1 − N ). At γ → 1 and N < 1,
nmax tends to infinity and the ratio Ec,n/Ec,0 tends to one
for all finite n. At n → ∞, the result for the condensation
energy depends on how the limit n → ∞ and nmax → ∞
is taken. If b = nmax/n is large, Ec,n ≈ Ec,0. In the opposite
limit b 
 1, oscillations start at a frequency much smaller
that ωmax and run up to ωmax. In this case, the corrections
to Eq. (53) are no longer small, and the analysis has to be
modified. Obviously, at such large n, �n(0) become smaller,
and Ec,n drops. The outcome of this consideration is that at
γ → 1, the spectrum of the condensation energy becomes
continuous: Ec,n for all finite n becomes equal to Ec,0, while
at n → ∞, Ec,n = Ec(b) = Ec,∞ f (b) becomes a continuous
variable, ranging between f (0) = 0 and f (∞) = 1. We illus-
trate this in Fig. 15.

There is a certain similarity between our case and how
a continuum spectrum develops for lattice vibrations, when
the system size becomes infinite and a momentum becomes a
continuous variable.

The transformation of the spectrum of Ec,n from a discrete
one to continuous represents the major qualitative difference
between γ = 1 and γ < 1. For γ < 1, the set of Ec,n is dis-
crete and Ec,0 is the largest. Because the condensation energy
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FIG. 13. Comparison between the exact �∞(ωm ) (red solid line) and �∞,L (ωm ) from Eq. (50) (blue dashed line). The envelope of �∞(ωm )
is well described by (50) up to ωm ∼ ḡ, and the period of oscillations is well described up to ωm ∼ ḡ/β1/3

N . Note that �∞(ωm ) deviates from
the low-frequency cos (βN log |ωm|/ḡ + φ) form beginning from much smaller ωm ∼ ḡ/βN .

is proportional to the total number of particles, other Ec,n are
only relevant for spatially inhomogeneous fluctuations at a
finite T . When the spectrum of Ec,n becomes a continuous
one for spatially homogeneous �(ωm), fluctuations become
one dimensional and will likely restore U (1) phase symmetry.
This issue requires further study because Ec,0 by itself tends
to infinity at γ = 1. We show in a subsequent publication that
a continuous spectrum of condensation energies develops also
in more physically transparent case of N = 1 and γ = 2. In
this last case, Ec,0 remains finite.

FIG. 14. A sketch of the behavior of �n(ωm ) at T = 0 and γ →
1. At ωm = 0, �n(0) ∼ ḡ log βN is almost independent on n. �n(ωm )
is weakly frequency dependent at ωm < �n(0), then it oscillates n
times, and at even larger ωm decays as 1/ωγ

m. The width of the range
where �n(ωm ) oscillates is of order ḡn/βN . At large βN , this range is
smaller than �n(0) for nearly all n, except the very large ones.

3. Linearized gap equation, finite T

We recall that for N = 1, system behavior evolves
smoothly through γ = 1. Namely, the onset temperature Tp,n

is of order �n(0) at T = 0, and both scale as ḡe−An, where A ∼
1/βN=1 remains O(1) for γ = 1. An eigenfunction �n(ωm)
has the same structure as �∞(ωm) down to ωm ∼ Tp,n, and
saturates at smaller frequencies. For N < 1, we find two new
features, both are consistent with the results at T = 0. First,
the scale, up to which �n(ωm) oscillates, increases with n
[see Fig. 16(a)] Second, Tp,n at large n still scales as ḡe−An,
but A ∝ 1/βN increases as γ → 1, hence Tp,n also increases
[see Fig. 16(b)]. We show more numerical results later, in
Sec. IV C 3 and Appendix B.

4. Nonlinear gap equation, finite T

We did not attempt to solve the nonlinear equation for
�n(ωm) at T < Tp,n. Like for N = 1, we expect, based on
the analysis in Sec. IV B 2, that all �n(ωm) with finite n > 0
rapidly increase below Tp,n and at T → 0 merge with �0(ωm),
which, we recall, develops at a much larger Tp,0. We illustrate
this in Fig. 21.

C. Case γ � 1

1. Linearized gap equation, T = 0

For γ > 1, a simple analysis of the linearized gap equa-
tion (42) shows that there is no solution with �n(ωm) �= 0.
Indeed, for N �= 1, the integral over ω′

m diverges at ω′
m = ωm,

leaving �(ωm) = 0 as the only option.

2. Nonlinear gap equation, T = 0

The solution of the nonlinear gap equation does not exist
for N > 1 and is singular for N < 1. Namely, all �n(ωm) with
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(a) (b)

(c)

FIG. 15. A sketch of the spectrum of the condensation energy for T = 0 and N < 1. (a) For γ < 1, Ec,n is discrete and decreases with
n. The condensation energy Ec,0 for the sign-preserving solution �0(ωm ) is the largest. (b) For γ → 1, βN → ∞, and Ec,n for all finite n
approach Ec,0, as the frequency range where �n(ωm ) differs from �0(ωm ) scales as 1/βN and vanishes at βN → ∞. (c) The condensation
energy at n → ∞ depends on the order in which the double limit n → ∞ and βN → ∞ is taken and becomes a continuous function Ec(b) of
b ∼ βN/n. In the two limits, Ec(0) = 0 and Ec(∞) = Ec,0.

finite n tend to infinity at any finite ωm, while the solutions
with n → ∞ form a continuous spectrum of the condensation
energies. The way to see this is to consider the T = 0 case as
the limit T → 0. This is what we do in Sec. IV C 4 below.

3. Linearized gap equation, T �= 0

At a finite T the sum over m′ �= m in (44) does not diverge.
In this situation it is natural to expect that �n(ωm) is nonzero
and finite below a certain Tp,n, which, we recall, remains finite
for γ = 1 and N < 1.

Like for N = 1, the calculations are more straightfor-
ward, when done for the pairing vertex �(ωm), expressed
via the normal state �̃norm(ωm). The gap function �(ωm) =
ωm�(ωm)/�̃norm(ωm). We have from (42)

�(ωm) = ḡγ

N
πT

∑
m′ �=m

�(ωm′ )

|�̃norm(ωm′ )|
1

|ωm − ωm′ |γ , (54)

where �̃norm(ωm′ ) is given by Eq. (28) and, we remind, K =
[ḡ/(2πT )]γ . For γ > 1, A(m → ∞) = 2ζ (γ ). Substituting
the self-energy into the equation for �(ωm) = �(m) and elim-
inating the term with m = 0, we obtain

N�(m > 0) =
∞∑

n=1,n �=m

�(n)

A(n) + 2n+1
K

1

|n − m|γ +
∞∑

n=1

�(n)

A(n) + 2n+1
K

1

(n + m + 1)γ

+ K

N − K

∞∑
n=1

�(n)

A(n) + 2n+1
K

( 1

nγ
+ 1

(n + 1)γ

)( 1

mγ
+ 1

(m + 1)γ

)
. (55)
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FIG. 16. (a) �n(ωm ) at the onset temperatures Tp,n for two different n, at a fixed N and γ → 1. The frequency, up to which �n(ωm )
oscillates, increases with n. This is consistent with the analysis at T = 0. (b) Tp,n as a function of n for γ = 0.9 and 0.99 and N = 0.8. Tp,n still
displays an exponential dependence on n, but the slope is smaller than in Fig. 5 for N = 1.

Consider the limit of small T , when K � 1. Like for γ <

1 (Paper II), one solution of (55) exists for N ≈ K � 1. We
express N as N = K + bγ , where bγ = O(1) and substitute
into (55). The divergent K cancels out, and in the remaining
equation the kernel factorizes between internal m′ and external
m. Solving the equation, we obtain

�(m > 0) = C
( 1

mγ
+ 1

(m + 1)γ

)
,

�(0) = 1

bγ

∞∑
n=1

�(n)

A(n)

( 1

nγ
+ 1

(n + 1)γ

)
, (56)

and

bγ =
∞∑

n=1

1

A(n)

( 1

nγ
+ 1

(n + 1)γ

)2

. (57)

Both �(m) and bγ evolve smoothly through γ = 1. The pair-
ing vertex �(m) and the gap function �(m) do not have

nodes and in our classification are �n=0(m) and �n=0(m).
The corresponding Tp,0 ≈ (ḡ/2π )/N1/γ . We discussed the
n = 0 solution for N � 1 in length in earlier papers [4,5]. In
short: for both γ < 1 and γ > 1, �n=0(m) displays a reen-
trant behavior, i.e., it emerges at a finite Tp,0 and vanishes
at T = 0. We verified that for γ > 1 this behavior holds for
all N > 1.

We now turn to N < 1, where, as we will see, system
behavior differs qualitatively between γ < 1 and γ > 1. For
N < 1 and K → ∞ we obtain from (55):

N�(m>0)=
∞∑

n=1,n �=m

�(n)

A(n)

1

|n − m|γ +
∞∑

n=1

�(n)

A(n)

1

(n + m + 1)γ

−
∞∑

n=1

�(n)

A(n)

( 1

nγ
+ 1

(n + 1)γ

)( 1

mγ
+ 1

(m + 1)γ

)
.

(58)
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FIG. 17. (a) β̄N as a function of N for several different γ , see
Eq. (62). (b) The comparison between DoEs, obtained by using (63)
and by solving numerically the actual gap equation. We set γ = 1.5.
The two DoEs are almost identical. The DoE diverges at Nmin =
−0.292893 = −1 + 1/

√
2, and tends to zero as Nmax → 1.

For m, n � 1, the last term becomes irrelevant, and Eq. (58)
reduces to

N�(m > 0) = 1

2ζ (γ )

∞∑
n=1,n �=m

( �(n)

|n − m|γ + �(n)

(n + m)γ

)
.

(59)
We search for the solution in the form

�(m > 0) ∝ cos (β̄N m + φ̄), (60)

where 0 < β̄N < π . This corresponds to

�(ωm) ∝ ωm cos

(
β̄N

2πT
ωm + φ̄

)
. (61)

Substituting (60) into (59), we find after simple algebra that
Eq. (59) is satisfied if β̄N satisfies ε̄β̄N

= N , where

ε̄β̄ = 1

ζ (γ )

∞∑
n=1

cos(β̄n)

nγ
= 1

ζ (γ )
Re[Liγ (e−iβ̄ )], (62)

where Li is the polylogarithm function. In Fig. 17(a) we plot
β̄N as a function of N for several γ > 1. The solution ex-
ists for N between maximal Nmax → 1 and negative minimal
Nmin = 21−γ − 1. At N → Nmax, β̄N → 0 at N = Nmin, β̄N =
π . For γ � 1, β̄N ∼ (1 − N )1/(γ−1) is small for all N > 0. At

γ = 1.2

γ = 1.5

(a)

(b)

FIG. 18. (a) The onset temperature Tp,n for n = 30 as a function
of 1 − N for γ = 1.2 and γ = 1.5. (b) The dependence of Tp,n on n
for γ = 1.5 and N = 0.8. In both panels, dots are numerical results
and red dashed lines are obtained from (65).

N = 1, β̄N vanishes. In this case, the solution (log-oscillating
function) has to be obtained as in Sec. III B 3.

Like we did for γ < 1, we interpret ε̄β̄N
= N as the disper-

sion relation and identify β̄N with the effective momentum and
N with the effective energy. Then one can define the density
of eigenvalues (DoE) as

ν(N ) ∝ dβ̄

d ε̄β̄

∣∣∣∣
β̄=β̄N

. (63)

We plot this function in Fig. 17(b) along with the DoE
obtained numerically by solving the full Eq. (58) as an
eigenvalue/eigenfunction equation. We see that the analytic
and numerical DoE are quite similar. Both show divergence
at γ -dependent Nmin and vanish at Nmax = 1 as ν(N ) ∝ (1 −
N )

2−γ

1−γ . Note that the behavior of ν(N ) near N = 1 changes at
γ = 2.

We now use the form of �(m) to obtain Tp,n. As before,
we use the initially free parameter φ̄ to match with �(m) at
m = O(1), and match with the power-law form at �(ωm) ∼
ωm, i.e., at m ∼ K = (ḡ/2πT )γ . In more precise form we
have m/K ∼ (1 − N ), where (1 − N ) appears because the
constant term in the self-energy 2πT Kζ (γ ) cancels out for
N = 1. The matching condition is β̄N (ḡ/2πT )γ (1 − N ) =
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FIG. 19. Numerical results for �n(ωm ) for different n and two sets of γ > 1 and N < 1. Observe that (i) the period of oscillations of
�n(ωm ) is set by ωm instead of log ωm, (ii) the envelop of �n(ωm ) is proportional to 1/ωm, and (iii) for fixed N , the frequency ωmax at which
oscillations end, increases with n.

nπ + O(1) Solving for T = Tp,n, we obtain

Tp,n ∼ ḡ

2π

(
β̄N (1 − N )

nπ

)1/γ

. (64)

We see that the n dependence of Tp,n is now 1/n1/γ rather
than e−An. This implies that for a given n and N , Tp,n rapidly
increases as γ crosses one. For γ � 1,

Tp,n ∼ ḡ(1 − N )
1

γ−1

(1

n

)1/γ

. (65)

In Fig. 18 we plot numerical results for Tp,n as a function of N
for a given n for several γ � 1 and as a function of n for given
γ and N . We see that the agreement is quite good.

We now look at the eigenfunctions �n(m), or, equiva-
lently, �n(m). We use �n(m) for easier comparison with the
results for γ < 1. The eigenfunctions behave as �n(m) ∼
m cos(β̄N m + φ̄) up to n-dependent mmax(n) ∼ [ḡ/(2πTp,n)]γ .
At larger m, oscillations end and each �n(m) decays as
1/mγ . Comparing with the form of �n(m) for a generic
γ < 1, we see two key differences. First, for γ > 1, the
period of oscillations is set by m rather than by log m. Sec-
ond, for γ < 1, mmax ∝ ḡ/Tp,n, hence the frequency, where
oscillations end, ωmax = 2πT mmax, is O(ḡ for all n. For
γ > 1, ωmax ∼ ḡ(ḡ/Tp,n)γ−1 becomes n dependent [ωmax =
ωmax(n)], i.e., the larger the n, the larger the range of frequen-
cies where �n(m) oscillates as cos [β̄eff

N (ωm/ḡ) + φ̄], where
β̄eff

N = β̄N ḡ/(2πTp,n) ∼ n1/γ . At n → ∞, oscillations extend
to ωm → ∞. We earlier found the precursor to this behavior

for γ → 1. In Fig. 19 we present numerical results for the
eigenfunctions �n(ωm) for two different γ � 1. We see that
the eigenfunctions indeed oscillate with the period set by ωm

rather than log ωm, and that as n increases, oscillations extend
to larger ωmax. These numerical results confirm that there is
indeed a qualitative change of system behavior for N < 1
between γ < 1 and γ > 1. We also note that the divergence
of β̄eff

N ∝ n1/γ at n → ∞ is consistent with the divergence of
βN as γ → 1 from below.

The crossover from log oscillations of �n(ωm) for γ < 1
to oscillations with a period set by ωm for γ > 1 is sharp at
n � 1, when Tc,n is small and relevant Mastubara numbers
are large. For smaller n, the crossover gets smoothen up.
In numerical calculations, there is an additional smothering
due to sampling of a finite number of Matsubara points. In
Appendix B we show the numerical results for the crossover
behavior and its dependence on the number of Matsubara
points, sampled in numerical calculations.

Finally, in Fig. 20 we show the dependence of Tp,n=1 on
N near N = 1 (or, equivalently, the temperature dependence
of the second eigenvalue of the gap equation). The onset tem-
perature Tp,1(N ) decreases as N approaches one from below,
but because Tp,1(N = 1) is finite, it has to remain finite also
for N > 1. We see that Tp,1(N ) continuous, as a function of
N , into the range N > 1, but then reverses trend, such that
smaller Tp,1 correspond to N closer to N = 1. This reentrant
behavior is the consequence of the fact that at T = 0 there is
no solution of the linearized gap equation for any N , except
for N = 1.
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FIG. 20. Numerical results for Tp,n=1(N ) for N near 1 and γ =
1.2. Tp,1 is finite in some range of N � 1, but the dependence is
nonmonotonic, and eventually smaller Tp,1 correspond to N closer
to N = 1, i.e., at T → 0, the line Tp,1 approaches N = 1. To verify
that Tp,1(N ) = 0 right at N = 1, one needs to go to far smaller T than
in the figure, which is numerically quite challenging.

4. Nonlinear gap equation, T �= 0

We analyze nonlinear equations for the pairing vertex and
the self-energy, Eqs. (42), at small but finite T . It is con-
venient to introduce dimensionless �̄ = (2πT )γ−1�/ḡγ and
¯̃� = (2πT )γ−1�̃/ḡγ . In these variables, Eqs. (42) become,
for the nth solution,

�̄n(m) = 1

2N

∑
m′ �=m

�̄n(m′)√
¯̃�

2

n(m′) + �̄2
n(m′)

1

|m − m′|γ ,

¯̃�n(m) =
(

2πT

ḡ

)γ

(m + 1/2)

+1

2

∑
m′ �=m

¯̃�n(m′)√
¯̃�

2

n(m′) + �̄2
n(m′)

1

|m − m′|γ . (66)

Based on our earlier analysis of the case γ → 1 from be-
low, we expect that at small T < Tp,n, �n(m) = πT (2m +
1)�̄n(m)/ ¯̃�n(m) is large and weakly dependent on n, up to
large n. This holds if �̄n(m) � ¯̃�n(m). Using this inequality
we obtain from (66)

�̄n(m) ≈ ζ (γ )

N
, ¯̃�n(m) ≈

(
2πT

ḡ

)γ m + 1/2

1 − N
, (67)

and, hence,

�n(m) = ḡ
( ḡ

2πT

)γ−1 1 − N

N
+ · · · , (68)

where dots stand for subleading corrections, which depend
on n and m. We see that �n(m) diverges as 1/T γ−1 and
all �n(m) merge into the same gap function at T → 0.
This holds for n up to some nmax(T ), for which Tp,nc ∼ T .
Using Tp,n ∝ 1/n1/γ , we obtain nmax ∼ (ḡ/T )γ . As T → 0,
nmax → ∞, hence �n(m) becomes independent on n for all
finite n, despite that Tp,n are all different. We note in this
regard that at T � Tp,n, �n(m) is of order ḡn(γ−1)/γ , i.e., it
increases below Tp,n with a slope, which increases with n.
We illustrate this in Fig. 21. As the consequence, at T → 0,

FIG. 21. A sketch of the temperature dependence of �n for γ >

1 and N < 1. Different �n(ωm ) with finite n appear at different Tp,n,
but at T → 0 coincide with �0(ωm ). This holds for n up to nmax ∼
(ḡ/T )γ .

the condensation energy Ec,n becomes equal for all finite n,
as we anticipated in Sec. IV C 2. The gap functions �n(m)
with n > nmax do not have a T range to develop into Eq. (68),
and have smaller condensation energy at T → 0. The conden-
sation energy for these solutions depends on b = nmax/n =
[ḡ/(n1/γ T )]γ . At T → 0, nmax tends to infinity, and at n →
∞, b becomes a continuous variable. The condensation energy
Ec(b) = Ec(∞) f̃ (b), where f̃ (0) = 0 and f̃ (∞) = 1. This
is consistent with the results in Sec. IV B 2 on T = 0 and
γ → 1. The behavior of the condensation energy is illustrated
in Fig. 15. At small b we used �n ∝ 1/n1/γ and the expression
for the condensation energy from Refs. [4,21,22] and obtained
Ec ∝ (b)2(2−γ )/γ . For γ � 1, this reduces to Ec ∝ b2.

We emphasize again that this behavior is qualitatively
different from the one in a noncritical BCS/Eliashberg super-
conductor, where there are at most a few different solutions of
the gap equation for any given N and from quantum-critical
superconductivity for γ < 1, where there exists an infinite
set of gap functions for N < Ncr, but the spectrum of the
condensation energy is discrete. We also emphasize that this
behavior does not extend to N = 1, for which a discrete set of
�n(m) and Ec,n survives for γ > 1. The difference with N = 1
is obvious from Eq. (68), which shows that the divergent term
cancels out for N = 1.

V. CONCLUSIONS

In this paper we continued our analysis of the interplay be-
tween the pairing and the non-Fermi liquid behavior in a metal
for a set of quantum-critical systems, which at low energies
are described by a model of fermions with an effective dynam-
ical electron-electron interaction V (�m) ∝ 1/|�m|γ between
fermions at the Fermi surface (the γ model). We analyzed
both the original model and its extension, in which we
introduce an extra parameter N to account for nonequal in-
teractions in the particle-hole and particle-particle channel. In
the two previous papers we considered the case 0 < γ < 1
and argued that (i) at T = 0, there exists an infinite discrete
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FIG. 22. Left panel. Evolution of �n(ωm ) with γ around γ = 1. We set n = 30. As γ increases towards 1, the |ωm|γ /2 cos [βN log(ωm/ḡ)γ ]
form of the gap function (the green region) progressively get replaced by the |ωm|r cos (ωm/ḡ)t form (the blue region). Right panel: The plot of
�n(ωm )/|ωm|r vs (ωm/ḡ)t . The exponents r and t are presented in Fig. 23. Different T = Tp,n for the same n and γ correspond to different N .

set of topologically different gap functions �n(ωm), all with
the same spatial symmetry, and (ii) each �n evolves with tem-
perature and terminates at a particular Tp,n. In this paper we
analyze how the system behavior changes between γ < 1 and
γ > 1, both at T = 0 and a finite T . We show that the limit
γ → 1 is singular due to infrared divergence of

∫
dωmV (�m),

and the system behavior is highly sensitive to how this limit is
taken. We showed that in the original model with N = 1 the
divergencies cancel out in the gap equation, and the gap func-
tions �n(ωm) smoothly evolve through γ = 1 both at T = 0
and a finite T . However, for N �= 1, the evolution through
γ = 1 is not smooth, and qualitatively new behavior emerges
for γ � 1. Namely, there still exists a discrete set of Tp,n,
below which �n(ωm) appears, but (i) the functional forms
of Tp,n and �n(ωm) change qualitatively, and (ii) at T → 0
all �n(ωm) with n < nmax ∼ (ḡ/T )γ tend to the same gap
function. At T → 0, nmax tends to infinity, and the spectrum
of the condensation energy Ec,n becomes a continuous one,
making longitudinal gap fluctuations massless.

In the next paper in the series, Paper IV, we consider the
original γ model in the range 1 < γ < 2 in more detail. We
show that dynamical vortices appear one-by-one in the upper
half-plane of frequency as γ increases between one and two.
In Paper V we show that for γ = 2, the number of these
vortices becomes infinite. We argue that in this case, super-
conducting Tc vanishes, and in between Tp ∼ ḡ and T = 0
the system displays pseudogap behavior. We obtain the full
phase diagram in (T, γ ) variables with superconducting and
pseudogap regions for all 0 < γ � 2.
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APPENDIX A: THE EXACT SOLUTION OF THE
LINEARIZED GAP EQUATION FOR γ < 1

In Paper I we obtained the exact solution of the linearized
equation for T = 0, γ < 1, and any N . The solution has the
form

�∞(ωm) ∝ |ωm|−γ f̃ (log |ωm/ω0|γ ), (A1)

where ω0 = ḡ/(1 − γ )1/γ and

f̃ (x) =
∫ ∞

−∞
b̃(β )e−iβxdβ, (A2)

where

b̃(β ) = sinh(πβN )√
cosh[π (β − βN )] cosh[π (β + βN )]

e−iI (β ). (A3)
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Here βN is the solution of εiβN = N , εiβ is given by (12), and

I (β ) = 1

2

∫ ∞

−∞
log

∣∣∣1 − 1

N
εiβ ′

∣∣∣{tanh[π (β ′ − β )]

− tanh(πβ ′)}dβ ′. (A4)

Notice that I (β ) is real and antisymmetric.
In the limit γ → 1,

εiβ = Ncr + (1 − γ )R(β ),

where R(β ) is given by (47). Then

1 − εiβ

N
≈ (1 − γ )

(
N − Ncr

1 − γ
− R(β )

)

= (1 − γ )[R(βN ) − R(β )], (A5)

and the function I (β ) in (A4) becomes

I (β ) = −β log(1 − γ ) + J (β ), (A6)

where

J (β ) ≡ 1

2

∫ ∞

−∞
log |R(βN ) − R(β ′)|{tanh[π (β ′ − β )]

− tanh(πβ ′)}dβ ′ (A7)

does not depend on γ . We see that the function f̃ (x) in (A2) is
in fact the function of x − log(1 − γ ). Substituting into (A1)
we find that at γ → 1, the argument of f̃ is log |ωm|/ω0 −
log (1 − γ ) = log |ωm|/ḡ, i.e., relevant scale for �∞(ωm) is ḡ
rather than the divergent ω0:

�∞(ωm) = |ωm|−1 f̃ (log |ωm|/ḡ).

APPENDIX B: NUMERICAL RESULTS FOR THE
CROSSOVER FROM LOGARITHMIC TO
POWER-LAW OSCILLATIONS FOR N < 1

In this Appendix we present the results of a detailed numer-
ical analysis of the crossover from log oscillations of �n(ωm)
for γ < 1 to oscillations with a period set by ωm for γ > 1.
Like we said in Sec. IV C 3, the transformation at γ = 1 is
sharp at n � 1, when Tc,n is small and relevant Matsubara
numbers are large. For smaller n, the crossover gets smoothen
up. In numerical calculations, there is an additional smother-
ing due to sampling of a finite number of Matsubara points.
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_

_

_

_
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FIG. 23. The exponents r and t , defined in the text and in the
caption to Fig. 22, vs γ for n = 30 and 100. As n increases, both r
and t get closer to the analytical result r = t = 1, valid for n � 1.

We show the results in Figs. 22 and 23. We see from Fig. 22
that as γ approaches one, log oscillations of �n(ωm) at a given
n progressively get replaced by power-law oscillations. The
period of power-law oscillations and the envelope are best
fitted by (ωm/ḡ)t and (ωm/ḡ)r , respectively. For an infinite
number of sampling points, we expect a sharp crossover at
γ = 1 and n → ∞ between logarithmic and power-law oscil-
lations.

In Fig. 23 we show the results for the exponents r and t ,
extracted from Fig. 22. For a given γ , the values of r and
t vary with n and temperature. Analytically, we obtained in
Sec. IV C 3 r = t = 1 for large n, when Tp,n 
 ḡ. We see
that r and t are different from one for a given n, but both
tend to 1 when n becomes large enough and T → 0. This
result confirms our analysis in Eq. (60) for γ � 1. Overall,
the numerical results clearly show the main result of our
analysis—the transformation of log oscillations for γ < 1 into
power-law oscillations for γ > 1.

APPENDIX C: ANOTHER EXTENSION OF THE γ MODEL

We now propose another extension of the original model,
which does not introduce divergencies. For this we return to
the original model with N = 1 and reexpress Eqs. (42) for the
pairing vertex and the self-energy by pulling out the divergent
terms from the r.h.s., like we did in Sec. III B 3. We obtain

�(ωm)

(
1 − ḡγ ζ (γ )

(2πT )γ−1

1√
�̃2(ωm) + �2(ωm)

)

= ḡγ πT
∑
m′ �=m

(
�(ωm′ )√

�̃2(ωm′ ) + �2(ωm′ )
− �(ωm)√

�̃2(ωm) + �2(ωm)

)
1

|ωm − ωm′ |γ ,

× �̃(ωm)

(
1 − ḡγ ζ (γ )

(2πT )γ−1

1√
�̃2(ωm) + �2(ωm)

)
= ωm

+ḡγ πT
∑
m′ �=m

(
�̃(ωm′ )√

�̃2(ωm′ ) + �2(ωm′ )
− �̃(ωm)√

�̃2(ωm) + �2(ωm)

)
1

|ωm − ωm′ |γ . (C1)
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We then introduce

�̄(ωm) = �(ωm)

(
1 − ḡγ ζ (γ )

(2πT )γ−1

1√
�̃2(ωm) + �2(ωm)

)
,

¯̃�(ωm) = �̃(ωm)

(
1 − ḡγ ζ (γ )

(2πT )γ−1

1√
�̃2(ωm) + �2(ωm)

)
. (C2)

Because �(ωm)/�̃(ωm) = �̄(ωm)/ ¯̃�(ωm), Eqs. (C1) can be reexpressed solely in terms of �̄(ωm) and ¯̃�(ωm):

�̄(ωm) = ḡγ πT
∑
m′ �=m

⎛
⎝ �̄(ωm′ )√

¯̃�
2
(ωm′ ) + �̄2(ωm′ )

− �̄(ωm)√
¯̃�

2
(ωm) + �̄2(ωm)

⎞
⎠ 1

|ωm − ωm′ |γ ,

¯̃�(ωm) = ωm + ḡγ πT
∑
m′ �=m

⎛
⎝ ¯̃�(ωm′ )√

¯̃�
2
(ωm′ ) + �̄2(ωm′ )

−
¯̃�(ωm)√

¯̃�
2
(ωm) + �̄2(ωm)

⎞
⎠ 1

|ωm − ωm′ |γ . (C3)

These equations are now free from singularities, even if we replace a summation over Mascara numbers by an integration over
Matsubara frequencies.

We now extend the modified Eliashberg equations (C3) in the same way as before, by multiplying the interaction in the
particle-particle channel by a factor 1/M:

�̄(ωm) = ḡγ

M
πT

∑
m′ �=m

⎛
⎝ �̄(ωm′ )√

¯̃�
2
(ωm′ ) + �̄2(ωm′ )

− �̄(ωm)√
¯̃�

2
(ωm) + �̄2(ωm)

⎞
⎠ 1

|ωm − ωm′ |γ . (C4)

The gap function �(ωm) is expressed via �̄(ωm) and ¯̃�(ωm) in the same way as via the original �(ωm) and �̃(ωm): �(ωm) =
ωm�̄(ωm)/ ¯̃�(ωm). The gap equation becomes

�(ωm) = ḡγ

M
πT

∑
m′ �=m

1

|ωm − ωm′ |γ

⎛
⎝�(ωm′ ) − M �(ωm )

ωm
ωm′√

�2(ωm′ ) + ω2
m′

− �(ωm)(1 − M )√
�2(ωm) + ω2

m

⎞
⎠. (C5)

1. Linearized gap equation, T = 0

For infinitesimally small �̄(ωm), the self-energy coin-
cides with that in the normal state. Converting πT

∑
m′ into∫

dω′
m/2 and evaluating the frequency integral in (C3), we

obtain at T = 0,

¯̃�(ωm) = ωmB(|ωm|), (C6)

where

B(|ωm|) = 1 −
( ḡ

|ωm|
)γ 1

γ − 1
. (C7)

Substituting ¯̃�(ωm) into the equation for �̄(ωm), we obtain

�̄∞(ωm) = ḡγ

2M

∫
dω′

m

(
�̄∞(ω′

m)

|ω′
m|B(|ω′

m|)| − �̄∞(ωm)

|ωm|B(|ωm|)|
)

× 1

|ω′
m − ωm|γ , (C8)

we label infinitesimally small �̄(ωm) as �̄∞(ωm), like in ear-
lier analysis, anticipating that the nonlinear equation for the
pairing vertex will have a discrete set of solutions �̄n(ωm).
At small ωm, the bare ωm term in ¯̃�(ωm) can be neglected,

and (C8) reduces to

�̄∞(ωm)

= γ − 1

2M

∫
dω′

m

�̄∞(ωm)|ωm|γ−1 − �̄∞(ω′
m)|ω′

m|γ−1

|ω′
m − ωm|γ .

(C9)

This equation is similar, but not equivalent, to Eq. (7) for
the pairing vertex for γ < 1. In both cases, the kernel is
marginal, and we search for the solution in the form �̄(ωm) ∝
|ωm|−γ /2+b. Like before, a normalizable solution exists when
b = ±iβM is purely imaginary. Substituting power-law form
with the complex exponent, we find that (C9) is satisfied
if εiβM = M, where εiβ is exactly the same function as in
Eq. (12). In this respect, the extension to M �= 1 for γ > 1
is quite similar to the extension to N �= 1 for γ < 1. The simi-
larity is particularly transparent for the linearized equation for
D(ωm) = �(ωm)/ωm. From (C9) we obtain

D∞(ωm)ωm

[
1 + λ̄

( ḡ

|ωm|
)γ ]

= ḡγ

2M

∫
dω′

m

D∞(ω′
m) − D∞(ωm)

|ωm − ω′
m|γ sgnω′

m, (C10)
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SC

NFL

M

FIG. 24. Critical Mcr as a function of γ > 1. A normalizable
solution of the gap equation exists for M > Mcr.

where λ̄ = (1/M − 1)/(γ − 1). This equation is identical to
Eq. (45) once we replace N by M.

Because dεiβ/dβ is positive for γ > 1, a normalizable
solution of the gap equation exists for M > Mcr, where Mcr

satisfies ε0 = Mcr. We plot Mcr as a function of γ in Fig. 24.
We see that Mcr gradually decreases as γ increases, from
Mcr = 1 at γ = 1 to Mcr = 0 at γ = 2.

2. Linearized gap equation at a finite T

At a finite T , we obtain from (C5) for infinitesimally small
�∞(ωm) = �∞(m) and m > 0,

Sm{|2m + 1| − 2K[ζ (γ ) − H (m, γ )]} = K

M

∑
m′ �=m

Sm′ − Sm

|m′ − m|γ ,

(C11)

where Sm = �(m)/|2m + 1|, K = [ḡ/(2πT )]γ , and
H (m, γ ) = ∑m

1 1/pγ is the the harmonic number. At small
T , (C11) simplifies to

Sm = 1

2M[H (m, γ ) − ζ (γ )]

∑
m′ �=m

Sm − Sm′

|m′ − m|γ . (C12)

FIG. 25. The onset temperatures Tp,n(M ), obtained by solv-
ing (C12) for a particular γ = 1.5. Solutions exists at a discrete
set of temperatures for any M > Mcr = 1.75. The lines Tp,n(M ) all
terminate at Mcr at T = 0. To verify this numerically for n � 1, one
needs to go to very low T .

The solution of this equation exists at a particular T , which
determines the onset temperature for the pairing.

We show results of the numerical solution of Eq. (C11) in
Fig. 25. Like for γ < 1, we find that there exists a discrete
set of onset temperatures Tp,n, and an eigenfunction �n(m)
changes sign n times as a function of Matsubara number m.
Different Tp,n(M ) all approach M = Mcr at T = 0, although
for larger n one has to go to very low T to see this. Such
behavior is similar to the one for γ < 1, the only distinction
is that now there is no special behavior of Tp,0 because ¯̃�(ωm)
does not vanish at the first two Matsubara frequencies ωm =
±πT .

Because the behavior of the gap function is the same in all
models with M > Mcr, including the original model with M =
1, the extension to M �= 1 allows one to extract this behavior
by focusing at either M � Mcr, where the analytical analysis is
simplified because relevant frequencies are small, or at M >

1, where Tp,n are larger and can be detected more easily in
numerical studies.
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