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Pair density waves in spinless media
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We study the competition of homogeneous SC with pair density wave states in a spinless formalism focusing
on systems with band structures that exhibit commensurate nesting features. We show that a specific triplet
commensurate pair density wave superconducting (SC) state, the staggered d-wave triplet state (triplet dPDW),
may coexist with homogeneous triplet SC states and even dominate, eliminating them for small deviations from
nesting. We point out qualitative characteristics of the tunneling density of states and specific heat that identify
this triplet dPDW state. Our results are qualitatively extendable to similar systems with nested band structures.
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I. INTRODUCTION

Singlet superconductivity (SC) and ferromagnetism (FM)
are directly competing phenomena. The discovery of SC
coexisting with FM in UGe2 [1] and other bulk FM-SC
[2,3] in heterostructures where the proximity of SC and
FM is enforced [4–6] necessarily involves exotic spin-triplet
SC states. Numerous theoretical models with homogeneous
triplet SC states that are possibly odd in frequency have
been proposed [7–11]. For the two-dimensional SC state
that develops at the interfaces of some oxide insulators like
LaAlO3/SrTiO3 [12] in the presence of FM [13] a modulated
or pair density wave (PDW) triplet state of Fulde-Ferrell-
Larkin-Ovchinnikov (FFLO) type has also been suggested
[14]. The observation of proximity-induced SC in the half-
metallic (fully polarized) FM CrO2 in contact with SC NbTiN
[4] demonstrates that effectively spinless systems may exhibit
SC as well.

In the present work, we address the question of competition
of homogeneous SC with pair density wave states in a fully
spin polarized medium, using a band dispersion with commen-
surate nesting vector Q to accommodate the pair density wave
states. The competition of all SC condensates allowed by
symmetry is studied systematically, and we show that a triplet
SC state exhibiting commensurate density wave modulation
of the superfluid density may coexist with, or even dominate
and eliminate, the homogeneous (zero momentum) triplet SC
for small deviations from nesting. When this triplet commen-
surate pair density wave SC (triplet PDW) state dominates, we
have robust gapless SC. We report phase transitions between
the various types of accessible triplet SC states, including
transitions between gapped and gapless SC states, as well as
qualitative physical characteristics in the density of states and
specific heat that would allow us to identify the type of triplet
SC in which the system of interest is. In this work Q = (π, π );
however, our results are qualitatively extendable to similar
systems with nesting properties at different wave vectors with
the appropriate changes to the PDW’s wave vector.

A similar triplet PDW state channel has been suggested to
occur in the high-field SC state of CeCoIn5 coexisting with
singlet SC and spin density waves [15,16], explaining fasci-
nating neutron scattering results [17]. There have also been
studies of PDW in the singlet channel, also called η pairing
[18–24], mainly motivated by the extraordinary physics in the
pseudogap and other stripe regimes of cuprates [25,26].

II. MODEL, SYMMETRIES, AND PHASE COMPETITION

Our starting point is a BCS-type Hamiltonian with frozen
spin:

H =
∑

k

ξk c†
kck −

∑
k

(�k c†
kc†

−k + H.c.)

−
∑

k

(�k c†
kc†

−(k+Q) + H.c.). (1)

The first term describes a tight-binding dispersion which
generically can be written as the sum of particle-hole-
symmetric terms and particle-hole-asymmetric terms: ξk =
γk + δk − μ. When δk = 0, there is particle-hole symmetry
or perfect nesting, while finite values of δk destroy the nesting
conditions. The second term, �k = ∑

k′ V �
k,k′ 〈c−k′ck′ 〉, repre-

sents unconventional SC with zero pair momentum, and the
last term, �k = ∑

k′ V �
k,k′ 〈c−(k′+Q)ck′ 〉, is the triplet PDW or

modulated SC state. Although our PDW bears some resem-
blance to the FFLO state [27] because Cooper pairs have finite
total pair momentum and the superfluid density is inhomoge-
neous, they are fundamentally different. In fact, our PDW is
a spin-triplet state, whereas the FFLO is a spin singlet trying
to survive the Zeeman field. The wave vector of the superfluid
modulation in our triplet PDW is the commensurate nesting
vector Q. In the FFLO state instead, the wave vector of the
superfluid modulation is variable, scaling with the magnitude
of the magnetic field.

The effective interactions of the itinerant quasiparticles
V �

k,k′ , V �
k,k′ may have a purely electronic origin in the case

of FM superconductors. However, our approach is generic
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irrespective of the microscopic origin of the effective inter-
actions, and the validity of our findings is generic as well. In
the case of heterostructures, we assume within our approach
that the effective potentials incorporate the proximity effects
as well. Naturally, we would expect in that case a real-space
dependence of the potentials, which we neglect here. We focus
on only qualitative symmetry questions that would not be
affected by a smooth space dependence. In fact, the modu-
lation of the superfluid density in our triplet PDW state has
a wavelength that is negligible compared to the coherence
length and the characteristic lengths of the heterostructure.
We therefore expect our qualitative findings to hold for bulk
materials and for nanostructures as well.

To treat both types of SC order parameters (OPs) in a
compact manner we introduce a Nambu-type representation
using the spinor 	

†
k = (c†

k, c−k, c†
k+Q, c−k−Q), and we use the

basis provided by the tensor products ρ̂i ⊗ τ̂i, where ρ̂i, τ̂i

are the usual 2 × 2 Pauli matrices. The absence of spin index
in the Hamiltonian affects the symmetry classification of the
acceptable triplet SC states, for which we produced a system-
atic phase map. In fact, the OPs are normally classified by
their behavior under inversion (Î ) k → −k, translation (t̂Q),
k → k + Q and time reversal (T̂ ).

Instead of the latter we may use complex conjugation
K̂ which is related to time reversal via the relations T̂ ≡
Î K̂ (�/�). Since the spins are frozen, the homogeneous (q =
0) SC pair states may have only odd parity: �−k = −�k.
Under translation we have both signs, �k+Q = ±�k, and
under T̂ we get T̂ �k = −�∗

k. Triplet PDW states may have
both parities, �−k = ±�k, and both signs under transla-
tion since �k+Q = −�−k = ∓�k. Classifying the SC states
with respect to K̂ , Î , and t̂Q we have four homogeneous
states: �R−−

k , �R−+
k , �I−−

k , and �I−+
k and four PDW states:

�R+−
k , �R−+

k , �I+−
k , and �I−+

k . Here the first index R or
I indicates whether the OP is real or imaginary, the second
index ± indicates parity under inversion Î , and the last index
denotes gap symmetry under t̂Q. The symmetry properties of
the OPs under inversion Î and translation t̂Q imply a specific
structure in k space. Every OP Mk is written in the form
Mk = M fk, where the form factors fk belong to the different
irreducible representations of the point group.

According to the above symmetry classification there exist
16 possible pairs of competing homogeneous and modulated
SC states. Using our formalism, we calculate Green’s func-
tions and, from them, self-consistent systems of coupled gap
equations for each case, ending up with two different sets of
coupled gap equations. Specifically, the pairs

�R−−
k with �R−+

k , �I−−
k with �I−+

k ,

�R−+
k with �I−+

k , �I−+
k with �R−+

k ,
(2)

�R−−
k with �I+−

k , �I−−
k with �R+−

k ,

�R−+
k with �R+−

k , �I−+
k with �I+−

k

obey the type I equations, which are

�k =
∑

k

V �
k,k′�k′

∑
±

1

4E±(k′)
tanh

(E±(k′)
2T

)
,

�k =
∑

k′
V �

k,k′�k′
∑
±

√
(δk′ − μ)2 + �2

k′ ± γk′

4E±(k′)
√

(δk′ − μ)2 + �2
k′

× tanh
(E±(k′)

2T

)
, (3)

where the dispersion relations are given by

E±(k) =
√[√

(δk − μ)2 + �2
k ± γk

]2 + �2
k. (4)

Notice that the competing pairs in the left and right
columns in (2) have identical behavior under Î and t̂Q; that is,
they are represented by the same form factors. Furthermore,
they obey the same self-consistent equations given by (3).
Thus, the solutions of the coupled gap equations coincide, and
we need to numerically study only half of the eight competing
pairs. We solved numerically the type I equations (3) for the
pairs

�I−−
k with �I−+

k , �I−+
k with �R−+

k ,

�I−−
k with �R+−

k , �I−+
k with �I+−

k . (5)

The remaining eight pairs,

�R−−
k with �R+−

k , �I−−
k with �I+−

k ,

�R−+
k with �I+−

k , �I−+
k with �R+−

k ,

�R−−
k with �I−+

k , �I−−
k with �R−+

k ,

�R−+
k with �R−+

k , �I−+
k with �I−+

k , (6)

obey the type II equations, which in turn are

�k =
∑

k

V �
k,k′�k′

∑
±

Bk′ ± �2
k′

4E±(k′)Bk′
tanh

(E±(k′)
2T

)
,

(7)

�k =
∑

k′
V �

k,k′�k′
∑
±

Bk′ ± γ 2
k′ ± �2

k′

4E±(k′)Bk′
tanh

(E±(k′)
2T

)
,

where Bk and E±(k) are given by

Bk =
√

γ 2
k

[
(δk − μ)2 + �2

k

] + �2
k�

2
k,

E±(k) =
√

γ 2
k + (δk − μ)2 + �2

k + �2
k ± 2Bk. (8)

In this case too we notice that the competing pairs in the
left column in (6) have behavior under Î and t̂Q identical to
that of the competing pairs in the right column. Therefore, we
need to numerically study only half of the competing pairs.
We studied the following type II pairs:

�I−−
k with �I+−

k , �I−+
k with �R+−

k ,

�I−−
k with �R−+

k , �I−+
k with �I−+

k . (9)

The effective potentials V �
k,k′ ,V �

k,k′ have the form
Vk,k′ = V fk fk′ (separable potentials). We have solved
self-consistently the above systems of equations on a square
lattice with γk = −t1(cos kx + cos ky), δk = −t2 cos kx cos ky,
μ = 0, and Q = (π, π ). The choice of a tetragonal dispersion
is motivated, in part, by the fact that half-metallic systems
such as CrO2 exhibit a tetragonal structure; however,
our qualitative findings are generic. The corresponding
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FIG. 1. Maps of the dependence of phase sequences on the effec-
tive interactions V � and V � for low temperature. The colors indicate
the different cascades of phases obtained when t2/t1 grows starting
from zero (μ = 0 everywhere). All phases coexist with ferromag-
netism (FM). The phase indicated as FM is only ferromagnetic; no
SC gap is finite. The couple of (a) �I+− with �I−−, (b) �I+− with
�I−+, (c) �R+− with �I−+, and (d) �R+− with �I−− The potentials
are in units of t1.

form factors belong to irreducible representations of the
tetragonal group D4h. Specifically, �I−−

k ∼ sin kx + sin ky

(s wave), �I−+
k ,�I−+

k ∼ sin(kx + ky) (p wave), and
�R+−

k ∼ cos kx − cos ky (d wave). For every competing
pair we have performed a large number of self-consistent
calculations varying pairing potentials in the two channels,
temperatures, and ratios t2/t1.

The first important result is that the triplet PDW �
QI−+
k OP

can never survive. Specifically, the �
QI−+
k gap is zero regard-

less of the values of the pairing potentials and the particle-hole
asymmetry t2/t1 term. We conclude that although the state
�

QI−+
k is allowed by symmetry, it is never realized. There-

fore, we report only results about the relevant competition of
the remaining �R+−

k and �I+−
k [triplet d-wave PDW (dPDW)]

with both zero-momentum SC states.
The phase sequences as t2/t1 grows starting from zero and

for various values of the pairing potentials for the competi-
tion of �I+−

k (�R+−
k ) with �I−−

k or �I−+
k are shown in the

respective panels of Fig. 1. Colors in Fig. 1 indicate differ-
ent cascades of phases observed when the ratio t2/t1 grows
starting from zero in each region of the map. The variation of
t2/t1 may simulate various effects such as chemical doping or
stress effects as well as proximity effects. Since we consider a
spin-polarized background, all states coexist with FM, and the
transitions to the FM state reported at high values of t2/t1 have
the meaning of a transition to a state that is only ferromagnetic
with no SC OPs present.

It is obvious that the competition of �I+− with the two
homogeneous SC states [Figs. 1(a) and 1(b)] has the same
qualitative features as the competition of �R+− [Figs. 1(c)
and 1(d)], namely, the same cascades of phases as t2/t1 grows
(indicated by regions in different colors) appear. Furthermore,

all cases share the characteristic feature that the triplet dPDW
state is finite in the largest part of the maps of the pairing
potentials. Thus, since we do not limit ourselves to a spe-
cific microscopic model that could correspond to a specific
value for the pairing potentials, the existence of the triplet
dPDW phase can be considered generically plausible. In the
following we focus on the competition of �R+−

k with the two
� states.

The interplay of �R+−
k with �I−−

k favors the coexistence
of both (q = 0 and q = Q) SC states at low T over a wide
range of values of the pairing potentials [Fig. 1(d)]. The tran-
sition from a coexistence state to a homogeneous (q = 0) SC
state as t2/t1 grows is always continuous (second order) and
dominates the V �,V � parameter space.

The low-temperature regime is different in the interplay of
�R+−

k with �I−+
k . The coexistence of the two SC states is

allowed again but now is restricted to a small portion of the
V �,V � map [Fig. 1(c)]. The most interesting feature now is
the the domination of the triplet dPDW (modulated SC) state
for the smaller values of t2/t1. Thus, in this case the formation
of the �R+− triplet dPDW state is favored. As particle-hole
asymmetry grows (t2/t1 grows), we may have transitions from
a triplet dPDW to a state of coexistence or to a homogeneous
SC state.

We note that in the case of both � and � being nonzero, a
charge density wave (CDW) is generated. This can be seen by
diagonalizing the corresponding mean-field Hamiltonian us-
ing a Bogolyubov transformation and calculating the ground
state expectation value 〈c†

kck+Q〉, which turns out to be finite.
Specifically, for the coexistence of �I−−

k with �R+−
k we have

that 〈c†
kck+Q〉 ∼ i�k, i.e., an s-wave CDW. This CDW gen-

eration by a mixed state of a homogeneous SC and a PDW
was also reported by Seo et al. in their work on cuprates
[23]. Nevertheless, the appearance of the CDW order does
not change the qualitative characteristics of the � + � co-
existence phase such as the specific heat and density of states
(DOS) at low temperature, which we present later, since the
Fermi surface consists of isolated Fermi points in both cases.
However, when only the triplet dPDW state is present, no
CDW order is generated since the expectation value 〈c†

kck+Q〉
is zero. This shows that the triplet dPDW state indeed exists
as a pure state.

A. �I−+ with �R+−

We show in Fig. 2 the dependence of the �I−+ and
�R+− on t2/t1 at low T [Fig. 2(a)] and the phase diagram
[Fig. 2(c)] obtained by the coupled-gap equations for V � =
V � = 0.75t1. Only the � gap is finite at low temperature, in
agreement with Fig. 1(c) for the specific values of V �, V �.
We stress that the � gap not only is finite for t2/t1 = 0 but
survives up to t2/t1 = 0.115. The critical temperature satisfies
Tc/t1 = 0.045. Introducing μ = 0.1 to the above system re-
sults in the extension of the � gap to higher t2/t1 values at
low T . Indeed, the � gap survives up to t2/t1 = 0.212, while
the � gap remains zero [Fig. 2(b)]. In general, finite μ values
favor the triplet dPDW state but none of the homogeneous
�I−−

k , �I−+
k states. The critical temperature is maximum for

t2/t1 = 0.1 and satisfies Tc/t1 = 0.045 [Fig. 2(d)].
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FIG. 2. Dependence of homogeneous �I−+
k and modulated

�R+−
k SC gaps on t2/t1 at low T for (a) μ = 0 and (b) μ = 0.1. The

� gap is finite up to t2/t1 = 0.115 and t2/t1 = 0.212, respectively.
(c) and (d) t2/t1-temperature phase diagram for μ = 0 and μ = 0.1,
respectively. Solid symbols mark second-order transitions. The val-
ues of the pairing potentials are V � = V � = 0.75t1.

At low temperature the � gap remains finite for higher t2/t1
values as the pairing potential V � increases. This is illustrated
in Fig. 3, where we show the � gap with respect to t2/t1
at low T for V � = V � = 0.8t1, t1, and 1.2t1 and μ = 0. All
three pairs of V �, V � correspond to the � → FM transition
of Fig. 1(c); therefore, the � gap is zero with respect to t2/t1 in
all three cases. As V � increases from 0.8t1 to t1, � extends to
t2/t1 = 0.26, while for V � = 1.2 it survives up to t2/t1 = 0.4.

However, as V � increases, the ratio Tc/t1 also increases;
that is, for V � = V � = t1, Tc/t1 = 0.105, while for V � =
V � = 1.2t1, Tc/t1 = 0.16. It is straightforward that high val-
ues of the pairing potentials may lead, depending on the value
of t1, to unrealistically high critical temperatures. We note
that our study is not related to a specific material for which
the value of t1 has been determined by ab initio calculations.
Therefore, our discussion will be limited to low V � values,
i.e., V � � t1. The same restriction applies also to the pairing
potential of the �I−+

k state, whereas for the �I−−
k state the
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FIG. 3. Dependence of the �R+−
k gap on t2/t1 at low T . The

values of the pairing potentials are V � = V � = 0.8t1, t1, and 1.2t1

and μ = 0. The � gap is zero for all four pairs of the pairing
potentials.
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FIG. 4. Contour plot of the condensation free energy �F as a
function of the OPs �R+−

k and �I−+
k at low T for t2/t1 = 0, μ = 0,

and V � = V � = 0.75t1. The lowest value of �F is situated at the
point (�,�) = (0, 0.055t1), which corresponds to the solutions of
the respective coupled gap equations.

corresponding pairing potential should be V � � 2t1 in order
to have Tc/t1 ∼ O(10−2). In the largest part of this parameter
range of pairing potential values the triplet dPDW state dom-
inates or coexists with zero-momentum SC states for small
deviations from nesting.

The stability of the solutions of the self-consistent
equations has been verified by free-energy calculations as
well. The free-energy difference �F between the nor-
mal and condensed states is given by �F = �2

V � + �2

V � −
1

2β

∑
k

∑
j=±,i=± ln( 1+e− jβEi (k)

1+e− jβεi (k) ), where E±(k) are the energy
dispersions for each competing pair and ε±(k) are the energy
dispersions obtained when both gaps are zero. The safest
way to ensure that the solutions of the coupled gap equations
correspond to the minimum of the free-energy difference is to
vary �F with respect to the magnitudes of the gaps and verify
that �F attains its minimum for these values. We report in
Fig. 4 the variations of the free-energy difference with �I−+

k
and �R+−

k at low T for t2/t1 = 0, μ = 0, and V � = V � =
0.75t1. The solutions of the coupled gap equations in this
case are (�,�) = (0, 0.055t1), i.e., dominance of the triplet
dPDW state. It is clear that �F attains its minimum value for
(�,�) = (0, 0.055t1); thus, the ground state consists solely
of the triplet dPDW phase.

B. �I−− with �R+−

We show in Fig. 5 the dependence of �I−− and �R+−
on t2/t1 at low T [Fig. 5(a)] and their evolution with tem-
perature [Fig. 5(b)] for t2/t1 = 0. The values of the pairing
potentials are V � = V � = 0.75t1 and correspond to the tran-
sition � + � → � → FM in Fig. 1(d) and μ = 0. We stress
that at low T for t2/t1 = 0 the values of the gaps are in full
agreement with the �F minimum requirement, i.e., (�,�) =
(0.054t1, 0.054t1). As particle-hole asymmetry grows, the �

gap drops and becomes zero for t2/t1 = 0.11, while �I−−
survives up to high t2/t1 values. The t2/t1 transition from the
coexistence phase to the homogeneous SC state is continuous.
Both gaps have the same critical temperature, which satisfies
Tc/t1 = 0.045. We note that for μ = 0.1 the � gap extends up
to t2/t1 = 0.215 at low T .
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FIG. 5. Dependence of homogeneous �I−−
k and modulated

�R+−
k SC gaps on (a) t2/t1 at low T , and (b) on temperature for

t2/t1 = 0. The �I−−
k gap survives up to high t2/t1 values at low

T . The values of the pairing potentials are V � = V � = 0.75t1, and
μ = 0.

III. POSSIBLE EXPERIMENTAL IDENTIFICATION of
�R+−

A question that naturally arises is how the exotic triplet
dPDW state �R+−

k can be identified experimentally. Our anal-
ysis suggests that specific heat measurements at low T may
be sufficient. Specifically, triplet dPDW states exhibit an ex-
tended Fermis surface (FS; line nodes) regardless of the value
of the particle-hole asymmetry term, whereas both � states
and the coexistence phase � + � have isolated Fermi points.
We note that the extended FS is also a feature of the spin-
singlet η pairing [19]. Consequently, the triplet dPDW state
�R+−

k is the sole SC state that exhibits a linear low-T behavior
of the specific heat, and this is robust since it holds even for
finite values of t2/t1.

This is illustrated in Fig. 6, where the Fermi surface and
the specific heat in the triplet dPDW phase (red) and in the ho-
mogeneous SC phase (blue) for t2/t1 = 0.1 are reported. We
observe that in the �R+−

k phase the Fermi surface is extended,
imposing the linear behavior of the specific heat at low T . On
the other hand, in the �I−+

k phase we have only two Fermi
points, and the specific heat at low T exhibits a polynomial
behavior. This is also the case for the other homogeneous SC
state �I−−

k as well as for the coexistence phase � + �. We
stress that the specific heat exhibits the same low-T behavior
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FIG. 6. (a) Fermi surface and (b) specific heat at low T in the
�R+−

k state for t2/t1 = 0.1 and the �I−+
k state for t2/t1 = 0.1.

The pairing potentials are V � = 1.8t1 and V � = 0.75t1, and μ = 0.
The extended FS in the triplet dPDW state causes the linear behavior
of the specific heat, whereas the polynomial dependence in the �I−+

k
state is a direct consequence of the presence of Fermi points instead
of FS. We also show the specific heat for the �I−−

k state in (b),
obtained for V � = 0.75t1 and μ = 0.
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FIG. 7. DOS for t2/t1 = 0 (left) and t2/t1 = 0.1 (right) at low
T in �I−−

k (blue), �R+−
k (red), and the coexistence phase � + �

(black). The pairing potentials are V � = V � = 0.75t1, and μ = 0.

for finite μ values. Therefore, linear low-T specific heat in the
SC state identifies the triplet dPDW state.

The difference in the FS is reflected in the behavior of
the electronic density of states N (ω) accessible by tunneling.
In our spinor formalism, N (ω) = − 1

π
Im

∑
k Tr{G(k, iωn →

ω + in)}. Upon performing the analytical continuation, it can
be shown to take the form

N (ω) =
∑

k

{δ[ω + E±(k)] + δ[ω − E±(k)]}. (10)

As an example, we present in Fig. 7 the DOS in �R+−
k , the

�I−−
k state, and the coexistence phase � + � for t2/t1 = 0

(left) and t2/t1 = 0.1 (right). For all three states the pair-
ing potentials are V � = V � = 0.75t1 for both t2/t1 = 0 and
t2/t1 = 0.1 and μ = 0.

The vanishing DOS at the Fermi level identifies the co-
existence phase � + � in the case of perfect nesting t2/t1 =
0, whereas for particle-hole asymmetry t2/t1 �= 0 the triplet
dPDW is the sole state exhibiting a finite DOS at the Fermi
level. We stress that the DOS exhibits these characteristic
features for both μ = 0 and μ �= 0. Therefore, tunneling
measurements for particle-hole asymmetry may be used to
identify the triplet dPDW phase. We note that finite DOS at the
Fermi level was also reported in spin-singlet PDW states [18].

IV. Competition of �R+− with p + ip

Next, we address the competition of the triplet dPDW state
with the p + ip state, which is a widely known stable state in
tetragonal systems [28]. In our spinor formalism the p + ip
state is written as �R−−

k + �I−−
k , where �R−−

k ∼ sin kx and
�I−−

k ∼ sin ky. The competition of �R+−
k with p + ip obeys

the following system of coupled gap equations:

�x
k =

∑
k′

V x
k,k′�

x
k′

∑
±

Bk′ ± �2
k′

4E±(k′)Bk′
tanh

(E±(k′)
2T

)
,

�
y
k =

∑
k′

V y
k,k′�

y
k′

∑
±

1

4E±(k′)
tanh

(E±(k′)
2T

)
,

�k =
∑

k′
V �

k,k′�k′
∑
±

Bk′ ± γ 2
k′ ±

(
�x

k′
)2

4E±(k′)Bk′
tanh

(
E±(k′)

2T

)
,

(11)
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FIG. 8. Maps of the dependence of phase sequences on the ef-
fective interactions V x = V y and V � for low temperature in the case
of �R+−

k with p + ip. The colors indicate the different cascades of
phases obtained when t2/t1 grows starting from zero (μ = 0 every-
where). All phases coexist with FM. The phase indicated as FM is
only ferromagnetic; no SC gap is finite.

where Bk ≡
√

γ 2
k [(δk − μ)2 + �2

k] + (�x
k )2�2

k and the dis-
persion relations are given by

E±(k) =
√

γ 2
k + (δk − μ)2 + (

�x
k

)2 + (
�

y
k

)2 + �2
k ± 2Bk.

(12)

The cascades of phases at low temperature as t2/t1 grows
from zero for various values of the pairing potentials are
shown in Fig. 8. Again, the stability of the solutions of the
self-consistent equations has been checked by free-energy
calculations.

It is remarkable that the triplet dPDW state breaks the
stability of the p + ip phase over the largest part of the pair-
ing potential parameter space. Specifically, the formation of
the p + ip SC state is disfavored for small deviations from
nesting, and a new phase where the triplet dPDW �R+− state
coexists with the y component of p + ip, i.e., with �I−−, is
favored at low temperature over a wide range of values of the
pairing potentials. This coexistence phase has the following
characteristic features. First, the � gap is always significantly
larger, up to one order of magnitude, than the �y gap for
particle-hole symmetry. Specifically, for small values of V y

the �y gap is practically zero. As the value of V y grows, the
�y gap grows, but it continues to be much smaller than the
� gap even for V y = V �. Second, the �y gap remains almost
constant as the deviations from nesting grow. The transition
from the � + �y phase to the p + ip state is first order with
respect to t2/t1.

An example of the cascade � + �y → �x + �y → FM
for V x,y = t1, V � = 0.75t1, and μ = 0 is shown in Fig. 9(a).
The � gap is finite up to t2/t1 ≈ 0.11. The critical temperature
for the triplet dPDW state satisfies Tc/t1 = 0.045. In Fig. 9(b)
we show the dependence of the gaps on the chemical potential
for t2/t1 = 0.1. We note that the � gap is maximum for finite
μ, while the �y gap practically remains constant as μ grows.
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FIG. 9. (a) Dependence of �, �x , and �y gaps on t2/t1 at low
T for μ = 0. (b) Dependence of gaps on the chemical potential
for t2/t1 = 0.1. The � gap is maximum for μ = 0.1. (c) DOS and
(d) Fermi surface for t2/t1 = 0.1. The pairing potentials are V x =
V y = t1, V � = 0.75t1.

Again, the � gap is much larger than the �x,y gaps. Finally,
we note that the coexistence phase � + �y extends to higher
t2/t1 values for μ �= 0 at low T , e.g., up to t2/t1 ≈ 0.21 for
μ = 0.1.

The � + �y phase is characterized by a nodal FS for both
t2 = 0 and t2 �= 0, regardless of the value of μ. Thus, the DOS
is expected to fall to zero at the Fermi level. An example of
this behavior is shown in Fig. 9, where the DOS is presented
for t2/t1 = 0.1. We also note that the specific heat at low tem-
peratures in the � + �y phase has a polynomial dependence.
Therefore, specific heat or tunneling spectroscopy measure-
ments at low temperature identify the pure triplet dPDW state.
Finally, we note that if we consider the competition of the
�I+−

k state with the p + ip state, the sole change in Fig. 8 is
that the coexistence phase is � + �x; that is, the triplet dPDW
state coexists with the x component of the p + ip. This coex-
istence phase has the same low-temperature characteristics as
the � + �x phase.

V. SUMMARY AND CONCLUSIONS

In summary, we explored systematically the interplay of all
possible triplet SC states in a spinless system within a micro-
scopic mean-field model. We used a tight-binding dispersion
that exhibits nesting properties in order to accommodate the
presence of commensurate pair density wave SC states. Sym-
metry allows the existence of two such PDW states. One
of them, the triplet PDW state �

R(I )−+
k , which has p-wave

symmetry, can never survive the homogeneous triplet SC
states. However, the other triplet PDW �

R(I )+−
k , with d-wave

symmetry, may either appear alone or coexist with the homo-
geneous SC OPs for small, but finite, deviations from nesting.
Specific heat or tunneling measurements at low-T , may be
used to identify this state. Our findings are applicable to
strongly ferromagnetic systems that develop superconductiv-
ity when similar nesting or band structure properties hold.
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