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Macroscopic behavior of the distorted A and B phases and the polar phase
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We describe the macroscopic behavior of superfluid 3He in the polar and the distorted A and B phases in
an anisotropic aerogel. It turns out that the distorted A phase shares many features with superfluid 3He -A. Its
order parameter contains the polar phase as well as the A phase as a smooth limiting case. The former is in
agreement with the fact that the phase transition polar to distorted A is observed to be of second order. Due to the
different structure of the order parameter, the unit vector l̂ , which is characteristic of the superfluid 3He -A and
the distorted A phase, is not present in the polar phase. As new macroscopic variables compared to superfluid 3He
we have for the superfluid distorted A phase in an aerogel the strain field associated with the aerogel network. In
addition, we have in superfluid 3He relative rotations between the anisotropic gel network and the l̂ vector as a
macroscopic variable. As a result of these additional macroscopic variables we find new static and dynamic cross-
coupling terms, which come as reversible (zero entropy production) as well as as irreversible contributions. The
polar phase in an anisotropic aerogel is anisotropic in its elastic properties. We have as additional macroscopic
variables relative rotations similar to those of a nematic liquid crystalline elastomer, since the preferred direction
in the polar phase is even under time reversal and not odd as for the distorted A phase. These additional features
lead to static and dissipative cross-coupling terms, which cannot exist for a polar phase in an isotropic aerogel.
For the distorted B phase we find for the orbital part a macroscopic dynamic behavior which shares some features
with that of the polar phase. In contrast to the polar phase, however, the distorted B phase does not show relative
rotations, since there is only one preferred direction. The preferred direction in the distorted B phase leads to a
preferred direction in spin space as well. As a consequence the spin waves become anisotropic and longitudinal
and transverse spin waves become coupled, even in the absence of a magnetic field. We also discuss briefly the
coupling to the spin degrees of freedom in the polar and the distorted A phase.

DOI: 10.1103/PhysRevB.102.094510

I. INTRODUCTION

A few years ago the long sought polar phase of superfluid
3He has been found using NMR [1] in strongly anisotropic
aerogels called nafen [2–4]. In the following this phase has
also been identified using torsional oscillator measurements
[5] and its properties have been further elucidated experimen-
tally in detail using CW and pulsed NMR techniques [6–8].
Quite recently the polar phase has also been identified in a
second class of strongly anisotropic aerogels called mullite
[9].

Prior to the discovery of the polar phase, polar distorted
A and B phases of superfluid 3He had been identified in so-
called Obninsk aerogels [10–12]. It was found that nafen-90
[1,6] can show up to three superfluid phases as a function of
temperature and pressure: polar distorted B, polar distorted A,
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and the genuine polar phase. In the following we will use
throughout the notation distorted B and distorted A and leave
the notation polar to the original notation of the polar phase
[13–15].

In parallel to the various experimental developments the
modeling of the various superfluid phases in an anisotropic
aerogel has been advanced [16–18]. In addition, it had been
shown previously that the polar phase could be stable in
anisotropic aerogels [19] and channels [20]. Quite recently an
experimental/theoretical cooperation has elucidated in detail
[7,21] the important role played by half-quantum vortices and
walls in the polar and the distorted phases of superfluid 3He.

The question of disorder-induced states in superfluid 3He
such as the LIM state is an important one for aerogels [22]. In
an aerogel that is globally isotropic it has been shown, using
NMR, that long range orientational order can be destroyed
giving rise to an orientational glass in the superfluid A phase
[23,24]. In [24] it has also been pointed out that 3He -A gener-
ated by warming from superfluid 3He -B can have long range
orientational order.

We note that the field of superfluid 3He in aerogels also has
a prehistory using isotropic aerogels. Experiments on super-
fluid 3He in isotropic aerogels were performed using torsional
oscillator techniques [25,26] and pulsed nuclear magnetic res-
onance (NMR) [27–30]. The torsional oscillator experiments
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showed that the transition temperature and superfluid fraction
are strongly suppressed from the bulk value [25]. In spite
of the randomness of the strand spacing inside the aerogel,
a sharp phase transition can be observed which leads to the
assumption that a homogeneous phase exists. Early theoreti-
cal investigations of superfluid 3He in an aerogel have been
described by Volovik [31] and by Yip, Thuneberg, and Sauls
[32]. The NMR results provide evidence that the existing
phase in the aerogel is a phase with equal spin pairing (ESP),
but from the tipping angle dependency it had been deduced
[27–30] that it might not be the A phase. Since the polar
phase [13–15] emerged as a natural alternative option, this
stimulated work on the hydrodynamics of the polar phase
in an isotropic aerogel [33,34]. Among other features it was
found that the hydrodynamics of the spin part is isomorphic
to that of 3He -A [35] and of 3He -A1 [36–38]. Assuming an
oriented spatially homogeneous phase, the orbital part of the
hydrodynamics turned out to be that of a superfluid uniaxial
nematic liquid crystal.

In this paper we discuss the influence of an anisotropic
aerogel on the hydrodynamics of the polar phase and the
distorted A and B phases. We model the aerogel as an elastic
continuum that also provides a preferred direction. The static
and dynamic couplings of those quantities to the standard
variables of the three phases under consideration are the main
topic of the paper. It is organized as follows. In Sec. II A
we present the relevant variables due to conservation laws, in
Sec. II B due to broken symmetries, in particular Sec. II B 1
those resulting from the structures of the polar phase, in
Sec. II B 2 the distorted A phase, and in Sec. II B 3 the dis-
torted B phase, and finally in Sec. II C the slowly relaxing
rotations of the appropriate structures relative to the elastic
network. The macroscopic orbital dynamics of the polar phase
in the presence of an elastic aerogel and of the distorted A
and B phase are discussed in detail in Secs. III, IV, and V A,
respectively. For the latter case the spin dynamics is dealt with
in Sec. V B. Comments on the effects of the presence of the
aerogel on the spin dynamics of the polar and the distorted
A phase are presented at the end of the appropriate Secs. III
and IV. In Sec. VI we give a summary. In the Appendix we
analyze the influence of the presence of a transient network
on the orbital dynamics of the polar phase and the distorted A
and B phases.

In this paper we aim at a most general description possi-
ble, e.g., we allow for relative rotations among the preferred
direction of the aerogel and the orbital direction in the polar
phase to be a slowly relaxing macroscopic variable, but we
discuss at the end of Sec. III D how our description simplifies
when those relative rotations are irrelevant on the macroscopic
scale. Similarly, we assume the distorted A phase to be biaxial
in orbital space, but discuss in Sec. IV E how a uniaxial situa-
tion, e.g., in disorder-induced LIM states [22], is contained in
our description.

II. THE RELEVANT MACROSCOPIC VARIABLES
FOR THE DISTORTED A, B, AND THE POLAR PHASE

IN THE PRESENCE OF AN ELASTIC AEROGEL

In this paper we will use linearized hydrodynamics [39]
to describe the macroscopic behavior of superfluid 3He in

the polar phase as well as in the distorted A and B phases
in the presence of an elastic network. We will derive the
balance equations describing the behavior of the system in
the low frequency, long wavelength limit. Low frequencies
in this context means small compared to all collisional fre-
quencies, while wavelengths are considered to be long if they
are large compared to all microscopic lengths. Naturally these
conditions for the purely hydrodynamic regime impose rather
severe constraints on the frequencies and wave vectors for
which this approach is strictly valid. Nevertheless, the hydro-
dynamic description and its generalization to include variables
that relax on a long, but finite timescale have turned out to be
rather useful [40].

A. Hydrodynamic variables due to conservation laws

The conserved quantities in superfluid 3He are ρ (mass
density), ε (energy density), and gi (momentum density) just
as in any normal fluid. The Latin indices refer to vector
components in a suitable Cartesian frame (orbital space). All
variables are related to the entropy density σ by the Gibbs
relation

dεc = T dσ + μdρ + vn
i dgi, (1)

thereby defining the thermodynamic quantities, temperature
T , chemical potential μ, and normal velocity vn

i .

B. Hydrodynamic variables due to internal structures
that break symmetries

We will derive the hydrodynamics of various superfluid
3He phases in the presence of an anisotropic aerogel. We
model the macroscopic influence of such an aerogel by an
elastic strain variable εi j . The aerogel breaks translational
symmetry, which gives rise to a translation vector as sym-
metry variable. To exclude homogeneous translations and
homogeneous rotations, the strain is, in linear order, given
by εi j = (1/2)(∇iu j + ∇ jui ). Elastic strains enter the energy
density by

dεe = �i jdεi j, (2)

thereby defining the elastic stresses �i j .
In this connection we note that in Ref. [41] the coupling

between the superfluid order parameter and the strain field
has been studied close to phase transition temperatures in the
framework of linearized Ginzburg-Landau equations.

The anisotropy of the elastic network is described by a unit
vector ζi. Its role as a variable will be discussed in Sec. II C.

Since the 3He atoms have spin 1
2 each, there is the mag-

netization density sν . The frame to describe the orientation of
spins is a priori not the same as that of, e.g., the flow variables.
Therefore it is customary to use in “spin space” a different
Cartesian frame indicated by Greek indices. Neglecting the
tiny magnetic dipole-dipole interaction (spin-orbit coupling),
the orientations of spin and orbital space are independent and
the hydrodynamics in orbital and spin space can be developed
separately.

In the absence of a magnetic field sν is a conserved quan-
tity, but acquires a source term in its dynamic equation due to
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the field. The energy density

dεs = χνμd∇μsν + h′
νdsν ≡ hνdsν, (3)

where h′
ν is zero in the absence of a magnetic field. In linear

order one can simply condense the notation by using the
conjugate hν ≡ h′

ν − ∇μχνμ.
In superfluid 3He the neutral He atoms combine to form

Cooper pairs similar to those found in superconductors which
can be viewed as composite bosons. While the electrons in
superconductors are in a spin-singlet s-wave state, the He
atoms are in a spin-triplet p-wave state. This fact clearly
distinguishes the two situations: The pair of electrons has no
internal structure, but the pair of He atoms is intrinsically
anisotropic. Because of the spin-triplet and p-wave pairing,
the order parameter Tν j has to be a complex 3×3 matrix whose
expectation value can in general be written as [42,43]

〈Tν j (c, r)〉 = F (|c|)Aν j (r)eiϕ(r),

Aν jA
∗
ν j = 1. (4)

where ν is an index in spin space, j an index in orbital space,
r is the position vector of the center of gravity, and c is the
relative vector between the two He atoms.

The normalization amplitude F describes the degree of
ordering and is considered a microscopic variable, which does
not appear in the macroscopic dynamics of the system.

The overall phase factor is characteristic for superfluids
and superconductors, because it reflects the fact that gauge
invariance is spontaneously broken and the phase variation δϕ

has to be used in the hydrodynamic description. Therefore we
will use the superfluid velocity

vi
s = h̄

2m
∇iϕ (5)

according to the two-fluid model developed by Landau [39]
and Khalatnikov [44] to describe the macroscopic behavior of
the system. The conjugate quantity to the superfluid velocity
is ∼λs

i with

dελ = λs
i dvs

i = (h̄/2m)λs
i d∇iϕ. (6)

The macroscopic properties of the different 3He phases are
represented by the matrix Aν j . The only restriction imposed on
the complex 3×3 matrix is that of normalization which means
that many different structures are theoretically possible and
describe different phases of superfluid 3He [14].

A Landau expansion up to terms of fourth order in Aν j can
be used to determine the relative stability of the respective
phases, which shows that in weak-coupling theory only the
so-called B phase can be stable. If strong-coupling effects are
taken into account, it can be shown that the A phase may
also represent the equilibrium state under certain conditions,
depending on the values of the parameters in the Landau
expansion. Apart from A and B phase, which can be found
in zero magnetic field, in high magnetic fields another phase
is found, which is called A1 phase. All three phases have been
observed experimentally in the bulk [40].

For slightly different values of the parameters in the Lan-
dau expansion, two phases similar to the A phase represent
the state with the lowest free energy: the polar phase and the
distorted A phase. In addition, one has the distorted B phase.

1. The structure of the polar phase

In the polar phase the matrix Aν j defined in Eq. (4) takes
the form

Aν j (r) = dν (r)mj (r), (7)

where the unit vectors m̂ and dν are the preferred direction in
orbital and spin space, respectively.

For the polar phase the energy gap is zero in the plane
normal to mj and a line node exists [40,45].

As they follow from Eq. (7) via the contractions AνiAν j ∼
mimj and AνiAμi ∼ dνdμ, a form similar to the nematic order
parameter, it is obvious that both, mi and dν are not really
vectors but directors, meaning a substitution of mi with −mi,
and of dν with −dν must not change the hydrodynamics. They
can be viewed as directions that cannot distinguish head from
tail. Breaking spontaneously rotational symmetry in spin and
orbital space, rotations of them give rise to two hydrodynamic
variables in orbital and spin space each that enter the energy
density

dεp = 
m
i jd∇ jmi + 
d

νμd∇μdν, (8)

defining the conjugate quantities 
m
i j and 
d

νμ.
Both preferred directions are even under space inversion,

as well as under time reversal. This is in contrast to the A
phase, where the preferred direction in orbital space is odd
under time reversal. Since mi and dν are unit vectors, there is
mi∇ jmi = 0 = dν∇μdν .

The small dipole interaction leads to a coupling of the
preferred directions in orbital and spin space dν ⊥ mi. In the
following we will disregard this coupling and comment on its
effect briefly at the end of Sec. III.

2. The structure of the distorted A phase

In the distorted A phase (sometimes also called DA and
pdA phase [1,6,21]) the matrix Aν j takes the form [1,6]

Aν j (r) = dν (r)[amj (r) + ibn j (r)], (9)

where the unit vectors mi and n j are mutually orthogonal unit
vectors in orbital space and a2 + b2 = 1. It contains two im-
portant special cases: for a = 1 (and therefore b = 0) the polar
phase results, while for a = 1/

√
2 (and therefore b = a) one

obtains the A phase. Thus, the polar phase and the distorted
A phase are connected by a second order phase transition as
has been detected experimentally [1,6]. For 1/2 < a2 < 1 one
gets the distorted A phase.

We note that in the distorted A phase the energy gap is
zero along li and thus, concerning the energy gap, a smooth
(continuous) special case of the A phase [40,45]. Both have a
point node in the gap.

From Eq. (9) one can construct a preferred direction in
orbital space εi jkAν jA∗

νk ∼ li, which when normalized

li = (m × n)i (10)

is the same as in the A phase. In particular, it is an axial
vector, even under spatial inversion, but is odd under time
reversal. The latter property becomes manifest when taking
the complex conjugate of εi jkAν jA∗

νk .
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The preferred direction in spin space dν follows from
AνiA∗

μi ∼ dνdμ and is a directorlike quantity, similar to the
case of the polar phase.

Breaking spontaneously rotational symmetry in spin and
orbital space, rotations of dν and li give rise to two hydrody-
namic variables in orbital and spin space each that enter the
energy density

dεA = 
l
i jd∇ j li + 
d

νμd∇μdν, (11)

defining the conjugate quantities 
l
i j and 
d

νμ. The small
dipole interaction leads to a coupling of the preferred direc-
tions in orbital and spin space dν ‖ li. In the following we will
disregard this coupling and comment on its effect at the end of
Sec. IV. In addition, we will also comment on the changes of
the macroscopic dynamics due to the presence of the uniaxial
aerogel.

3. The structure of the distorted B phase

The distorted B phase is fully gapped as the isotropic B
phase, but the gap has now uniaxial symmetry, which coin-
cides with the preferred direction ζi of the uniaxial aerogel.

In the distorted B phase the matrix Aν j takes the form
[12,17,21]

Aν j = dνmj + q1e1
νn j + q2e2

νk j, (12)

with mod q1, |q2| ∈ (0, 1) and |q1| = |q2| ≡ q describing
the relative gap in the plane perpendicular to the nafen strands,
which define the preferred direction ζ 0

i . For q = 0 one obtains
the order parameter of the polar phase, while q = 1 recovers
the order parameter of the isotropic B phase.

The vectors m, n, and k form an orthogonal triad of unit
vectors in orbital space, and ê1, ê2, and d̂ in spin space. It is
not possible to identify any preferred direction from the two
triads, neither in spin nor in orbital space (as in the B phase).
Neglecting the very small dipole-dipole interaction, the rela-
tive orientation of the two triads in equilibrium, described by
a rotation matrix between the two frames n0

ν j , is not fixed en-
ergetically. Therefore, deviations δnν j are the hydrodynamic
variables (as in the B phase) and enter the energy density as

dεB = �n
ν jkd∇ jnνk . (13)

It should be noted that the form of Aνi in Eq. (12) is not
the most general one, since mi has been chosen to be along
ζi. The most general one contains an additional rotation of ζi

(cf. Eq. (8) in Ref. [12]). However, this is irrelevant for the
hydrodynamics, since ∇ jnνk does not couple to any orbital
variable and its absolute orientation in orbit space is irrelevant.
Likewise, a rotation of ζi (relative to the orbital triad) is not
a hydrodynamic variable, but makes the orbit space hydro-
dynamics uniaxial. The effects of the spin-orbit coupling are
dealt with in Sec. V B.

Due to the special properties of a rotation matrix, e.g.,
nνinμi = δνμ and nνinν j = δi j , the δnν j contains three inde-
pendent variables according to the three spontaneously broken
rotational symmetries. They can also be parametrized by a
unit vector describing the rotation direction plus the rotation
angle.

At the end of Sec. V we will summarize the differences
between the macroscopic dynamics of the usual B phase and
the distorted B phase in an anisotropic aerogel.

C. Slowly relaxing rotations relative to the elastic network

As additional input from experimental results [1,6] it is
known that in the polar phase the preferred direction mi is on
average parallel to the strand direction of the aerogel, which
is the preferred direction ζi. This condition is not due to a bro-
ken symmetry, but results from molecular interaction forces.
Therefore, deviations from m0

i ‖ ζ 0
i , e.g., δmi − δζi, are relax-

ing variables, which however interact with the hydrodynamic
variables on timescales shorter than the relaxation times. We
will take into account those slowly relaxing relative rotations
as has been done, e.g., for nematic liquid crystal elastomers
by de Gennes [46].

This variable can be written in the polar phase as

�i = δ(m × ζ)i = εi jkm0
j (δζk − δmk ) (14)

because of m0
i ‖ ζ 0

i . Another possible definition is

�i = δmi − 1
2ζ 0

j (∇iu j − ∇ jui ) (15)

involving rotations expressed by antisymmetric gradients of
the translation vector.

In the distorted A phase the strand direction ζi is parallel to
mi as in the polar phase. However, in the distorted A phase the
preferred direction in orbital space is li, which is perpendicular
to mi. Thus, in equilibrium l0

i ζ 0
i = 0 and the distorted A phase

is biaxial in orbital space. A deviation from the orthogonality

� = ζ 0
i δli + l0

i δζi (16)

is the variable describing relative rotations between li and ζi.
This is a scalar variable that changes sign under time reversal.

The variables �i and � represent the dynamics of local
fluctuations of the preferred direction of the strands and are
independent of the elastic deformations that only contain sym-
metric gradients of ui.

The relative rotations lead in the energy density to

dεr = Wid�i + W d� (17)

defining the conjugates Wi and W for the polar and the dis-
torted A phase, respectively.

In the distorted B phase, ζi is the preferred direction making
this phase uniaxial. Since ζi is the only preferred direction,
there are no relative rotations possible.

III. THE ORBITAL DYNAMICS OF THE POLAR PHASE
IN THE PRESENCE OF AN ANISOTROPIC

ELASTIC AEROGEL

In the preceding section we have characterized the hy-
drodynamic variables characteristic of the polar phase in an
anisotropic aerogel, the distorted A phase in an anisotropic
aerogel and the distorted B phase in an anisotropic aerogel.
Here and the following Secs. IV and V we will derive macro-
scopic equations for these three superfluid phases making
use of linear irreversible thermodynamics including the local
formulation of the first and second law of thermodynamics as
well as symmetry properties. The latter includes the behavior
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under parity, time reversal, Galilei transformations, as well as
under rotations and translations.

To derive the full set of dynamic equation is then a two step
procedure [47,48]. First one writes down the Gibbs relation,
the local formulation of the first law of thermodynamics, for
the hydrodynamic variables. This way one defines the ther-
modynamic conjugate quantities or thermodynamic forces.
The thermostatic behavior is then obtained by expanding the
generalized energy into the hydrodynamic variables taking
into account all symmetry properties. By then taking the (vari-
ational) derivative of the generalized energy with respect to
the variables one obtains the thermodynamic forces.

In the second step one writes down first the dynamic equa-
tions for the three types of variables in macroscopic dynamics:
conservation laws for the conserved variables and balance
equations for the variables associated with spontaneously bro-
ken continuous symmetries and with macroscopic variables,
which relax on a long, but finite timescale. These dynamic
equations contain currents and quasicurrents associated with
the dynamics of the variables. To close the system of equa-
tions in the framework of linear irreversible thermodynamics
one then expresses the current and quasicurrents in relations
linear in the thermodynamic forces. In addition, one splits all
currents and quasicurrents into reversible (no entropy gen-
eration) and into irreversible contributions [positive entropy
(or heat) generation]. The irreversible contributions in the
currents and quasicurrents can be derived from a dissipation
function, which is an expansion quadratic in the thermody-
namic forces, by taking a (variational) derivative with respect
to the thermodynamic forces. When splitting the currents and
quasicurrents into reversible and irreversible contributions the
behavior under time reversal plays a crucial role.

In this section on the derivation of the macroscopic dy-
namics of the polar phase in an anisotropic aerogel we will
comment in some detail on the points outlined above. In the
next two sections, Secs. IV and V, we will carry out the same
program for the distorted A phase and for the distorted B
phase. It seems worthwhile to mention that this program has
been carried out before for the three superfluid phases arising
in 3He in the bulk: the superfluid A phase [35,43,49–51] and
the superfluid B phase [43,52] as well as for the superfluid A1

phase [36–38], which arises only in a magnetic field.
Throughout the bulk of this section we focus on the orbital

dynamics of the polar phase in the presence of an anisotropic
elastic aerogel and comment on the influence of the spin
degrees of freedom and their coupling to the orbital degrees
of freedom in Sec. III E.

A. Statics and thermodynamics

To obtain the static properties of our system we formu-
late the local first law of thermodynamics relating changes
in the entropy density σ to changes in the hydrodynamic
and macroscopic variables discussed above. According to the
discussions in Sec. II, Eqs. (1), (2), (6), (8), and (17), we get
the Gibbs relation for the variables acting in orbital space

dε = T dσ + μdρ + vn
i dgi + λs

i dvs
i

+
m
i jd (∇ jmi ) + �i jdεi j + Wid�i, (18)

where the thermodynamic conjugates are defined as partial
derivatives of the energy density with respect to the appro-
priate variables [48]. Let us list the symmetry properties used:
Scalar quantities are ε, σ , and ρ, while gi and vs

i are polar
vectors, �i is an axial vector, and εi j and ∇ jmi are tensors of
second rank. Even under time reversal are ε, σ , �i, εi j , and
∇ jmi, while gi and vs

i are odd under time reversal. Odd under
parity are vs

i , gi, and ∇ jmi, while ε, σ , ρ, εi j , and �i are even
under parity. The behavior of the thermodynamic conjugates
defined via Eq. (18) under time reversal and parity can then be
read off immediately.

In writing down Eq. (18) we have discarded the part of
Eq. (8) associated with the spin degrees of freedom, since the
focus is on the orbital degrees of freedom. Compare, however,
also the discussion in Sec. III E.

To determine the thermodynamic conjugate variables we
need an expression for the local energy density. This energy
density must be invariant under time reversal as well as under
parity and it must be invariant under rigid rotations, rigid
translations and covariant under Galilei transformations. In
addition to that this energy density must have a minimum,
because there exists an equilibrium state for the gel. Therefore
the expression for the energy density needs to be convex.
Taking into account these symmetry arguments we write down
an expansion for the generalized energy density up to second
order in the variables that describe deviations out of that
equilibrium:

ε = 1

2
ρ0

(
ρs

ρn

)
i j

vs
i v

s
j + 1

2

(
1

ρn

)
i j

gig j

−
(

ρs

ρn

)
i j

vs
i g j + 1

2
μi jklεi jεkl

+ 1

2
Ki jkl (∇ jmi )(∇lmk ) + 1

2
D1�i�i

+ D2
(
m0

jδ
⊥
ik + m0

kδ
⊥
i j

)
�iε jk + cρσ (δρ)(δσ )

+ σσ
i jk (∇ jmi )(∇kσ ) + σ

ρ

i jk (∇ jmi )(∇kρ)

+ εi j
(
χσ

i jδσ + χ
ρ
i jδρ

) + cρρ (δρ)2 + cσσ (δσ )2, (19)

with δ⊥
i j = δi j − m0

i m0
j . A δ denotes deviations from the (con-

stant) equilibrium value of the appropriate variable, e.g., δρ ≡
ρ − ρ0.

Apart from the energy density of a normal fluid, Eq. (19)
contains anisotropic superfluid kinetic energies, the gradient
energy of the m̂ vector as well as the elastic energy and the
relative rotations between mi and ζi, the anisotropy axis of the
aerogel.

Because we discuss a uniaxial system, the tensors have
more independent constants than in the isotropic case. The
two-fluid density tensors are

(
ρs

ρn

)
i j

= ρs
⊥

ρn
⊥

δ⊥
i j + ρs

‖
ρn

‖
m0

i m0
j , (20)

(
1

ρn

)
i j

= 1

ρn
⊥

δ⊥
i j + 1

ρn
‖

m0
i m0

j . (21)
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The tensor of the elastic energy for example now has five
independent constants instead of only two and takes the form

μi jkl = μ1δ
⊥
i j δ

⊥
kl + μ2

(
δ⊥

ikδ
⊥
jl − 1

2δ⊥
i j δ

⊥
kl + δ⊥

il δ
⊥
jk − 1

2δ⊥
i j δ

⊥
kl

)
+μ3 m0

i m0
j m

0
km0

l + μ4
(
m0

i m0
jδ

⊥
kl + mkmlδ

⊥
i j

)
+μ5

(
m0

i m0
kδ

⊥
jl + m0

i m0
l δ

⊥
jk + m0

j m
0
kδ

⊥
il + m0

j m
0
l δ

⊥
ik

)
,

(22)

while the tensor Ki jkl is of the same symmetry as the tensor
for the Frank elastic coefficients in nematic liquid crystals

Ki jkl = K1δ
⊥
i j δ

⊥
kl + K2m0

pεpi jm
0
qεqkl + K3m0

j m
0
l δ

⊥
ik (23)

and has, thus, three independent constants describing splay,
twist, and bend deformations of the m vector.

There are two contributions to the energy density concern-
ing relative rotations. One is proportional to D1 and the other
proportional to D2. One can interpret these coefficients as a
measure for the coupling strength of the aerogel network to
the m vector, although the microscopic mechanism of this
interaction is not precisely understood so far.

Finally, we are left with the couplings between the scalars
ρ and σ and the strain field as well as with the coupling
between the gradient of the scalars and the gradient of the m
vector. The tensors take the following form, respectively:

χ
ξ
i j = χ

ξ

|| m
0
i m0

j + χ
ξ

⊥δ⊥
i j , (24)

σ
ξ

i jk = σ ξ
(
δ⊥

ik m0
j + δ⊥

i j m
0
k

)
, (25)

where ξ can be either ρ or σ .
We also give the expressions for the conjugated variables in

terms of the hydrodynamic and macroscopic variables. They
are defined as the partial derivative of the energy density
with respect to the appropriate variable, while all the other
variables are kept constant, denoted by dots at the brackets in
the following. We obtain (omitting second order gradients)

gi = ρn
i jv

n
j + ρs

i jv
s
j, (26)

λs
i =

(
∂ε

∂vs
i

)
...

= gi − ρ0v
n
i , (27)


m
i j =

(
∂ε

∂ (∇ jmi )

)
...

= Ki jkl∇lmk + σ
ρ

i jk∇kρ+ σσ
i jk∇kσ, (28)

�i j =
(

∂ε

∂εi j

)
...

= +μi jklεkl + χσ
i jδσ + χ

ρ
i jδρ

+ D2
(
m0

jδ
⊥
ik + m0

i δ
⊥
k j

)
�k, (29)

Wi =
(

∂ε

∂�i

)
...

= D1�i + D2(mjδ
⊥
ik + mkδ

⊥
i j )ε jk, (30)

δT =
(

∂ε

∂δσ

)
...

= χσ
i jεi j + 2cσσ δσ + cρσ δρ − σσ

i jk∇ j∇kmi,

(31)

δμ =
(

∂ε

∂δρ

)
...

= χ
ρ
i jεi j + 2cρρδρ + cρσ δσ − σ

ρ

i jk∇ j∇kmi,

(32)

where Eq. (26) follows from vn
i ≡ ∂ε/∂gi. We also note that

Galilean invariance requires ρ0δi j = ρn
i j + ρs

i j , where ρ0 is the

equilibrium value of the density ρ. This relation has been used
to simplify Eq. (27).

B. Dynamic equations

To determine the dynamics of the variables we take into ac-
count that the first class of our set of variables, the conserved
quantities, obey a local conservation law, while the dynamics
of the other two classes of variables can be described by a sim-
ple balance equation, where the counterterm to the temporal
change of the quantity is called a quasicurrent. For the set of
dynamical equations we get

ρ̇ + ∇igi = 0, (33)

σ̇ + ∇i jσi = 2R

T
, (34)

ġi + ∇ j (δi j p + σi j ) = 0, (35)

ṁi + εi jk m0
j ωk + X m

i = 0, (36)

(h̄/2m)ϕ̇ + Iϕ = 0, (37)

ε̇i j + Yi j = 0, (38)

�̇i + Zi = 0, (39)

with ωi = (1/2)εi jk∇ jv
n
k the vorticity. The entropy production

R/T , with R the dissipation function, acts as a source term in
Eq. (34). The pressure p in Eq. (35) is given by −∂E/∂V , with
E the total energy, cf. Ref. [48], and reads for our system

p = −ε + μρ + T σ + vn
i gi. (40)

The time derivatives in Eqs. (33)–(39) have the following
behavior under time reversal: ρ̇, σ̇ , ṁi, ε̇i j , and �̇i are odd,
while ġi and ϕ̇ are even under time reversal.

Now we can decompose all currents and quasicurrents
listed in Eqs. (33)–(39) into reversible and irreversible con-
tributions:

jσi = jσR
i + jσD

i , (41)

σi j = σ R
i j + σ D

i j , (42)

X m
i = X mR

i + X mD
i , (43)

Iϕ = IR
ϕ + ID

ϕ , (44)

Yi j = Y R
i j + Y D

i j , (45)

Zi = ZR
i + ZD

i . (46)

In order to describe reversible dynamics, the reversible
part of a current (superscript R) must have the same behavior
under time reversal as the time derivative of the appropriate
variable in Eqs. (33)–(39). In contrast, the dissipative parts
of the currents (superscript D) have the opposite sign under
time reversal as the time derivatives of the variables. Ac-
cording to the second law of thermodynamics, the entropy
production has to vanish identically for reversible processes,
R ≡ 0, and the entropy obeys a conservation law, Eq. (34). For
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irreversible processes R > 0 is required. With the help of the
full set of dynamic equations the Gibbs relation Eq. (18) leads
to an expression for the entropy production R/T , bilinear in
the currents and thermodynamic conjugates. This can be used
to impose the restrictions on the reversible and irreversible
parts of the currents, separately, in particular on the form of
cross-coupling terms.

Since we restrict ourselves to a linear description, we do
not have to worry about which velocity should be chosen for
the transport derivatives [53].

C. Reversible dynamics

Implementing the condition R = 0 and the required behav-
ior under time reversal and parity, we obtain the following
expressions for the reversible contributions to the currents:

jσR
i = 0, (47)

σ R
i j = −�i j − λk ji∇l


m
kl + ξR

k jiWk, (48)

Y R
i j = −Ai j, (49)

X mR
i = −λi jkA jk, (50)

IR
ϕ = μ, (51)

ZR
i = −ξR

i jkA jk, (52)

where Ai j = (1/2)(∇iv
n
j + ∇ jv

n
i ).

Inspecting Eqs. (48)–(52) we see that σ R
i j and IR

ϕ are even
under time reversal, while Y R

i j , X mR
i , and ZR

i are odd under time
reversal—just as expected from the general analysis discussed
above for the time derivative of the variables and their time
reversal properties.

The density current gi is at the same time the momentum
density and therefore cannot have dissipative contributions. It
is part of the kinetic energy and has been given by Eq. (26) or
(27). The result for IR

ϕ , Eq. (51), follows from the fact that ϕ

is the canonical conjugate to the particle number [39,44].
The material tensors λi jk and ξR

i jk describe the coupling of
the stress tensor with the quasicurrents X mR

i and ZR
i and have

the form

αi jk = α
(
m0

kδ
⊥
i j + m0

jδ
⊥
ik

)
. (53)

These tensors have to be symmetric in the last two indices, the
first index has to be transverse to mi, and they must contain an
odd number of mi factors because mi is a director.

We also point out that—except for the terms related to
superfluidity—the reversible currents for the polar phase are
isomorphic to those given in uniaxial nematic elastomers [54].

D. Irreversible dynamics and entropy production

We can use the dissipation function R as a Lyapunov func-
tional to derive the irreversible currents and quasicurrents.
This automatically includes the famous reciprocity rules for
dissipative cross couplings [47]. One can expand the function
R (R/T is the amount of entropy produced within a unit
volume per unit time) into the thermodynamic forces using
the same symmetry arguments as in the case of the energy

density. We obtain

R = 1
2κi j (∇iT )(∇ jT ) + 1

2νi jkl Ai jAkl

+ 1
2ξi j (∇k�ik )(∇l� jl ) + ξT

i j (∇iT )(∇k� jk )

+ ζ
(∇iλ

s
i

)(∇ jλ
s
j

) + ζ n
i jAi j

(∇kλ
s
k

)
+ 1

2 b δ⊥
i j

(∇l

m
il

)(∇m
m
jm

) + ξmδ⊥
i jWi

(∇l

m
jl

)
+ 1

2τ δ⊥
i jWiWj + ξD

i jk (∇iWk )(∇l� jl ). (54)

The second rank tensors κi j , ξT
i j , ξi j , and ζ n

i j take the form

αi j = α‖m0
i m0

j + α⊥δ⊥
i j . (55)

The contributions ∼τ , b, and ξm contain δ⊥
i j , since rotations of

mi and the relative rotations are perpendicular to the preferred
direction [54].

The viscosity tensor νi jkl has the same form as the elastic
tensor, Eq. (22), containing five viscosities ν1 − ν5.

The tensor ξD
i jk has to be transverse in the third index and

must contain an odd number of mi factors because mi is a
director. It takes the form

ξD
i jk = ξD

1 m0
i δ

⊥
jk + ξD

2 m0
jδ

⊥
ik . (56)

To obtain the dissipative parts of the currents and quasi-
currents we take the partial derivatives with respect to the
appropriate thermodynamic force

jσD
i = −

(
∂R

∂ (∇iT )

)
...

= −κi j∇ jT − ξT
i j ∇k� jk, (57)

σ D
i j = −

(
∂R

∂ (∇ jv
n
i )

)
...

= −νi jkl Akl − ζ n
i j∇kλ

s
k, (58)

Y D
i j =

(
∂R

∂�i j

)
...

= −1

2
∇i

(
ξ jk∇l�kl + ξT

jk∇kT
)

− 1

2
∇ j

(
ξik∇l�kl + ξT

ik ∇kT
)

− 1

2

(
ξD

lik∇ j + ξD
l jk∇i

)∇lWk, (59)

X mD
i =

(
∂R

∂∇l

m
il

)
...

= b δ⊥
i j ∇k


m
jk + ξmδ⊥

i jWj, (60)

Iϕ
D = −

(
∂R

∂ (∇kλ
s
k )

)
...

= −ζ∇kλ
s
k − ζ n

i jAi j, (61)

ZD
i =

(
∂R

∂Wi

)
...

= τδ⊥
i jWj + ξmδ⊥

i j ∇l

m
jl

+ ξD
k ji∇k∇l� jl . (62)

Inspecting the time reversal behavior of the dissipative
currents we can verify that all contributions have the opposite
sign under time reversal as the corresponding time derivative
of the associated variable. Looking at the heat conduction term
∼κi j∇ jT and the viscous term ∼νi jkl Akl this behavior for the
heat current and the stress tensor is already familiar from the
hydrodynamics of a simple fluid.

In this section we have so far taken into account relative
rotations between the preferred direction for the aerogel ζi and
the preferred direction in orbit space mi as a macroscopic vari-
able with a finite, but sufficiently long, relaxation time. Should
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this relaxation time be very short, the relative rotations are no
longer macroscopic variables, meaning �̇i = 0 macroscopi-
cally, and therefore Wi = 0. In this case the cross-coupling
terms between the relative rotations and the other macroscopic
variables no longer exist. This affects in the reversible dynam-
ics, Eq. (48), the coupling to the stress tensor (ξR

k ji = 0), and
in the dissipative dynamics, Eq. (54), the coupling terms to
strains (ξD

i jk = 0) and to gradients of the vector mi, (ξm = 0).
In the statics, W = 0 leads to an irrelevant renormalization of
the elastic tensor μi jkl in Eq. (29).

E. On the coupling of orbit and spin space in the presence
of anisotropic elasticity

In this section we have shown so far that the additional
preferred direction in orbital space induced by the anisotropic
aerogel leads to qualitatively new phenomena due to the cou-
pling to strains and relative rotations. This naturally leads
to the question how these results affect the spin degrees of
freedom and their dynamics. In contrast to the case of the
distorted B phase, which will be discussed in Sec. V, the
order parameter of the polar phase in an anisotropic aerogel
does not generate a preferred direction in spin space. Thus
the only coupling between spin and orbital space is due to
the magnetic dipole interaction the effects of which have
already been discussed for the superfluid polar phase in the
bulk [13,33,34] and in an isotropic aerogel [33,34]. We also
emphasize that there are no coupling terms to spin space
generated by the anisotropic elasticity of the aerogel. The
spin dynamics of the polar phase in an anisotropic aerogel
including the magnetic dipole interaction as well as external
magnetic fields has been studied quite extensively over the last
decade or so [1,6,7,18,19,21] and we refer to these theoretical
and experimental works for further details.

Comparing our analysis of the orbital space to that of
3He -A a close similarity emerges: there is flow alignment
and the sound absorption of first, second, and fourth sound
becomes anisotropic. These are qualitative predictions which
one might be able to test experimentally for the polar phase in
an anisotropic aerogel in well aligned samples. So far we are
not aware of any experiments to check these results.

IV. THE ORBITAL DYNAMICS OF THE DISTORTED A
PHASE IN THE PRESENCE OF AN ELASTIC AEROGEL

A. Statics and thermodynamics

The relevant variables to describe the orbital dynamics of
the distorted A phase have been discussed in Sec. II. Using
Eqs. (1), (2), (6), (11), and (17) we get the Gibbs relation

dε = T dσ + μdρ + vn
i dgi + λs

i dvs
i

+
l
i jd (∇ j li ) + �i jdεi j + W d�. (63)

Compared to the polar phase in an aerogel we notice three
general differences: First, the symmetry variable describing
rotation of the preferred axis in orbital space δ li is odd under
time reversal, in contrast to the polar phase, where δmi is even.
Second, in the distorted A phase there is a second preferred
axis ζ 0

i orthogonal to li. It is not a symmetry variable, but
given by the anisotropy of the aerogel. Its main effect is
making the system biaxial (of orthorhombic symmetry). The

variable �, describing relative rotations between li and ζ 0
i , is

a single-component quantity that is odd under time reversal,
while in the polar phase the corresponding relative rotations
have two components and are even under time reversal. Fi-
nally, there is a third type of velocity (h̄/2m)(∇×l), specific
for superfluid 3He -A and first introduced by Graham [49]. For
the full hydrodynamic equations of the usual A phase we refer
to Refs. [35,43,49,50]

For the energy density we get

ε = 1

2
ρ0

(
ρs

ρn

)
i j

vs
i v

s
j + 1

2

(
1

ρn

)
i j

gig j

−
(

ρs

ρn

)
i j

vs
i g j −

(
C

ρn

)
i j

(∇ × l)ig j

+ 1

2
μi jklεi jεkl + 1

2
Ki jkl (∇ j li )(∇l lk )

+ 1

2
D1�

2 + D2
(
l0

j ζ
0
i + l0

i ζ 0
j

)
�εi j

+ σσ
i jk (∇ j li )(∇kσ ) + σ

ρ

i jk (∇ j li )(∇kρ)

+ εi j
(
χσ

i jδσ + χ
ρ
i jδρ

) + cρρ (δρ)2 + cσσ (δσ )2

+ cρσ (δρ)(δσ ), (64)

where the second rank tensors have the biaxial form, e.g.,(
C

ρn

)
i j

= C‖
ρn

‖
l0
i l0

j + C2

ρn
2

ζ 0
i ζ 0

j + C⊥
ρn

⊥
δ⊥

i j , (65)

where, in the present section, δ⊥
i j is the biaxial transverse

Kronecker symbol

δ⊥
i j = δi j − l0

i l0
j − ζ 0

i ζ 0
j . (66)

The orthorhombic biaxial tensor of the elastic energy con-
tains nine elastic moduli and can be found, e.g., in Ref. [55].
The tensor Ki jkl is the biaxial version of the nematic Frank
elastic tensor for one director and reads

Ki jkl = K11ζ
0
i ζ 0

j ζ
0
k ζ 0

l + K12
(
ζ 0

i ζ 0
j δ

⊥
kl + δ⊥

i j ζ
0
k ζ 0

l

)
+ K14δ

⊥
i j δ

⊥
kl + K2l0

pεpi j l
0
q εqkl

+ K31l0
j l0

l ζ 0
i ζ 0

k + K32l0
j l0

l δ⊥
ik . (67)

Relative rotations couple via the D2 term to shear strains in
the l0/ζ0 plane. Couplings of strains to gradients of the scalar
variables are provided by the tensors χσ

i j and χ
ρ
i j , which are of

the form Eq. (65). The third rank tensors are given by

σ
ξ

i jk = σ
ξ
1

(
l0

j δ
⊥
ik + l0

k δ⊥
i j

) + σ
ξ
2

(
l0

j ζ
0
i ζ 0

k + l0
k ζ 0

i ζ 0
j

)
, (68)

where ξ can be either ρ or c.
The explicit expressions for the conjugated variables in

terms of the hydrodynamic and macroscopic variables are

gi = ρn
i jv

n
j + ρs

i jv
s
j + Ci j (∇ × l) j, (69)

λs
i =

(
∂ε

∂vs
i

)
...

= gi − ρ0v
n
i − ρ0

(
C

ρn

)
i j

(∇ × l) j, (70)


l
i j =

(
∂ε

∂ (∇ j li )

)
...

= Ki jkl (∇l lk ) + σσ
i jk (∇kσ )

+ σ
ρ

i jk (∇kρ) + δ⊥
ikεkp j

(
C

ρn

)
pq

gq, (71)
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�i j =
(

∂ε

∂εi j

)
...

= μi jklεkl + χσ
i jδσ + χ

ρ
i jδρ

+ D2
(
l0

j ζ
0
i + l0

i ζ 0
j

)
�, (72)

W =
(

∂ε

∂�

)
...

= D1� + D2
(
l0

j ζ
0
i + l0

i ζ 0
j

)
εi j, (73)

δT =
(

∂ε

∂δσ

)
...

= χσ
i jεi j + 2cσσ δσ + cρσ δρ − σσ

i jk∇ j∇kli,

(74)

δμ =
(

∂ε

∂δρ

)
...

= χ
ρ
i jεi j + 2cρρδρ + cρσ δσ − σ

ρ

i jk∇ j∇kli.

(75)

We note that the Galilean requirement ρ0δi j = ρn
i j + ρs

i j is still
fulfilled, since (∇×l) is Galilei invariant.

B. Dynamic equations and reversible dynamics

The dynamic Eqs. (33)–(39) of the polar phase can be
taken over for the distorted A phase with two exceptions. The
dynamic equation for mi, Eq. (36), has to be replaced by a
dynamic equation for li,

l̇i + εi jk l0
j ωk + X l

i = 0, (76)

with ωi = (1/2)εi jk∇ jv
n
k the vorticity. For the dynamics of the

relative rotation variable �, we replace Eq. (39) by

�̇ + Z = 0. (77)

For the reversible currents up to linear order in the thermo-
dynamic forces we find

jσR
i = −κR

i j∇ jT + ξT R
i j ∇l� jl , (78)

σ R
i j = −�i j − 1

2λk ji∇l

l
kl − ϕR

i jkl Akl

+ ξσR
i j W − λL

i j∇kλ
s
k, (79)

Y R
i j = −Ai j − 1

2

(
ϕ̄R

ik∇ j + ϕ̄R
jk∇i

)∇p�kp

− 1
2

(
ξT R

jk ∇i + ξT R
ik ∇ j

)∇kT, (80)

X lR
i = −βR

i j∇k

l
jk − λi jkAk j + ξXR

i W, (81)

IR
ϕ = μ − λL

i jAi j, (82)

ZR = ξXR
j ∇l


l
jl − ξσR

i j Ai j, (83)

with Ai j = (1/2)(∇iv
n
j + ∇ jv

n
i ). Note that gi is already given

in Eqs. (69) and (70).
There are self-coupling terms characterized by antisym-

metric material tensors, in particular κi j − κ ji, βi j − β ji, ϕ̄R
ik =

−ϕ̄R
ki, and ϕR

i jkl = −ϕR
kli j , thus vanishing in the entropy pro-

duction. They have to contain an odd number of li factors to
give the correct time reversal behavior aR ∈ {αR, βR, ϕ̄R},

aR
i j =aRεi jk l0

k , (84)

ϕR
i jkl =ϕR

1

(
εikpl0

j l0
l + ε jl pl0

i l0
k + εil pl0

j l0
k + ε jkpl0

i l0
l

)
l0
p

+ϕR
2

(
εikpζ

0
j ζ

0
l + ε jl pζ

0
i ζ 0

k + εil pζ
0
j ζ

0
k + ε jkpζ

0
i ζ 0

l

)
l0
p

+ϕR
3

(
εikpδ

⊥
jl + ε jl pδ

⊥
ik + εil pδ

⊥
jk + ε jkpδ

⊥
il

)
l0
p. (85)

For ϕ2 = ϕ3 the uniaxial form for 3He -A [50] is found.
There are new reversible cross couplings between relative

rotations and normal flow ξσR
i j and elasticity ξXR

i j , and between
superfluid and normal flow λL

i j . They all contain one li factor,
require biaxiality, and are of the symmetric form

Ei j = E
(
l0
i ζ 0

j + l0
j ζ

0
i

)
, (86)

with E ∈ {ξσR, λL}.
The third rank tensor λi jk , called flow alignment tensor in

the nematic liquid crystal context, has to be symmetric in j, k,
odd under time reversal, and reads in the biaxial case

λi jk = λ1
(
δ⊥

i j l
0
k + δ⊥

ik l0
j

) + λ2
(
ζ 0

i ζ 0
j l0

k + ζ 0
k ζ 0

i l0
j

)
. (87)

For λ1 = λ2 the uniaxial form known from 3He -A [49] is
regained.

There is a first rank material tensor ξXR
i , odd under time

reversal, relating relative relations to rotations of li that exists
only in a biaxial state

ξXR
i = ξXRεi jk l0

j ζ
0
k (88)

and is a new term and neither exists in nematic liquid crys-
talline elastomers [54] nor in superfluid 3He -A.

C. Irreversible dynamics and entropy production

The dissipation function reads

R = 1
2κi j (∇iT )(∇ jT ) + 1

2νi jkl Ai jAkl

+ 1
2ξi j (∇k�ik )(∇l� jl ) + ξT

i j (∇iT )(∇k� jk )

+ 1
2ζ

(∇iλ
s
i

)(∇ jλ
s
j

) + ζ n
i j

(∇kλ
s
k

)
Ai j

+ 1
2 bi j

(∇l

l
il

)(∇m
l
jm

) + ξmζ 0
i W

(∇l

l
il

)
+ 1

2τ W 2 + ξD
i j (∇iW )(∇l� jl ), (89)

where the second rank tensors κi j , ζ n
i j , ξi j , and ξT

i j are of the
biaxial form with three coefficients, Eq. (65), and the viscosity
tensor νi jkl is of the orthorhombic biaxial form with nine
viscosities [55]. The tensor

bi j = b2ζ
0
i ζ 0

j + b⊥δ⊥
i j (90)

is transverse to li, and finally the tensor ξD
i j contains an odd

number of li and has the form of Eq. (86).
To obtain the dissipative parts of the currents and quasi-

currents we take the partial derivatives with respect to the
appropriate thermodynamic force

jσD
i = −

(
∂R

∂ (∇iT )

)
...

= −κi j∇ jT − ξT
i j ∇k� jk, (91)

σ D
i j = −

(
∂R

∂Ai j

)
...

= −νi jkl Akl − ζ n
i j∇kλ

s
k, (92)

Y D
i j =

(
∂R

∂�i j

)
...

= −(ξ jk∇i + ξik∇ j )∇l�kl

−(
ξT

jk∇i + ξT
ik ∇ j

)∇kT

−(
ξD

jk∇i + ξD
ik ∇ j

)∇kW, (93)
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Iϕ
D = −

(
∂R

∂
(∇kλ

s
k

)
)

...

= −ζ∇kλ
s
k − ζ n

i jAi j, (94)

ZD =
(

∂R

∂W

)
...

= τW + ξmζ 0
i ∇k


l
ik − ξD

i j ∇i∇k� jk, (95)

X lD
i =

(
∂R

∂
(∇k


l
ik

)
)

...

= bi j∇k

l
jk + ξmζ 0

i W. (96)

D. Spin-orbit coupling and the preferred directions in spin space

Neglecting dipole-dipole interaction spin space and orbit
space are independent. That means vectorial quantities in orbit
space (Latin indices) cannot couple to vectorial quantities in
spin space (Greek indices). The scalar variable �, in principle,
could couple to variables in both spaces. � is odd under time
reversal and can couple to orbit space, since there, l0

i with the
same time reversal properties exists. The preferred direction in
spin space d0

ν is even under time reversal and � cannot couple.
The weak dipole-dipole interaction registers spin and orbit

space such that d0 ‖ l0, rendering the distinction between
Greek and Latin indices obsolete. Since the preferred direc-
tion of the aerogel ζ 0

i is perpendicular to l0
i , it is now also

perpendicular to d0
i and spin space becomes biaxial. This is

a situation found in the undistorted A phase only after having
applied a (strong) magnetic field [51]. Although the preferred
direction of the aerogel enters the spin space dynamics, when
the spin-orbit coupling is taken into account, the elastic defor-
mations of the aerogel do not.

Thus we have shown in this section that the hydrodynamic
variables associated with the superfluid order parameter in the
distorted A phase in a uniaxial aerogel are the same as in the
usual A phase: the superfluid velocity vs

i , the deviations from
the preferred direction in real space l̂ , δli, and the deviations
from the preferred direction in spin space δdν . In orbit space
the macroscopic dynamics of the A phase and the distorted A
phase without an aerogel are isomorphic. The uniaxial aerogel
brings along as macroscopic variables the strain field εi j and
the variable � describing relative rotations between li and
ζi. In addition, the distorted A phase in an aerogel acquires
biaxiality in real space due to the preferred direction of the
aerogel in orbital space ζi. This biaxiality makes possible a
reversible coupling between relative rotations (between the l̂
vector and the preferred direction of the uniaxial aerogel) and
the l̂ dynamics. It will be undoubtedly a challenge to detect
this coupling experimentally, Finally, the dipole interaction
leads also to a biaxiality in spin space.

E. Uniaxiality in disorder-generated distorted A phases

An important point to discuss for the distorted A phase is
the issue over which length scales this phase can be biaxial
in case when there is disorder over large length scales in
the direction perpendicular to the preferred direction of the
anisotropic aerogel ζi. This issue has already been addressed
in a number of papers including Refs. [1,11] and it has been
pointed out that in many cases the biaxiality is averaged out
over length scales large compared to 1 μm.

On the other hand, it has been emphasized quite recently
[9] that in squeezed aerogels of “mullites” the 2D LIM states
become strongly anisotropic in the direction perpendicular to

the preferred direction ζi and a biaxial system prevails over
large length scales [9]. It is this latter state which we have
discussed in detail in this section.

The macroscopically uniaxial case is obtained from our
general expressions above, by discarding the preferred direc-
tion l0

i . This reduces the number of independent coefficients
in various material parameters, e.g., in Ki jkl from 6 to 3,
in symmetric second rank tensors of the form of Eq. (65)
from 3 to 2, in bi j and λi jk from 2 to 1, and some couplings
vanish completely, in particular those involving relative ro-
tations (including ξXR

i , ξσR, ξD
i j , and ξm) as well as λL, the

coupling between normal and superfluid velocity. As a result,
the uniaxial orbital dynamics is isomorphic to that of the polar
phase in the presence of an aerogel.

V. HYDRODYNAMICS OF THE DISTORTED B PHASE
IN THE PRESENCE OF AN ELASTIC AEROGEL

This section is split into two parts. Section V A discusses
the orbital dynamics and Sec. V B the spin part as well as
the coupling to the orbital part. For the full hydrodynamic
equations of usual 3He -B we refer to Refs. [43,52].

A. The orbital part

Neglecting spin-orbit coupling we can set up the hydrody-
namics of the orbital variables separately. According to the
discussion in Sec. II, Eqs. (1), (2), (6), and (13), we get the
Gibbs relation

dε = T dσ + μdρ + vn
i dgi + λs

i dvs
i

+�n
ν jkd∇ jnνk + �i jdεi j (97)

relating the variables with the conjugate quantities.
The rotation matrix nνk , the symmetry variable of the

3He -B phase, is not a purely orbital variable, but also lives
in spin space. It turned out for 3He -B that it is impossible to
construct any purely orbital material tensor out of nνk [52],
with the result that no couplings to the orbital variables are
possible. This remains true for the distorted B phase, since
couplings between nνk and the strains εi j are impossible as
well. Thus, we are left with the variables of a simple fluid,
the superfluid velocity and the elastic strains. However, the
distorted B phase has a preferred direction (in orbital space)
ζ 0

i , due to the anisotropy of the aerogel strands. This is not
a hydrodynamic variable, but makes hydrodynamics of the
distorted B phase anisotropic, in marked contrast to that of
the (undistorted) B phase.

The orbital dynamics of the distorted B phase can be de-
duced from that of polar phase in the presence of an aerogel,
Sec. III, by removing the symmetry variable mi and the rela-
tive rotation variable �i and replacing the preferred direction
m0

i by ζ 0
i . We simply list here the relevant equations for the

statics:

gi = ρn
i jv

n
j + ρs

i jv
s
j, (98)

λs
i = gi − ρ0v

n
i , (99)

�i j = μi jklεkl + χσ
i jδσ + χ

ρ
i jδρ, (100)
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δT = χσ
i jεi j + 2cσσ δσ + cρσ δρ, (101)

δμ = χ
ρ
i jεi j + 2cρρδρ + cρσ δσ, (102)

and the dynamics

jσi = −κi j∇ jT − ξT
i j ∇k� jk, (103)

σi j = −�i j − νi jkl Akl − ζ n
i j∇kλ

s
k, (104)

Iϕ = μ − ζ∇kλ
s
k − ζ n

i jAi j, (105)

Yi j = −Ai j − 1
2∇i

(
ξ jk∇l�kl + ξT

jk∇kT
)

− 1
2∇ j

(
ξik∇l�kl + ξT

ik ∇kT
)
, (106)

where the currents jσi , σi j , Iϕ , and Yi j are defined by the
dynamic equations Eqs. (34), (35), (37), and (38), respec-
tively. Material tensors of rank-2 and of rank-4 are given by
Eqs. (21) and (22), respectively, with m0

i replaced by ζ 0
i and

δ⊥
i j = δi j − ζ 0

i ζ 0
j .

The symmetry variable nνk shows up in the spin dynamics
of 3He -B [52], and of course, in the spin dynamics of the
distorted B phase as well, see below.

B. The spin part

In superfluid 3He -B the spin hydrodynamics is described
by the rotation matrix nνi, describing the relative orientation
between spin and orbital space. Neglecting spin-orbit cou-
pling effects, nνi does not couple to the orbital variables, but
in spin space to the dynamics of the magnetization sν [52].
This is also applicable to the distorted B phase, where in
addition, the aerogel strands give rise to a preferred direction
ζ 0

i . The latter is manifest in spin space as ζ 0
ν = nνiζ

0
i . Thus,

in contrast to the B phase in the bulk, the distorted B phase in
a uniaxial aerogel also acquires a preferred direction in spin
space, which profoundly influences the spin wave spectrum
as we will show in the following.

Using the appropriate Gibbs relation, Eqs. (3) and (13),

dε = �n
ν jkd∇ jnνk + hνdsν (107)

the conjugate quantities are related to the variables by

hν = [
(1/χ‖)ζ 0

ν ζ 0
μ + (1/χ⊥)δνμ

]
sμ, (108)

�n
νik = Mνμi jkl∇ jnμl , (109)

with

Mνμi jkl = M1δνμδi jδkl + M3ζ
0
ν ζ 0

μδi jδkl

+ M4δνμζ 0
i ζ 0

j δkl + M5ζ
0
ν ζ 0

μζ 0
i ζ 0

j δkl

+ M2(εkipε jlt + εk j pεilt )n
0
νpn0

μt , (110)

where M1 and M2 are already present in the B phase.
The dynamic equations are

ṡν + ∇kJνk = 0, (111)

ṅνi + Zνi = 0. (112)

According to general spin dynamics the reversible parts of
the currents are [52]

JR
νi = γ ενμλn0

λ j�
n
μi j, (113)

ZR
νi = γ ενμλn0

μihλ, (114)

with γ the gyromagnetic ratio.
The dissipative dynamics involves higher order gradient

terms, JD
νi ∼ ∇khμ and ZD

νi ∼ ∇ j�
n
μ jk , and will not be dis-

cussed here in detail.
In the (isotropic) B phase the spin dynamics consists of

three propagating phononlike excitations with frequency ω

and wave vector k, reflecting the spontaneously broken rota-
tional symmetry due to nνi. There is a longitudinal spin wave
involving ∇ · s, and two degenerate transverse ones involving
∇×s, with ω2

l = c2
l k2 and ω2

tr = c2
trk

2, respectively.
In the distorted B phase there are still three phononlike

modes, but in contrast to the B phase the mode velocities are
anisotropic. We describe this anisotropy by

k2
‖ ≡ −ζ 0

i ζ 0
j ∇i∇ j = k2 cos2 �, (115)

with � the angle between the wave vector k and the preferred
direction ζ0.

In addition, two of the three modes are coupled. Such a
scenario is found in the B phase only after the spin-orbit
coupling is taken into account [52]. In particular, we find in
the distorted B phase for the single mode involving transverse
excitations (ενμλ∇μsλ)

ω2
1 = c2

1(�)k2

= γ 2

χ⊥
k2(2M1 + M3 + [2M4 + M5] cos2 �), (116)

where c1 reduces to ctr in the isotropic limit.
The dissipative part of the dynamics, not shown above,

contributes diffusion to the mode spectrum in order k2, e.g.,
ω1 = ±c1(�)k + (i/2)D1(�)k2.

For the coupled spin wave branches, the frequencies ω2,3

of the longitudinal one (involving ∇isi) and a transverse one
(involving ζisi), are the solutions of the quadratic Eq. (117),(

ω2
2,3 − Ak2

)(
ω2

2,3 − Fk2
) + Ck4 cos2 � = 0, (117)

with

A = 2γ 2

(
1

χ⊥
+ 1

χ‖

)
(M1 + M4 cos2 �) + 8γ 2

χ‖
M2, (118)

F = γ 2

χ⊥
(2M1 + M3 + 8M2 + [2M4 + M5] cos2 �), (119)

C = 8γ 4

χ2
⊥

M2

(
8M2 + M3 + M5 cos2 �

+ 2χ⊥
χ‖

[M1 − M4 cos2 �]

)
. (120)

In the isotropic limit, where the C contribution drops out of
Eq. (117), we get A → c2

tr and F → c2
l .

Taking into account spin-orbit coupling in the (isotropic)
B phase, spin space and orbit space are rotated against each
other by a fixed angle ϑ0 = cos−1(1/4) about an axis di [13].
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The orientation of di is arbitrary giving rise to still two spon-
taneously broken rotational symmetries. There is now no need
to use different types of indices anymore and the rotation
matrix can be written as

ni j = cos ϑ (δi j − did j ) + did j + sin ϑεi jkdk . (121)

The spin-orbit energy for deviations from the equilibrium
state

εso = B

2
(ϑ − ϑ0)2 = B

8 sin2 ϑ0

(
nii − n0

ii

)2
(122)

is rather small. It is customary to derive spin hydrodynamics
under the full threefold broken symmetry, and add εso at the
end [52]. This results in a gap in the longitudinal spin wave
branch that is manifest in NMR as the longitudinal shift. In
addition, this mode is coupled to one of the transverse modes.

In the distorted B phase spin-orbit coupling also fixes the
rotation angle to ϑ0 with similar consequences to the mode
spectrum. In particular, the mode longitudinal to the preferred
direction, ζisi, acquires a gap (in the limit k → 0)

ω2
2(k → 0) = γ 2

(
1

χ‖
+ 1

χ⊥

)
B ≡ B̃. (123)

Note that this mode is already coupled to one of the transverse
modes, even without spin-orbit coupling.

Another consequence of the existence of the preferred
direction in equilibrium d0

i = ζ 0
i is the finite energy for de-

viations δdi = di − d0
i ,

εsod = D

2
(δdi )

2 = D

8 sin2 ϑ0
[ζp(npi − nip)]2, (124)

with D > 0. Note that D is directly related to �‖ − �⊥ of
Ref. [12]. This energy gives rise to gaps in the transverse spin
modes (εi jkζ j sk) of the form

ω2
1,3(k → 0) = γ 2

χ⊥

1 + cos ϑ0

2 sin2 ϑ0
D ≡ D̃. (125)

There is no spontaneously broken rotational symmetry left
and all modes acquire a gap. In addition, all three spin wave
modes are coupled. Such a situation is found in the B phase
only after having applied an external magnetic field. In the dis-
torted B phase an external field Hi will not induce qualitatively
new features to the spin wave modes. In particular, the gaps of
the modes are then given, for a field parallel to ζi, by ω2

1 = D̃
and ω2

3 = D̃ + ω2
L and, for a transverse field by ω2

2 = B̃ + ω2
L,

where ωL = γ H is the Larmor frequency.
Although the preferred direction of the aerogel enters the

spin space dynamics, when the spin-orbit coupling is taken
into account, the elastic deformations of the aerogel do not.

In concluding this section we briefly give a comparison
between the macroscopic dynamics of the usual B phase
without an aerogel and the distorted B phase occurring in a
uniaxially anisotropic aerogel. The hydrodynamic variables
brought along by the superfluid order parameter are the same
in both cases: the superfluid velocity vs

i and three angles
associated with spontaneously broken spin-orbit symmetry
[13,15]. A preferred direction in orbital space is generated
by the preferred direction in orbit space due to the uniaxial
aerogel. Naturally this renders the hydrodynamics in orbit
space to be uniaxial in contrast to the hydrodynamic of the

usual B phase. This leads in particular to an anisotropy of
sound absorption of first, second, and fourth sound. Via the
rotation matrix part of the order parameter a preferred di-
rection in spin space is generated as well in the distorted B
phase in a uniaxial aerogel. This leads to significant changes
in the spin wave spectrum compared to the usual B phase. First
of all, all spin wave velocities become anisotropic. Second,
the coupling structure between the three pairs of spin waves
changes considerably. In the usual B one has two degener-
ate pairs of transverse spin waves and one longitudinal pair.
Only after taking into account the spin-orbit interaction a
coupling between the different dispersion branches of spin
waves arises. This is qualitatively different in the distorted B
phase in a uniaxial aerogel in which case one pair of transverse
spin waves becomes coupled to the longitudinal pair. Taking
into account the spin-orbit interaction in this case leads to a
coupling of all three pairs of spin waves, which also all acquire
a gap in the long wavelength limit (k → 0).

VI. SUMMARY AND PERSPECTIVE

In this paper we have studied the macroscopic behavior of
the three superfluid phases of 3He observed experimentally
in anisotropic aerogels: the polar phase and the distorted A
and B phases. Our focus was mainly on the macroscopic
properties of the orbital part and the differences between the
three phases. While all three phases share the strain as a
macroscopic variable, there are significant differences, mainly
because of the number of preferred directions in orbital space
and their behavior under time reversal.

In the polar phase the preferred direction in orbital space is
even under time reversal and one has two variables associated
with relative rotations between the network and the preferred
direction associated with the order parameter of the polar
phase. The dynamics of this phase shares many properties
with nematic liquid crystalline elastomers as long as the su-
perfluid aspects are not considered. Except for the magnetic
dipole interaction there is no coupling to spin degrees of
freedom.

In the distorted A phase one has a preferred direction com-
ing from the order parameter, which is odd under time reversal
and a second preferred direction, perpendicular to the first one,
coming from the anisotropic aerogel. Correspondingly, one
finds numerous additional static as well as reversible and dis-
sipative dynamic cross-coupling terms to the strain tensor and
relative rotations. Due to the structure of the order parameter,
there is only one variable in the distorted A phase associated
with relative rotations. Without the presence of an aerogel the
orbital part of the hydrodynamics of the distorted A and the
A phase turn out to be isomorphic. Similar to the polar phase
in an anisotropic aerogel, only the magnetic dipole interaction
couples to spin degrees of freedom.

The distorted B phase in an anisotropic aerogel turns out to
have macroscopic properties, which are quite different from
those of the bulk B phase on one hand and from the polar and
the distorted A phases in an anisotropic aerogel on the other.
Due to the preferred direction of the anisotropic aerogel, the
distorted B phase acquires a preferred direction and is thus
anisotropic in orbit space in contrast to the superfluid B phase.
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Since there is only one preferred direction in distorted B, rel-
ative rotations cannot arise as macroscopic variables. But due
to the structure of the order parameter, which is closely related
to a rotation matrix, and the fact that one has a preferred
direction in orbit space, one can construct in a straightforward
way a preferred direction in spin space as well—even in
the absence of the magnetic dipole interaction and external
magnetic fields. There are two direct consequences for the
macroscopic behavior in spin space: all excitations become
anisotropic in orbital space and longitudinal and transverse
spin waves couple—even in the absence of magnetic dipole
interactions and magnetic fields.

We note that all macroscopic equations for the distorted A
as well as for the distorted B phase reduce in the appropriate
limit (no uniaxial aerogel present and in the proper limit of
the superfluid order parameter discussed in Sec. II) to the
hydrodynamic equations for superfluid 3He -A and superfluid
3He -B [35,43,49,50,52].

The hydrodynamic description of two of the three super-
fluid phases discussed here (the polar phase and the distorted
B phase) is uniaxial in orbital space, while the distorted A
phase is biaxial. Uniaxiality has already been found for all
three superfluid phases of 3He in the bulk (A, B, and A1)
[40,45]. Thus, apart from 3P2 neutron star matter [56], we
have found here a candidate for showing superfluid biaxial
behavior in orbital space. In Ref. [56] it has been shown that
the orbit part of hydrodynamics of 3P2 neutron star matter is
that of a superfluid biaxial nematic liquid crystal. For further
details on the macroscopic behavior of biaxial nematic liquid
crystals we refer to Refs. [57–59].
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APPENDIX: TRANSIENT NETWORK

If the elastic network is transient rather than permanent, its
dynamics changes from diffusive to relaxative. This happens,
when, e.g., the bonding between different strands is not chem-
ical but merely physical. In that case the thermodynamic force
is the elastic stress �i j , rather than its divergence ∇ j�i j . This
results in various cross-coupling effects different from the
permanent elastic case. Below we discuss this for the different
phases, separately.

1. Polar phase

We find for the dissipation function R,

R = 1
2κi j (∇iT )(∇ jT ) + 1

2νi jkl Ai jAkl

+ 1
2ξi jkl�i j� jk + ζ

(∇iλ
s
i

)
(∇ jλ

s
j )

+ 1
2 b δ⊥

i j

(∇l

m
il

)
(∇m
m

jm) + 1
2τ δ⊥

i jWiWj

+ ζ n
i jAi j∇kλ

s
k + ξmδ⊥

i jWi∇l

m
jl

+ ξD
i jkWk�i j . (A1)

There are two new material tensors related to transient elas-
ticity. First, ξi jkl , describing strain relaxation, has the form of
the elasticity tensor, Eq. (22), with five relaxation coefficients.
Second, the cross coupling to relative rotations is given by ξD

i jk ,
where

ξD
i jk = ξD

(
m0

i δ
⊥
jk + m0

jδ
⊥
ik

)
, (A2)

which is symmetric in i and j.
All other terms and material tensors have already been

discussed in Sec. III D.
The currents and quasicurrents read

jσD
i = −κi j∇ jT, (A3)

σ D
i j = −νi jkl Akl − ζ n

i j∇kλ
s
k, (A4)

Y D
i j = ξi jkl�kl + ξD

i jkWk, (A5)

Iϕ
D = −ζ∇kλ

s
k − ζ n

i jAi j, (A6)

ZD
i = τδ⊥

i jWj + ξmδ⊥
i j ∇l


m
jl + ξD

kli�kl , (A7)

X D
i = b δ⊥

i j ∇k

m
jk + ξmδ⊥

i jWj . (A8)

2. Distorted A phase

Due to the existence of a preferred direction that is odd
under time reversal, there are many contributions in the re-
versible currents and quasicurrents:

jσR
i = −κR

i j∇ jT, (A9)

σ R
i j = −�i j − 1

2λk ji∇l

l
kl − ϕR

i jkl Akl

+ ξσR
i j W − λL

i j∇kλ
s
k, (A10)

Y R
i j = −Ai j + ξY R

i j W − ϕ̄R
i jkl�kl − ζ XR

ki j ∇l

l
kl ,

X R
i = −βR

i j∇k

l
jk − λi jkAk j + ξXR

i W − ζ XR
i jk � jk, (A11)

IR
ϕ = μ − λL

i jAi j, (A12)

ZR = −ξXR
j ∇l


l
jl − ξσR

i j Ai j − ξY R
i j �i j, (A13)

There is a new reversible self-coupling term characterized
by the antisymmetric material tensor ϕ̄R

i jkl = −ϕ̄R
kli j . It has

the same form as ϕR
i jkl in Eq. (85). Other cross-couplings

involving elastic stresses are described by ζ XR
i jk and ξY R

i j , which
are of the form of Eqs. (68) and (86), respectively.

All other terms and material tensors have already been
discussed in Sec. IV B.

For the dissipative dynamics we find

R = 1
2κi j (∇iT )(∇ jT ) + 1

2νi jkl Ai jAkl

+ 1
2ξi jkl�i j�kl

+ 1
2ζ

(∇iλ
s
i

)(∇ jλ
s
j

) + ζ n
i j

(∇kλ
s
k

)
Ai j
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+ 1
2 bi j

(∇l

l
il

)(∇m
l
jm

) + ξmζ 0
i W

(∇l

l
il

)
+ 1

2τ W 2 + ξD
i j W �i j, (A14)

with the new dissipative material tensors ξi jkl and ξD
i j , which

have the form of the viscosity tensor νi jkl and of Eq. (65),
respectively.

All other terms and material tensors have already been
discussed in Sec. IV C.

3. Distorted B phase

In this phase only the strain diffusion R ∼ (∇k�ik )(∇l� jl )
is replaced by strain relaxation R ∼ �ik� jl leading to
Yi j ∼ �kl .
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