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Probing XY phase transitions in a Josephson junction array with tunable frustration
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The seminal theoretical works of Berezinskii, Kosterlitz, and Thouless presented a paradigm for phase
transitions in condensed matter that are driven by topological excitations. These transitions have been extensively
studied in the context of two-dimensional XY models—coupled compasses—and have generated interest in the
context of quantum simulation. Here, we use a circuit quantum-electrodynamics architecture to study the critical
behavior of engineered XY models through their dynamical response. In particular, we examine not only the
unfrustrated case but also the fully frustrated case which leads to enhanced degeneracy associated with the spin
rotational [U(1)] and discrete chiral (Z2) symmetries. The nature of the transition in the frustrated case has
posed a challenge for theoretical studies while direct experimental probes remain elusive. Here we identify the
transition temperatures for both the unfrustrated and fully frustrated XY models by probing a Josephson junction
array close to equilibrium using weak microwave excitations and measuring the temperature dependence of the
effective damping obtained from the complex reflection coefficient. We argue that our probing technique is
primarily sensitive to the dynamics of the U(1) part.

DOI: 10.1103/PhysRevB.102.094509

I. INTRODUCTION

The Berezinskii-Kosterlitz-Thouless (BKT) mechanism
provides a prototypical example of topological phase transi-
tions in two-dimensional systems. The transition is accompa-
nied by unbindings of topological defects, known as vortices
[Fig. 1(c)] [1–3], and have stimulated interest in the context
of quantum simulation [4–9]. The BKT transition has been
extensively investigated in various systems such as thin He
films [10], bosonic and fermionic cold atoms [11–13], thin
film superconductors [14–17], exciton-polariton systems [18],
and a qubit array [9]. One of the representative models for
investigating the BKT physics is the two-dimensional XY
model—not only the unfrustrated case, where the conven-
tional BKT transition is known to take place, but also cases
with frustration in spin interactions have been investigated. In
particular, in the fully frustrated XY case [19], the alternating
pattern of the chirality [see Fig. 1(d)] leads to the enhanced
degeneracy of the ground state associated with continuous
U(1) and discrete Z2 symmetries, potentially giving rise to
two phase transitions at different temperatures corresponding
to each symmetry. This frustrated model plays a fundamental
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role in a variety of frustrated magnetic systems, including
spin glasses [20], clock models [21], and, in general, any
critical points which possess multiple symmetries. Yet the
exact nature of its phase transition has long remained elusive
despite extensive theoretical investigations [19,22–36]. On
the experimental side, some realizations of the frustrated
models have been achieved in ultracold atomic Bose gases
in optical lattices [37,38]. While enhanced ground-state de-
generacy due to Z2 symmetry and its spontaneous breaking
have been observed in these systems, a detailed nature of the
finite-temperature transition is left unaddressed. In addition,
recent progress in numerical method has reignited interest in
dynamical features of the quantum XY model [39].

Although the BKT physics has been observed in various
systems, a direct realization of the XY model is limited. One
of the attractive platforms to realize the XY model is Joseph-
son junction arrays (JJAs) [14–16,40,41]. In JJAs, small su-
perconducting islands are connected by Josephson junctions,
where the order-parameter phases of the islands are mapped
onto the XY spins. Frustration can also be introduced by
applying a magnetic field normal to the JJA. In these systems,
the phase transitions in the unfrustrated and fully frustrated
cases have long been studied experimentally mostly by DC or
low-frequency measurements of current-voltage (I − V ) char-
acteristics [14–16,40,41], demonstrating the universal jump
in the exponent of I − V characteristics for the unfrustrated
case, as expected for the BKT transition [14,15,41]. However,
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FIG. 1. Circuit-QED setup to investigate unfrustrated and frus-
trated XY models. (a) Schematic illustration of a JJA using the circuit
QED architecture. The JJA is mounted in a 3D microwave cavity.
Response of the cavity is measured via microwave reflection through
the port. (b) JJA consisting of 100 × 100 plaquettes connected to
two pads. Response of the cavity is investigated via microwave
reflection through the port. (c) Schematic illustration of the BKT
mechanism. Vortex-antivortex pairs are formed at low enough tem-
peratures (T � TBKT) and all the vortex pairs are unbound to form
free vortices at sufficiently high temperatures (T � TBKT). Note that,
near but below TBKT, vortex pairs with large distances are excited.
At temperatures just above TBKT, large-distance pairs dissociate,
generating free vortices. We further note that the vortex pairs should
overlap in space around TBKT. (d) Phase distribution (left) and the
corresponding current distribution (right) in the degenerate ground
states of the fully frustrated XY model in the Landau gauge [19].
The arrows in the left panels indicate superconducting phases of the
superconducting islands. The dotted horizontal segments represent
the antiferromagnetic bonds. The two states are characterized by
the opposite senses of chirality shown in the right panel, such as
(+) and (−).

the nature of the transitions has yet to be clarified especially
for the fully-frustrated case—even the transition temperature
does not agree between the experiment and the theory [16,17].
This is possibly because these experiments have detected
highly averaged out-of-equilibrium quantities even if a small
bias current is used. Recent developments in superconducting
circuit-QED techniques offer the possibility of overcoming
this limitation since the system is only weakly disturbed by a

small microwave excitation, allowing one to probe dynamical
response of the system close to equilibrium [42–44]. Here
we present a circuit-QED-based study of a JJA to observe
thermodynamic signatures and demonstrate its capabilities in
identifying the phase transitions in the unfrustrated and fully
frustrated XY models.

II. UNFRUSTRATED AND FRUSTRATED
XY MODELS IN JJA

The JJA can be mapped onto the XY model as follows.
Each island i [zoomed up and false-colored in Fig. 1(b)] is
characterized by the phase φi of the order parameter and the
number of Cooper pairs ni. The Hamiltonian of the JJA [40]
is then given by

HJJA = (2e)2

2

∑
〈i, j〉

niC
−1
i j n j − EJ

∑
〈i, j〉

cos(φi − φ j − Ai j ). (1)

The first term in Eq. (1) represents the charging energy and the
second term describes the Josephson effect characterized by
the Josephson energy EJ , where Ci j is an element of a capaci-
tance matrix C; Ai j = (2π/�0)

∫ j
i

�A · d�l is the line integral of
the vector potential �A from an island i to an island j with �0 =
h/2e being flux quantum (e is the elementary charge and h
is Planck’s constant). The main contribution to the charging
energy comes from the capacitance between two neighboring
islands CJ , which is given by EC = e2/2CJ . In the case of
EJ/EC ≈ 2.2 � 2/π2 [40,41,45] as in our JJA, the charging
term is insignificant and can be neglected when equilibrium
properties are concerned (however, this term is taken into
account when discussing dynamical properties later). Then,
an isomorphic mapping is possible from the local phases φi

onto two-component planar spin variables Si = (cos φi, sin φi )
at site i, where the spin-spin coupling is characterized by EJ

and φi ∈[0, 2π ). The effective Hamiltonian for zero flux is
then given by

Heff = −
∑
〈i, j〉

Ji j �Si · �S j . (2)

Here the interaction is Ji j = J [(= EJ ) > 0 in our notation]
for the unfrustrated case. In a magnetic field, the vector
potential term gives a frustration for spin configuration. The
frustration is maximum for a half flux. For this fully frustrated
case, Ji j in Eq. (2) can have two values Ji j = ±J such that∏

� Ji j/J = −1 [34], where the product is taken over a pla-
quette. In the latter case, one of four bonds in each plaquette is
antiferromagnetic as indicated in Fig. 1(d), which makes spin
configurations frustrated. Then the ground state is not unique
but doubly degenerate [apart from the trivial degeneracy under
the global U(1) rotation] as illustrated in Fig. 1(d).

III. EXPERIMENTAL METHODS

We use a large square network of Josephson junctions
made of Al films evaporated on a silicon substrate with
100 × 100 plaquettes shunted by large capacitance elec-
trodes [Fig. 1(b)]. The area enclosed by one plaquette is
6 × 6 μm2. The Josephson energy of a single junction is
EJ/h = 30.3 GHz estimated from the resistance at 4 K [46],
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and the charging energy is Ec/h = 13.8 GHz. The shunt-
ing capacitance CS = 48.5 fF from the antenna electrodes
[Fig. 1(b)], which also provide coupling to the cavity in the
same manner as in a typical transmon qubit [47]. The JJA has
two different kinds of edges: At two of the four edges which
are connected to a pad, islands are galvanically connected
without Josephson junctions, while islands at the other two
edges are connected with Josephson junctions as same to
other part. Note that probing of the JJA by microwave is
done through the galvanically connected edges. The estimated
ground capacitance of an island is Cg = 1.38 aF. The full
capacitance matrix is extracted using finite element analysis
and the junction capacitance is estimated from the capacitance
density, i.e., capacitance per area of 60 fF/μm2. The transition
temperature of the superconducting film is determined to be
1.375 K by a low-frequency four-probe measurement on one
of the antenna pads. The temperature dependence of EJ (T ) is
determined using the standard Ambegaokar-Baratoff relation
[46] combined with the temperature dependence of the gap
which is numerically found using the BCS relation by setting
the transition temperature of the Al film. The JJA is placed
in the center of a 3D microwave cavity made out of OFHC
copper [Fig. 1(a)], where the electric-field strength of the fun-
damental mode (TE101) is the strongest. The bare resonance
frequency is at 10.056 GHz. The coupling between the cavity
and the JJA [48] is estimated to be g/2π = 350 MHz.

To investigate the dynamical response of the JJA to mi-
crowaves, we measure the reflection spectrum of the cav-
ity under weak driving with the external coupling rate of
κext/2π = 31.8 MHz. We study the dynamical response of
the XY models at a single-photon level by monitoring the
complex reflection coefficient in the microwave spectroscopy
through the cavity (Appendix A). This acts as a probe of
vortex structures [43] and the critical temperature as it is sen-
sitive to vortex excitations. We note that the dipole interaction
between the cavity and the JJA can be treated perturbatively
when the photon number inside the cavity is limited to the
single-photon level (Appendices B and C).

IV. CONCEPT OF THE EXPERIMENT

First, we describe a theoretical idea of what information
can be obtained by the circuit-QED setup. Since EJ/EC �
2/π2, it is useful to describe the dynamics of the JJA using
Hamilton’s classical equations of motion in terms of the
phases φi and the charges qi = 2eni [conjugate momentum
of h̄φi/(2e)]. We further include thermal Langevin noises
(with the damping rate �) in the equations to model possible
dissipation processes in the experimental system. With such
noises, the finite-temperature Gibbs distribution is obtained
after the convergence to a steady state. In this formula-
tion, the susceptibility relating the perturbation by external
microwaves to the charge q0 at the top pad is given by
(Appendix C)

χ (ω, T ) = h̄g

2e

∫ +∞

−∞
dt eiωt 〈q0(t )q̇0(0)〉eq

kBT
. (3)

Here, g characterizes the coupling strength to the microwave
and 〈· · · 〉eq represents the thermal average. We note that
dissipation processes manifest themselves in the imaginary

part of χ (ω, T ). The complex reflection coefficient S11 is
related to the susceptibility using the input-output formalism
[43] (Appendix C):

S11 = −
1
2

(
κext − κint − g Imχ (ω)

2e

) + i
(
ω − ωc + g

2
Reχ (ω)

2e

)
1
2

(
κext + κint + g Imχ (ω)

2e

) − i
(
ω − ωc + g

2
Reχ (ω)

2e

) .

(4)

We can define a damping coefficient (“linewidth”) for the
cavity using S11 and obtain κtot = κext + κint + gImχ (ωc)/2e,
where κint is the internal loss rate, and κext is the external loss
rate due to the coupling of the cavity to the input port. The
key quantity of interest is Imχ (ωc)/2e, which can be extracted
from experimentally obtained κtot. As we will show later, Imχ

is sensitive to the U(1) part of the transition. We note that κext

and κint do not depend on � or T in our setup, as we verified
it by a measurement with a plain silicon substrate put in the
cavity and simultaneously fitting the real and imaginary part
of S11. The change in κtot as a function of T represents the
change in the internal loss of the JJA or, more precisely, it
reflects the dependence of Imχ (ωc) on T .

V. PROBING DYNAMICAL SUSCEPTIBILITY

We measure the cavity reflection while applying a mag-
netic field perpendicular to the plane of the array to study the
frustration-induced properties of the system (Appendix A).
As shown in Fig. 2(a), the spectrum is rich and has various
features at commensurate flux values such as �/�0 = 0, 1/3,
and 1/2, and exhibits reflection symmetry about the half-flux
case. The flux-dependent dispersive shift of the line center
from the bare resonance of the cavity at 10.056 GHz is
observed due to the nontopological collective oscillations of
�φ around the lowest-energy configurations of phases �φ0—
plasma modes. Here �φ = (φ1, · · · , φn)T. This pattern of the
shift indicates that vortices induced by the magnetic field form
a rigid lattice-ordered state around the commensurate flux
value [43]. Below we focus on the results at �/�0 = 0 and
1/2 and discuss how the spectrum evolves when temperature
is increased.

Figures 2(b) and 2(c) show the real part of the reflection
spectra for �/�0 = 0 and 1/2 for three different tempera-
tures, one below, one close to, and one above the transition
temperature defined below. The linewidth is narrow at 10 mK,
but becomes broader with increasing temperature. Further in-
creasing temperature, the linewidth becomes narrower again.
This change of the linewidth originates from the change in
Imχ . The extracted Imχ by fitting the spectrum to Eq. (4) is
shown in Fig. 3(a) as a function of the normalized temperature
kBT/EJ (T ). The linewidth is found to exhibit a peak at a
certain kBT/EJ (T ) for both �/�0 = 0 and 1/2. [We note
that EJ (T ) is suppressed at high temperatures, but even at the
peak temperature of the zero-flux case, EJ (T )/EC = 1.52 �
2/π2, indicating the JJA is well in classical regime.] This
indicates that the linewidth of the cavity is a key quantity to
characterize the system upon heating.

These experimental results are compared with the results
of our Langevin dynamics simulations of Imχ (ωc) in Fig. 3.
Here, the stochastic equations of motion are numerically
solved, and physical quantities are calculated after the conver-
gence to a steady state. The simulated Imχ (ωc) also exhibits a
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FIG. 2. Reflection spectra of the cavity containing the Josephson junction array. (a) Absolute value of the reflection coefficient, |S11|, as a
function of the magnetic-flux bias �/�0 and the frequency at 10 mK. The bare cavity frequency is located around 10.056 GHz. (b), (c) Real
part of S11 as a function of the frequency for �/�0 = 0 and 1/2, respectively. Data are taken at a power of PMW = −132 dBm (6.3 × 10−17 W)
at the input port of the cavity.

peak for both �/�0 = 0 and 1/2 as shown in Fig. 3(b). While
the calculations are limited to a system size 30 � L � 50 due
to the numerical cost of dealing with the large nondiagonal
capacitance matrix, we confirm that the size dependence of the
peak temperatures is below ∼5% (Appendix B). Remarkably,
the peak temperatures agree well between the experiments and
the simulations for both �/�0 = 0 and 1/2. For �/�0 = 0,
the peak temperature (kBT/EJ � 0.91) precisely corresponds
to the BKT transition temperature, which is confirmed by
the simulated results plotted in Fig. 4. At this temperature,
the critical exponent η for the spin correlation reaches 1/4,
the value expected from the BKT mechanism [49–51]. We
note that we benchmarked the numerical analysis by con-
firming the expected critical decay of the correlation function
C(r) = 〈cos (φ0 − φr )〉, with r = (0, r) and r is the site dis-
tance, in the equilibrium regime for systems with different
sizes by including only a diagonal capacitance matrix (see
Fig. 4 and Appendix B). For �/�0 = 1/2, the peak of Imχ

is found at kBT/EJ � 0.43, which is also consistent with
the transition temperature identified in previous numerical
calculations [19,26,30,32,34,52]. We note that the U(1) and
Z2 transition temperatures obtained in previous numerical
studies, kBT/EJ � 0.44 [19,34,36], are close to each other. In
attempting to compare theoretical and experimental suscepti-
bilities, we found that qualitative agreement was achieved by
taking the heuristic damping coefficient � to be comparable to
the kinetic fluctuation scale of the system, EC/h̄ [specifically,
we set � = 4EC/h̄ in Fig. 3(b)]. Some differences such as
the peak height for half flux could be because of additional
dissipation processes not captured in the Langevin dynamics

approach, particularly with respect to vortex dynamics.
We further note that it is challenging for the Langevin dy-
namics simulation to reproduce the suppression of Imχ at low
temperatures as observed in experiment—as the temperature
is lowered, an increasingly larger number of discrete time
steps is required to achieve sufficient convergence because of
the slower decay of the temporal correlation.

VI. DISCUSSION

The agreement between the numerical and experimental re-
sults (Fig. 3) indicates that the observed peak in the linewidth
is caused by the phase transitions. The enhancement of the dis-
sipation observed around the transition temperature is under-
stood as follows. As temperature goes beyond the transition
point from the lower side, vortex pairs with long distances first
unbind at temperatures slightly above the transition tempera-
ture. An external perturbation by cavity photons then drives
the dynamics of the vortices that subsequently equilibrate by
accompanying energy dissipation. It is this interplay between
the external drive and the diffusive dynamics of vortices that
manifests itself as the pronounced dissipation near the tran-
sition temperature (cf. Fig. 3). Further evidence supporting
damping via driving of unbound vortices is provided by the
increase in linewidth seen even at zero temperature as the flux
is moved slightly away from 0 or 0.5, where free vortices
induced by the magnetic field cause damping, as is evident
from the broad spectrum seen in Fig. 2(a). Upon further
heating, vortice pairs with shorter distances separate further
and finally unbind. When an oscillating current is induced by
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FIG. 3. Dynamical susceptibility. (a) Imχ as a function of
T/EJ (T ) obtained in the experiment of a 100 × 100 JJA at
�/�0 = 0 and 1/2. The error bars indicate an estimated uncertainty
associated with the identification of the exact flux bias point. (b) Sim-
ulated susceptibility Imχ at the cavity frequency ωc as a function
of the reduced temperature kBT/EJ. A lattice of 50 × 50 plaquettes
connected to two pads is used in this simulation.

the microwave drive, the unbound vortices and antivortices
diffusively move to the opposite directions normal to the
current, resulting in the screening of the oscillating current.
At higher temperatures, more free vortices appear and screen
the current more, thus the vortices become less susceptible
to the external perturbation. The process results in smaller
dissipation at higher temperatures.

The extracted dynamical susceptibility observed in Imχ

in Fig. 3 is a measure of the spectral dynamical correlation
function near equilibrium in the linear response regime. It is
known that Imχ holds physical information about the system
close to Tc [10,53,54]. Below Tc, Imχ is sensitive to the typical
size of a vortex bound pair, ξ−, and above Tc, its behavior is
controlled by ξ+, the typical distance between free vortices.
This underscores the importance of the information contained
in Imχ , as we can extract physically relevant features of
vortices. The BKT physics has been explored for the low-
frequency limit for JJAs, and our linewidth measurements
open a window into the frequency-domain response.

As demonstrated for the zero-flux case (Fig. 3), our ex-
perimental scheme is largely sensitive to the U(1) symmetry.

FIG. 4. Critical exponent η(T ). Numerically simulated critical
exponent as a function of the reduced temperature kBT/EJ . The
exponent is extracted from linear fitting of the log-log plot of the
spatial correlation function in the ranges of the lattice intervals
[1,10] (red) and [11,20] (blue) (Appendix B). The error bars indicate
the standard deviation estimated by fitting error. The black dashed
line shows the perturbative result by Villain [49]. A system size
of 100 × 100 and periodic boundary conditions are used in this
simulation.

This is explained as follows: In our setup, we extract the
response functions via the charge q0(t ) induced on one of
the pads connected to the JJA. As the response function
Eq. (3) is expressed in terms of q0(t ), we expect that the
susceptibility is sensitive to the U(1) phase since the charge
q0(t ) is proportional to the time derivative of the phase.
Because φ0 is the conjugate variable of q0, the latter can be
viewed as a “velocity” of the spin. This is demonstrated for the
unfrustrated case in our experiment (cf. Fig 3). Furthermore, a
similar detection of the U(1) phase transition has already been
demonstrated in the work of superfluid helium using torsional
pendulum [10,53,55].

Although this scheme is sensitive to the U(1) part, it is
not straightforward to study the critical behavior near the
BKT transition using the present scheme with a fixed probing
frequency. However, it could be addressed if we use a broader-
band detection scheme such as a bad cavity limit or by replac-
ing the cavity with a waveguide. These modifications allow
for probing the response function in a wide frequency range,
and we can thus address universal features of the transition
that emerge in the low-frequency limit.

We further note that the approach we take is sensitive
primarily to the spin waves in the system [43] rather than
directly coupled to the vortices. Instead, the modification of
the effective impedances as the vortices move causes changes
in the observed narrow-band response at the cavity frequency.
(In our prior paper [43], we showed theoretically and exper-
imentally that this connection allowed observation of vortex
lattices at a variety of filling factors and intervortex distances).
Thus we rely upon the indirect measurement of the vortex
behavior via their effect on the spin-wave spectrum. This
indicates that our experiment probes response of the whole
array, that is, there is no particular length scale associated
with the probe frequency since the spin waves are defined for
the whole junction array. We also note that even though the
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spin waves are not exactly defined at high temperatures, our
experiment probes an ensemble average of vortices through
broad spin dynamics.

For the fully frustrated case, there could be two different
transitions: one associated with the onset of the chirality
long-range order (discrete Z2 part) and the other with the onset
of the spin quasi-long-range order [continuous U(1) part].
Numerical studies have indicated that these indeed occur at
close but different temperatures [19,26,30,32,34,52,56] while
there have also been proposals supporting the onsets of the
two orders at the same temperature [27,28,33,36]. Although
the precise nature of the transition is still under debate, we
expect that the peak of the dynamical susceptibility (Fig. 3) is
associated with the onset of the spin quasi-long-range order in
the U(1) part as explained above. Indeed, in the Monte Carlo
study of Ref. [56], the spin-relaxation dynamics data was used
to locate the BKT transition point in the U(1) part while this
data showed no sign of a transition at the presumed chirality
transition point determined by other methods. Theoretically,
the transition in the chirality part can be detected as an
anomaly in the specific heat, while this quantity only shows
smooth behavior at the spin transition [19,34]. We further note
that our scheme is unlikely to detect the globally correlated
flip of all the plaquettes at low temperatures either.

One of the main difficulties of fully frustrated XY in JJA
is that both U(1) and Z2 are defined in terms of the phases
of the islands and thus they could be coupled. Even though
Z2 is uncoupled from U(1) due to its discrete symmetry at
low temperatures, we do not exclude the possibility that the
susceptibility can detect the Z2 part close to the transition
temperature. However, in view of the argument presented
above, we consider that the significant contribution arises
from the U(1) part. Finding a suitable quantity for detecting
the chirality transition in the circuit-QED setup and investigat-
ing the highly nontrivial and debated nature of the transitions
experimentally are interesting issues for future studies.

VII. CONCLUSION

In conclusion, we successfully identified the U(1) tran-
sition temperatures of the unfrustrated and fully frustrated
XY models by studying the dynamical susceptibility in the
circuit QED experiment. The experimental system reported
here serves as an ideal platform to study frustrated spin sys-
tems in a highly controllable manner. As such, our work also
provides a benchmark test for probing many-body physics,
paving the way toward studying challenging regimes of JJAs,
in particular, in frustrated quantum regime.
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FIG. 5. Schematic diagram of the measurement setup.

APPENDIX A: EXPERIMENTAL SETUP

A schematic of the experimental setup is shown in Fig. 5.
We measure the complex reflection coefficient of the cavity,
S11, as a function of frequency using a vector network analyzer
(VNA). An input microwave tone is sent to the coaxial cable,
which is subsequently attenuated to minimize the background
noise. The reflected microwave tone from the cavity is ampli-
fied by a cryogenic high-electron-mobility transistor amplifier
followed by a room-temperature amplifier with a total gain of
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TABLE I. System parameters.

Bare cavity resonance frequency ωc/2π 10.056 GHz
Cavity external coupling rate κext/2π 31.8 MHz
Cavity internal loss rate κint/2π 0.7 MHz
Coupling strength g/2π 350 MHz
Area enclosed by one plaquette S 6 × 6 μm2

Josephson junction energy EJ/h 30.3 GHz
Charging energy EC/h 13.8 GHz
Shunting capacitance CS 48.5 fF
Ground capacitance of each island Cg 1.38 aF
Superconducting transition temperature Tc 1.375 K

∼ 66 dB, which is detected by the VNA. Microwave power
presented in the paper refers to that at the cavity port.

The JJA used in this study consists of 100 × 100 plaquettes
and is lithographically fabricated on a silicon substrate by
a double angle evaporation of aluminium films. The JJA is
connected to two large electrodes to provide strong coupling
to the TE101 mode of the 3D cavity. The cavity has higher
modes; the next four higher modes are the TE201, TE102,
TE202, and TE301 modes located at 16.4, 16.7, 20.9, and
21.3 GHz, respectively. Among these modes, only the TE101

and TE301 modes dominantly couple to the JJA. The param-
eters of the system are shown in Table I. We note that the
superconducting-normal transition temperature shown in Ta-
ble I is obtained by a low-frequency four-probe measurement
on one of the shunting pads.

APPENDIX B: LANGEVIN DYNAMICS SIMULATIONS

We here describe the details about the Langevin dynamics
simulations. To analyze the JJA in the large-EJ limit (i.e.,
EJ/EC � 2/π2), we start from the classical Hamiltonian,

HJJA = 1

2

∑
i j

qiC
−1
i j q j − EJ

∑
i,μ

cos(φi − φi+μ + Ai,μ)

+V (t ), (B1)

where φi is the phase variable at the lattice site i and qi is the
conjugate momentum (the charge) of φi/η with η = 2e/h̄. The
first term is the charging energy with Ci j being the capacitance
matrix. The second term is the potential energy for the phase
variables with Ai,μ being the integral of the vector potential
along the segment in the direction of μ from site i. The last
term V (t ) represents the time-dependent small perturbation by
an external microwave and can be described as

V (t ) = −E (t )�q0, E (t )� = h̄g

2e
X (t ), (B2)

where q0 is the charge at the top pad, E (t )� is the electric
potential difference between the two pads, g is the coupling
strength, and X (t ) = (a + a†)/

√
2 is the quadrature of the

photon field a (see below).
To simulate the finite-temperature dynamics of the exper-

imental system, we numerically solve the following stochas-
tic differential equations of motions with thermal Langevin

FIG. 6. Critical decay of the correlation function of the XY
model. The spatial correlation function C(r) = 〈cos (φ0 − φr )〉 in
the horizontal direction exhibits power-law behavior as a function of
the site distance r below the BKT transition temperature kBT/EJ ∼
0.91. The numerical calculations are performed for a 100 × 100 toy
model that satisfies periodic boundary conditions, Ci j = Cδi j with
(2e)2/C = 2EJ , and � = EJ (we also confirmed that the critical
exponents do not significantly depend on �). Decay exponents in
Fig. 4 are extracted from linear fitting of the log-log plot of the spatial
correlation in the lattice interval of [1,10] (black) and [11,20] (blue)
as shown for kBT/EJ = 0.91.

noises [57]:

dφi = η
∑

j

C−1
i j q jdt,

1

η
dqi = −EJ

∑
μ

sin(φi − φi+μ + Ai,μ) dt

+ EJ

∑
μ

sin(φi−μ − φi + Ai−μ,μ) dt

− �

η
qidt +

√
2�kBT I dWi, (B3)

where � is the damping rate, dWi is the Wiener stochastic
process obeying 〈dWidWj〉 = δi jdt , T is the temperature of
the system, and I = C/η2 is moment of inertia that does not
affect the steady state and can be taken to be an arbitrary value
[58]. The steady-state distribution is given by the following
Gibbs distribution [58]:

P({φi}) ∝ exp

(
EJ

kBT

∑
i,μ

cos(φi − φi+μ + Ai,μ)

)
, (B4)

where we have integrated out the momentum degrees of
freedom. We have benchmarked the convergence to the equi-
librium distribution by confirming the expected critical decay
of the correlation function. Figure 6 shows the numerically
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obtained spatial correlation function

C(r) = 〈cos (φ0 − φr )〉, r = (0, r) (B5)

as a function of the distance r for a toy model with a diagonal
capacitance matrix and periodic boundary conditions. Below
the BKT transition temperature kBT/EJ ∼ 0.91, the correla-
tion function indeed decays according to a power law and
its critical exponent obeys the result by the renormalization
group [49] as shown in Fig. 4 in the main text. We note
that the steady-state distribution P({φi}) in Eq. (B4) and the
spatial correlation function C(r) in Eq. (B5) do not depend
on the damping rate � as long as it is nonzero and stochastic
realizations are sufficiently many.

Having established the convergence to the steady-state
thermal distribution, we now consider obtaining the linear
response function corresponding to an external perturbation
by microwaves. Since the dominant contribution in the cavity–
array interaction comes through the top pad, it suffices to
consider the couplings of lattice sites to this pad. The resulting
susceptibility χ (ω) ≡ q0(ω)/X (ω) relating the perturbation X
to the charge q0 at the top pad can be obtained by performing
the Fourier transformation of the response function (see, e.g.,
Ref. [59]),

χ (ω, T ) = h̄g

2e

∫ ∞

−∞
dteiωt 〈q0(t )q̇0(0)〉eq

kBT
, (B6)

where 〈· · · 〉eq denotes the ensemble average over the steady-
state regime.

Figure 3(b) in the main text shows numerically obtained
Im χ/2e as a function of temperature for the system with
the 50 × 50 JJA and the parameters used in the experiment.
The linewidths indeed show their peaks around the transition
temperature kBT/EJ ∼ 0.91 (kBT/EJ ∼ 0.43) in the absence
of fluxes (presence of half fluxes). Notably, it is expected that
the peak temperatures of Im χ/2e do not change significantly
according to the damping rate �, whereas Im χ/2e itself
depends on �.

Figure 7 shows the size L dependence of the BKT transi-
tion temperatures determined by the spatial correlation func-
tions and the peak temperatures of the linewidths. For each
L, the linewidth peak temperature coincides with the BKT
transition temperature within their numerical errors, which
indicates that the linewidth gives a dynamical signature of the
BKT transition in the JJA.

APPENDIX C: INPUT-OUTPUT RELATIONS

Finally, to relate the susceptibility to an experimentally
measured quantity, we invoke the input-output formalism. Af-
ter employing the rotating-wave approximation (X → a/

√
2),

the equation of motion for the cavity field at frequency ω can
be obtained as [43]

−iωa = −iωca − κext + κint

2
a + iχ̃a + √

κextain,

χ̃ = g

2

χ

2e
, (C1)

FIG. 7. Size L dependence of the BKT transition temperatures
and the peak temperatures of the linewidth. Here OBC (PBC)
stands for open (periodic) boundary conditions. The BKT transition
temperatures are determined by the critical exponent of the spatial
correlation function and shown for the realistic model with open
boundaries up to L = 50 and the toy model with periodic boundaries
up to L = 100 without fluxes. The error bars indicate the uncertainty
estimated from the difference between the two sets of data as shown
in Fig. 4. The peak temperatures of the linewidth are plotted. The
error bars indicate the uncertainty due to nonsharpness of the peaks
within the present numerical precision.

where ωc is the cavity frequency, κext (κint) is the external
(internal) microwave field loss, and ain is the input field. Using
the input-output relation,

√
κexta = ain − aout, (C2)

we obtain
〈

aout

ain

〉
= 1 − κext

κext+κint
2 − i(ω − ωc + χ̃ )

. (C3)

Decomposing the susceptibility into the real and imaginary
parts as χ̃ ≡ χ̃r + iχ̃i, we arrive at the following equality
relating the reflection coefficient (which has been experimen-
tally measured) to the susceptibility χ (which can be obtained
via the Langevin dynamic simulation):

Re

[〈
aout

ain

〉]
= 1 − κextκtot/2

(κtot/2)2 + (ω − ωc + χ̃r )2
,

κtot = κext + κint + 2χ̃i. (C4)

Since κext and κint are almost temperature independent, it
is evident that the temperature dependence of the resonance
linewidth observed in the reflection coefficient originates from
that of the imaginary part of the susceptibility.
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