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Multiple odd-parity superconducting phases in bilayer transition metal dichalcogenides
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We study unconventional superconductivity in a two-dimensional locally noncentrosymmetric triangular
lattice. The model is relevant to bilayer transition metal dichalcogenides with 2Hb stacking structure, for
example. The superconducting instability is analyzed by solving the linearized Eliashberg equation within the
random phase approximation. We show that ferromagnetic fluctuations are dominant owing to the existence
of disconnected Fermi pockets near van Hove singularity, and hence odd-parity spin-triplet superconductivity
is favored. In the absence of the spin-orbit coupling, we find that odd-parity f -wave superconducting state is
stabilized in a wide range of carrier density and interlayer coupling. Furthermore, we investigate impacts of the
layer-dependent staggered Rashba and Zeeman spin-orbit coupling on the superconductivity. Multiple odd-parity
superconducting phase diagrams are obtained as a function of the spin-orbit coupling and Coulomb interaction.
Especially, a topological chiral p-wave pairing state is stabilized in the presence of a moderate Zeeman spin-orbit
coupling. Our results shed light on a possibility of odd-parity superconductivity in various ferromagnetic van der
Waals materials.
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I. INTRODUCTION

Searching for odd-parity superconductors, which provide a
platform for the intrinsic topological superconductivity [1–3],
has been one of central issues in research field of the un-
conventional superconductivity. At present, several solid-state
materials are proposed as possible candidates for the odd-
parity spin-triplet superconductor, e.g., Sr2RuO4 [4,5], UPt3

[6–8], UGe2 [9], URhGe [10], UCoGe [11], and UTe2 [12,13].
Note that there are now some results conflicting with the spin-
triplet pairing in Sr2RuO4 [14–17]. Exploration of spin-triplet
superconductivity in systems other than heavy fermions is an
important issue.

There are two important factors for realizing spin-triplet
pairing states in solid-state materials, i.e., the ferromagnetic
(FM) spin fluctuation and the Fermi surface (FS) structure.
In the absence of notable FS nesting, the FM fluctuation is
enhanced when the Fermi energy lies near the van Hove singu-
larity (vHS). Specifically, the so-called type-II vHS [18–20],
whose saddle points are not located at the time-reversal
invariant (TRI) momenta, is preferable for the odd-parity su-
perconductivity. On the other hand, a disconnected form of
the FS is favorable for the odd-parity pairing since generation
of gap nodes is avoidable [21,22]. Stabilization of odd-parity
spin-triplet pairing states has been theoretically proposed in a
variety of systems with disconnected FSs, e.g., (TMTSF)2X
(X = PF6,ClO4) [21,23–26], NaxCoO2 · yH2O [27–35], SrP-
tAs [36,37], and doped Kane-Mele model [38]. Note that
some experimental results suggest that NaxCoO2 · yH2O is a
spin-singlet superconductor [39,40].
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Another intriguing topic for the unconventional supercon-
ductivity is the relation between crystalline symmetry and
the pairing states [41]. Particularly, various exotic super-
conducting (SC) phenomena have been elucidated in locally
noncentrosymmetric (NCS) systems [42–51], in which the
inversion symmetry in a local atomic site is broken although
the global inversion symmetry is preserved. Microscopically,
a key aspect of locally NCS systems is the sublattice-
dependent antisymmetric spin-orbit coupling (SOC), which
leads to exotic superconductivity, e.g., singlet-triplet mixed
paring states [44], pair density wave states [46,50], com-
plex stripe states [47], and topological superconductivity
[45,48,49]. Especially, it has been clarified that odd-parity
topological superconductivity is realized by a combination
of antiferromagnetic spin fluctuations and the sublattice-
dependent antisymmetric SOC, namely odd-parity magnetic
multipole fluctuations [51]. Thus, it is interesting to study
interplay of FM-fluctuation-driven superconductivity and lo-
cally NCS crystal structure, in the sense of comparison
with the case of the antiferromagnetic-fluctuation-driven
superconductivity.

Considering the above-mentioned aspects, we provide a
thorough microscopic investigation of unconventional su-
perconductivity in a two-dimensional (2D) locally NCS
triangular lattice (Fig. 1) with disconnected FSs. The model is
relevant to bilayer transition metal dichalcogenides (TMDs)
with 2Hb stacking structure, which is favored in group-VI
TMDs such as MX2 (M = Mo, W and X = S, Se) [52,53].
In a few layer group-VI TMDs, disconnected FSs are formed
around K and K ′ points owing to the triangular lattice
structure. Assuming a strong electron correlation, we clar-
ify dominant FM-like spin fluctuations assisted by a type-II
vHS. In fact, ferromagnetism has been recently observed in
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FIG. 1. Crystal structure of the bilayer triangular lattice. (a) The
top view and (b) the side view. a1 and a2 are the lattice vectors. t and
t ′ are the intralayer and interlayer hopping integrals, respectively.

a few-layer VSe2 [54] and MnSe2 [55]. Since the conduc-
tion electrons in TMDs have d-orbital character, correlation
effects are expected to have considerable impacts on the su-
perconductivity [56–59]. We show that odd-parity SC state
with f -wave symmetry is stabilized by the FM fluctuation
in the absence of the SOC. On the other hand, the local
inversion symmetry breaking in the crystal structure induces
layer-dependent staggered Rashba and Zeeman SOC. The
SOC breaks the spin SU(2) symmetry and lifts the degen-
eracy of spin-triplet SC states. Thus, the SOC controls the
internal degree of freedom of odd-parity superconductivity
and its topological property. We elucidate that multiple odd-
parity SC phases with either p-wave or f -wave pairing, which
belong to different irreducible representations (IRs) of the
crystal point group, appear by increasing magnitude of the
staggered SOC. It is shown that the multiple SC phase dia-
gram is a consequence of the selection rule for locally NCS
superconductors [44] and SOC-induced magnetic anisotropy.
In addition, topological properties of the stable odd-parity SC
states are studied. A chiral p-wave pairing state in a moderate
Zeeman SOC region is identified as a topological SC state in
class D.

The rest of the paper is constructed as follows. In Sec. II
we introduce a 2D bilayer triangular lattice Hubbard model
including the layer-dependent staggered Rashba and Zeeman
SOC. The formulation for the microscopic calculations based
on the random phase approximation (RPA) and linearized
Eliashberg equation is provided. In Sec. III we study the mag-
netic fluctuations. The dominance of the FM fluctuation and
the magnetic anisotropy under the SOC are discussed. Numer-
ical results of the Eliashberg equation are shown in Sec. IV.
Stability of f -wave SC states is clarified in the absence of the
SOC. In the presence of the SOC, we identify four stable odd-
parity SC states with different pairing symmetry. Topological

properties of these SC states are also investigated. Finally, a
brief summary and conclusion are provided in Sec. V.

II. MODEL AND FORMULATION

We consider a 2D bilayer triangular lattice with the lattice
vectors a1 = (1, 0) and a2 = (−1/2,

√
3/2) (Fig. 1), which is

classified into D3d point group. The crystal structure is equiv-
alent to that of bilayer TMDs with 2Hb stacking. Recently,
superconductivity in bilayer MoS2 was realized by symmet-
ric gating [60]. On this lattice we introduce a single-orbital
Hubbard model H = H0 + Hint. Note that we do not address
the multiorbital physics in this study to perform material-
independent general calculations and electron doped MoS2 is
indeed a single-orbital system. The single-particle Hamilto-
nian H0 with SOC is written as

H0 =
∑
k,m,s

(ε(k) − μ)c†
k,msck,ms

+
∑
k,s

(η(k)c†
k,asck,bs + H.c.)

+
∑

k,ζ ,ζ ′

∑
j=1,2

α jg j (k) · σss′τ z
mm′c†

k,msck,ms′ , (1)

where ck,ms is the annihilation operator for an electron with
momentum k and spin s =↑,↓ on layer m = a, b. ζ = (m, s)
is the abbreviated notation, and σμ (τ ν) is the Pauli matrix for
spin (layer) degrees of freedom. The first term is the kinetic
energy term. The single-electron kinetic energy is described
as

ε(k) = 2t[cos k · a1 + cos k · a2 + cos k · (a1 + a2)], (2)

by taking into account the nearest-neighbor hopping. We
choose the hopping integral t as a unit of energy (t = 1). The
chemical potential μ is determined to fix the carrier density as
n. The second term is the interlayer coupling. The interlayer
hybridization function is given by

η(k) = t ′[1 + e−ik·a2 + e−ik·(a1+a2 )]. (3)

In this study we assume that the interlayer hopping integral t ′
is smaller than the intralayer hopping integral t (i.e., t ′ < t).
The third term is the layer-dependent staggered SOC, which is
originated from the locally NCS crystal structure and a spin-
dependent intralayer hopping. Since the local site symmetry is
C3v , the g-vector g j (k) should belong to A2u IR of D3d which
becomes trivial A1 IR in C3v (see Table I). In this study we
consider two kinds of g vectors as

g1(k) = 1

	

[√
3

2
{sin k · (a1 + a2) + sin k · a2}x̂

−
{

sin k · a1 + sin k · (a1 + a2) − sin k · a2

2

}
ŷ
]
,

(4)

g2(k) = 2

3
√

3
[sin k · a1 + sin k · a2 − sin k · (a1 + a2)]ẑ,

(5)
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TABLE I. 2D basis gap functions for the IRs of trigonal D3d point
group without sublattice degrees of freedom. The second column
shows the compatibility relations between D3d and C3v .

D3d D3d ↓ C3v Basis functions with kz = 0

A1g A1 σ̄ 0

A2g A2 kxky(k2
x − 3k2

y )(3k2
x − k2

y )σ̄ 0

Eg E {kxky, k2
x − k2

y }σ̄ 0

A1u A2 kxσ̄
x + kyσ̄

y, ky(3k2
x − k2

y )σ̄ z

A2u A1 kxσ̄
y − kyσ̄

x , kx (k2
x − 3k2

y )σ̄ z

{kxσ̄
y + kyσ̄

x, kxσ̄
x − kyσ̄

y}, {kx, ky}σ̄ z

Eu E
kx (k2

x − 3k2
y ){σ̄ x, σ̄ y}, ky(3k2

x − k2
y ){σ̄ x, σ̄ y}

where 	 = 1.7602. Equations (4) and (5) are the Rashba and
Zeeman SOC, respectively. Both terms belong to A2u IR. The
Rashba (Zeeman) SOC originates from the out-of-plane (in-
plane) local inversion symmetry breaking at each layer. The
constant factors are chosen as Maxk|g j (k)| = 1. Although the
Rashba SOC is negligible compared to the Zeeman SOC in
some TMDs [50,61], we treat both of them on equal footing
to provide a general calculation not limited to existing TMDs.
The on-site Coulomb interaction is given by

Hint = U
∑
i,m

ni,m↑ni,m↓, (6)

where ni,ms = c†
i,msci,ms is the electron density operator on

site i. Strong repulsive electron-electron interaction may be
present owing to the d-orbital character of conduction carries
in TMDs. We treat Hint in the RPA.

We study the SC instability in this model by solving the
linearized Eliashberg equation

λ�ζζ ′ (k) = −T

N

∑
k′

∑
{ζ j}

Vζ ζ1,ζ2ζ ′ (k − k′)

× Gζ3ζ1 (−k′)�ζ3ζ4 (k′)Gζ4ζ2 (k′), (7)

where we used the abbreviated notation k = (k, iωp) and
ωp = (2p + 1)πT is the fermionic Matsubara frequency.
The noninteracting temperature Green’s function is given by
Ĝ(k) = [iωp1̂ − Ĥ0(k)]−1. λ and �̂(k) are the eigenvalue and
gap function, respectively. In the RPA, the effective pairing
interaction V̂ (q) can be described as

V̂ (q) = −�̂(0)χ̂ (q)�̂(0) − �̂(0), (8)

by using the RPA susceptibility

χ̂ (q) = χ̂ (0)(q)[1̂ − �̂(0)χ̂ (0)(q)]−1. (9)

Here the irreducible susceptibility is defined as

χ
(0)
ζ1ζ2,ζ3ζ4

(q) = −T

N

∑
k

Gζ3ζ1 (k)Gζ2ζ4 (k + q). (10)

The bare irreducible vertex in this model is obtained as

�
(0)
ζ1ζ2,ζ3ζ4

= U

2
δm1m2δm3m4δm1m3

× (σs1s2 · σs4s3 − δs1s2δs4s3 ). (11)

FIG. 2. Diagrammatic representation of the bare irreducible ver-
tex �̂(0).

The diagrammatic representation of Eq. (11) is shown in
Fig. 2. In the following numerical calculations, we set T/t =
0.02, 64 × 64 k points, and 1024 Matsubara frequencies.

III. MAGNETIC FLUCTUATION

In this section we study the magnetic fluctuation by intro-
ducing magnetic susceptibilities as follows:

χ
μν

mm′ (q) =
∑
{s j }

σμ
s1s2

χms1ms2,m′s3m′s4 (q)σ ν
s4s3

, (12)

where μ, ν = x, y, z. The magnetic fluctuation parallel (per-
pendicular) to the c axis is characterized by χ‖ ≡ χ zz [χ⊥ ≡
(χ xx + χ yy)/2]. In the following we consider low doping
regimes, in which small disconnected Fermi pockets are
formed around the K and K ′ points [see Fig. 3(a)]. This con-
dition is relevant to electron-doped bilayer TMDs with 2Hb

stacking structure [60].
First, we investigate the magnetic fluctuations in the ab-

sence of the SOC. In this case, there is no magnetic anisotropy,
and hence χ‖ = χ⊥(≡ χS ). In Figs. 3(b) and 3(c) we show

FIG. 3. (a) Fermi surfaces. (b) and (c) Momentum dependence
of the intralayer magnetic susceptibility χ S

aa(=bb)(q, 0) for (b) U = 0
and (c) U = 5.0. We set t ′/t = 0.2, n = 0.1, and α j = 0.
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FIG. 4. Band structure and density of states for α j = 0 and μ = 0.

momentum dependence of the intralayer magnetic suscepti-
bility χS

aa(= χS
bb) for t ′/t = 0.2, n = 0.1 and α j = 0. In the

absence of the Coulomb interaction, the magnetic susceptibil-
ity takes the maximum value at q = 0 [see Fig. 3(b)] which
imply FM spin fluctuation in this system. By introducing the
Coulomb interaction, the peak at q = 0 becomes sharper [see
Fig. 3(c)], and the FM fluctuation is enhanced. The FM fluctu-
ation is partially owing to the smallness of the FS. Besides, the
FM fluctuation is enhanced because the Fermi level lies near
the type-II vHS, which is associated with the saddle points
located slightly away from the K (K ′) point. This type-II vHS
originates from the band splitting at the band bottom due to a
finite interlayer coupling, and hence it is a fingerprint of the
bilayer structure. In the 2Hb stacking, the interlayer hybridiza-
tion vanishes at the K (K ′) points as ensured by the threefold
rotational symmetry [53,62,63]. Therefore, Dirac-type linear
dispersion appears around the K (K ′) point (see Fig. 4), and it
gives rise to the type-II vHS similar to the Rashba model [64].
Indeed, Fig. 4 reveals a large density of states near the band
bottom.

Next, we show the magnetic fluctuations in the presence
of the SOC. In locally NCS systems, a sublattice-dependent
staggered SOC gives a significant impact on the electronic
structure when the ratio of the SOC and the intersublattice
coupling is large [43]. Since the interlayer coupling η(k)
vanishes at the K (K ′) point [53,62,63], the ratio ϕ j (k) ≡
|α jg j (k)|/|t ′η(k)| can be large on the FS. Hence, the mag-
netic fluctuation is strongly affected by the staggered SOC.
The SOC dependencies of the magnetic susceptibilities are
shown in Fig. 5. The sharp peak of the magnetic susceptibil-
ity at the � point is gradually suppressed by increasing α j

[Figs. 5(a) and 5(c)], and the FM fluctuation is weakened.
The suppression of the FM fluctuation is significant in the
case of the Zeeman SOC, since the ratio of the SOC and
interlayer coupling has a larger value than that in the case
of the Rashba SOC [i.e., ϕ2(kF) > ϕ1(kF)]. Figures 5(b) and
5(d) reveal appearance of the magnetic anisotropy (χ‖ 	= χ⊥)
owing to the violation of the spin rotational symmetry. The
Rashba SOC monotonically increases the magnetic anisotropy
mainly at around the � point [Fig. 5(b)]. On the other hand,
the growth of the magnetic anisotropy by the Zeeman SOC is
nonmonotonic [Fig. 5(d)]. Although the SOC dependence of
the magnetic anisotropy is complicated, we find that χ⊥ > χ‖
is always realized at the � point. Thus, a FM-like magnetic

FIG. 5. Momentum dependence of the magnetic susceptibilities
along the symmetry axis for several values of (a) and (b) the Rashba
SOC α1 and (c) and (d) Zeeman SOC α2. Parameters are set to
be t ′/t = 0.2, n = 0.1, U = 5.0, and T = 0.02. (a) and (c) An in-
tralayer c-axis component χ ‖

aa(q, 0), and (b) and (d) the anisotropy
χ⊥

aa(q, 0) − χ ‖
aa(q, 0).

structure with an in-plane spin alignment is favored in the
presence of the SOC. It should be noticed that such an in-plane
FM ordering has been observed in an atomically thin film of
group-V TMD VSe2 [54]. The superconductivity is signifi-
cantly affected by this magnetic anisotropy as we demonstrate
in Sec. IV B.

IV. SUPERCONDUCTIVITY

Here we illustrate numerical results of the Eliashberg equa-
tion in the framework of the RPA. We specify the momentum
and layer dependence of the gap functions from the numerical
results of the eigenfunctions of the Eliashberg equation. The
SC phase diagrams, which illustrate the most stable SC states
with the largest eigenvalue, are obtained as a function of the
Coulomb interaction, interlayer hopping, carrier density, and
SOC. Then, multiple odd-parity SC phases stabilized by FM
fluctuations are demonstrated.

A. Superconductivity without spin-orbit coupling

First, we show the SC phases in the absence of the SOC.
Figure 6(a) [Fig. 6(b)] shows phase diagrams as a function
of the interlayer hopping t ′ (carrier density n) and Coulomb
interaction U at n = 0.1 (t ′/t = 0.5). Owing to the dominant
FM spin fluctuations, odd-parity spin-triplet fx(x2−3y2 )-wave
SC states, which are classified into A2u or Eu IRs in the pres-
ence of the SOC, are stabilized in the whole parameter region.
This fx(x2−3y2 )-wave SC state is a full gap state and mainly
caused by intralayer Cooper pairing. The gap function for the
fx(x2−3y2 )-wave SC state is almost the same as Fig. 10(a). Since
the effective pairing interaction for spin-triplet superconduc-
tivity is approximated as V triplet 
 −(U 2/2)χS in the absence
of SOC, the magnetic fluctuation favors the gap function with
the same sign on each piece of the FS connected by a vector Q.
Here Q is the wave vector at which the magnetic susceptibility
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FIG. 6. (a) Phase diagram for the Coulomb interaction U and
interlayer hopping t ′ at n = 0.1 and T = 0.02. (b) Phase diagram
for the Coulomb interaction U and carrier density n at t ′/t = 0.5
and T = 0.02. The solid line is the phase boundary between FM-like
ordered state and paramagnetic state, at which the Stoner factor
S = max[�̂(0)χ̂ (q)] becomes unity. In the paramagnetic phase, the
fx(x2−3y2 )-wave pairing state is stabilized.

is enhanced. As shown in Fig. 3(c), the magnetic susceptibility
is sharply peaked at q 
 0 (i.e., Q 
 0). Thus, the fx(x2−3y2 )-
wave SC state is stabilized to avoid generation of gap nodes at
the K and K ′ points [21,22].

B. Superconductivity and spin-orbit coupling

Next, we investigate superconductivity in the presence of
the layer-dependent staggered SOC. In the following dis-
cussion we describe the SC gap function as �i

ms,m′s′ (k) =∑
μν dμν

i (k)σ̄ μ

ss′τ
ν
mm′ , where i = 1, 2 is the index for 2D IRs

and σ̄
μ

ss′ = [σμiσ y]ss′ (μ = 0, x, y, z). In the presence of the
SOC, symmetry of SC states is classified based on the crystal-
lographic point group. Then the gap function belongs to one of
IRs of D3d point group shown in Table I. The SC instability is
discussed by solving the Eliashberg equation under symmetry
constraints for each of the IRs (see Appendix A). Note that
the symmetry constraints are technically introduced to avoid
numerical errors.

Figure 7 shows the SOC dependence of eigenvalues of
the Eliashberg equation λ at t ′/t = 0.2, n = 0.1, and U =
4.8. Owing to the dominant FM fluctuation, the intralayer

FIG. 7. SOC dependence of eigenvalues of the Eliashberg
equation λ at t ′/t = 0.2, n = 0.1, U = 4.8, and T = 0.02. The eigen-
values for A1u (p-wave), A2u ( fx2 (x2−3y2 )-wave), Eu ( fx2 (x2−3y2 )-wave or
p-wave), A1g (s-wave), and Eg (d-wave) pairing states are illustrated.

fx(x2−3y2 )-wave (A2u or Eu) pairing state is predominant and
the p-wave (A1u, A2u, or Eu) pairing state is subdominant for
α j = 0. On the other hand, the eigenvalues of even-parity
s-wave (A1g) and d-wave (Eg) pairing states are smaller than
those of odd-parity pairing states. The eigenvalues of the A2u

and Eu SC states are equal at α j = 0, since the spin part of
the gap function is threefold degenerated in the absence of
the SOC. By turning on the staggered Rashba (Zeeman) SOC,
the degeneracy is lifted due to violation of the spin rotational
symmetry, and the Eu (A2u) SC state is stabilized as λA2u < λEu

(λA2u > λEu ). For these parameters, the spin direction of the
SC state is determined by the selection rule for locally NCS
superconductors [44,51], which originates from a modulation
of the one-particle Green’s function by the staggered SOC.
The selection rule determines the symmetry of the stable SC
state depending on whether the leading SC order parame-
ter is intrasublattice component or intersublattice component
(see Fig. 8 for an illustration). For intrasublattice pairing,
the spin-singlet SC state or spin-triplet SC state with d(k) ‖
g(k) are stabilized. On the other hand, only the spin-triplet
SC state with d(k) ⊥ g(k) is stable for intersublattice pair-
ing. In a small SOC region, the leading order parameter for

FIG. 8. Schematic figure of the Cooper pairing in a two-
sublattice system with the staggered Rashba SOC. The spin texture,
which is opposite in each sublattice, can be defined in the absence of
intersublattice hybridization as shown in the figure. (a) By choosing
the Rashba-type g-vector g(k) as the spin quantization axis at each
momentum, an intrasublattice Cooper pair wave function can be
described as � intra

k = |k, σ ; a〉 |−k, σ̄ ; a〉, where |k, σ ; m〉 denotes the
wave function for an electron with momentum k and spin σ on
sublattice m = a, b. � intra

k is decomposed to the spin-singlet state
and spin-triplet state with d(k) ‖ g(k), and hence only these pairing
states are stabilized for intrasublattice pairing. (b) A Cooper pair
wave function for the intersublattice pairing state is described as
� inter

k = |k, σ ; a〉 |−k, σ ; b〉. This means that the spin-triplet pairing
state with d(k) ⊥ g(k) is stable for intersublattice pairing.
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FIG. 9. (a) and (b) Phase diagram for the Coulomb interaction U and staggered Rashba SOC α1 at α2 = 0 and T = 0.02. (c) and (d) Phase
diagram for the Coulomb interaction U and staggered Zeeman SOC α2 at α1 = 0 and T = 0.02. (a) and (c) t ′/t = 0.2 and n = 0.1, while
(b) and (d) t ′/t = 0.5 and n = 0.12. The solid line is the phase boundary between FM-like ordered state and paramagnetic state. In the
paramagnetic phase, the odd-parity A2u and Eu SC states are illustrated.

the A2u (Eu) pairing state possesses the intralayer fx(x2−3y2 )-
wave symmetry with d ‖ ẑ (d ‖ x̂, ŷ). Thus, the A2u (Eu) SC
state is destabilized by the staggered Rashba (Zeeman) SOC,
since the leading intralayer order parameter with d ⊥ g1 (d ⊥
g2) is incompatible with the selection rule. In addition, to be
compatible with the selection rule, the gap function is mod-
ified in a large SOC region. For example, the leading order
parameter of the Eu pairing state exhibits p-wave symmetry
for α2/t � 0.04, while that shows fx(x2−3y2 )-wave symmetry
for α2/t � 0.04 (see right panel of Fig. 7). As demonstrated
above, competition of various SC states with different pairing
symmetry can be controlled by the staggered SOC.

The selection rule is derived in the framework of the mean-
field theory with assuming a simple pairing interaction [44].
Therefore, it is uncertain whether or not the selection rule
holds in the presence of the modification of the effective pair-
ing interaction by the SOC and Coulomb interaction, although
it looks to hold in Fig. 7. In order to clarify the applicability
of the selection rule in this model, we investigate detailed
behaviors of the superconductivity against the staggered SOC
and Coulomb interaction in the following part. Figure 9 shows
phase diagrams as a function of the staggered SOC α j and
Coulomb interaction U . We found that an odd-parity SC state
with either A2u or Eu symmetry is stabilized and it is controlled
by magnitude of the SOC and Coulomb interaction. The gap
functions for these odd-parity SC states are illustrated in
Table II and Figs. 10 and 11. It should be noticed that the
Zeeman SOC significantly affects the superconductivity com-
pared to the Rashba SOC because the Zeeman SOC takes a

large magnitude near the K point. Therefore, superconduc-
tivity in a trigonal system with in-plane inversion symmetry
breaking is affected by a moderate SOC.

In the presence of the Rashba SOC, the superconductiv-
ity exhibits different behaviors depending on the magnitude
of the interlayer hopping. In the case of a small interlayer
hopping t ′/t = 0.2, the staggered Rashba SOC stabilizes only
the Eu SC state [Fig. 9(a)], whose leading order param-
eters are intralayer spin-triplet components {dy0

1 , dx0
2 } with

fx(x2−3y2 )-wave symmetry [Figs. 11(a) and 11(b)]. This Eu

fx(x2−3y2 )-wave SC state is compatible with the selection rule

FIG. 10. Gap functions for the A2u SC state at t ′/t = 0.2,
n = 0.1, α2 = 0.1, and U = 5.2. (a) Leading intralayer fx(x2−3y2 )-
wave component dz0(k, iπT ) and (b) parity-mixing-induced s-wave
component d0z(k, iπT ). The gap functions are normalized so that the
maximum amplitude of the leading order parameter becomes unity.
Corresponding FS is illustrated in the left panel. Eigenvalues of the
Eliashberg equation is λ = 2.83905.
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TABLE II. Leading order parameters and parity-mixing-induced components for the odd-parity A2u and Eu SC states. �s(k), �px (k),
�py (k), �

dx2−y2 (k), �dxy (k), and � f (k) denote gap functions which possess momentum dependence with s-wave, px-wave, py-wave, dx2−y2 -
wave, dxy-wave, and fx(x2−3y2 )-wave symmetry. The third column shows the phase diagram in which the corresponding SC state is stabilized.
The last column is figures which illustrate the gap functions.

IR Leading order parameter Parity mixing Phase diagram Gap function

A2u � f (k)σ̄ zτ 0 �s(k)σ̄ 0τ z Figs. 9(b), 9(c), and 9(d) Fig. 10
{� f (k)σ̄ y, � f (k)σ̄ x}τ 0 Fig. 9(a) Figs. 11(a) and 11(b)

Eu {�px (k),�py (k)}σ̄ zτ 0 {�dx2−y2 (k),�dxy (k)}σ̄ 0τ z Figs. 9(c) and 9(d) Figs. 11(c) and 11(d)
{� f (k)τ x, �s(k)τ y}σ̄ z Fig. 9(b) Figs. 11(e) and 11(f)

as we already demonstrate for Fig. 7. On the other hand, in the
case of a large interlayer hopping t ′/t = 0.5, the A2u or Eu SC
states are stabilized depending on the magnitude of the Rashba
SOC [Fig. 9(b)]. The A2u SC state is favored for a small
Rashba SOC region (0 � α1/t � 0.8), while the Eu SC state
is favored for a large Rashba SOC region (α1/t � 0.8). This
multiple SC phase diagram is a consequence of competition
between the selection rule and magnetic anisotropy. The A2u

SC state with the fx(x2−3y2 )-wave leading order parameter dz0

FIG. 11. Leading components of the gap function for the Eu SC
states. (a) and (b) t ′/t = 0.2, n = 0.1, α1 = 0.35204, and U = 5.0.
(c) and (d) t ′/t = 0.2, n = 0.1, α2 = 0.19, and U = 7.18. (e) and
(f) t ′/t = 0.5, n = 0.12, α1 = 0.8801, and U = 3.8. The gap func-
tions are normalized so that the maximum amplitude of the leading
order parameter becomes unity. Corresponding FSs are illustrated
in the left panels. Eigenvalues of the Eliashberg equation is λ =
2.1145, 1.04829, 2.32491 in (a) and (b), (c) and (d), and (e) and (f),
respectively.

is incompatible with the selection rule because d ⊥ g1 in the
whole Brillouin zone. The stabilization of the A2u SC state
may be attributed to the magnetic anisotropy. The magnetic
anisotropy under the Rashba SOC is always χ⊥ > χ‖ near
the � point like that for t ′/t = 0.2 [see Fig. 5(b)]. Since the
effective pairing interaction for the spin-triplet pair amplitude
dzν can be approximated as V eff ≈ −(U 2/2)(2χ⊥ − χ‖), the
magnetic anisotropy χ⊥ > χ‖ favors the spin-triplet pairing
with d ‖ ẑ. Thus, the A2u SC state is stabilized contrary to
the selection rule. Note that impacts of a sublattice-dependent
staggered SOC on the electronic structure are generally weak-
ened by increasing the intersublattice coupling [43]. Thus, the
selection rule is less important for larger t ′/t . Leading order
parameter of the Eu SC state for α1/t � 0.8 is interlayer spin-
triplet components {dzx

1 , dzy
2 } [Figs. 11(e) and 11(f)], which

are compatible with the selection rule. The enhancement of
the interlayer order parameters {dzx

1 , dzy
2 } is attributed to the

large interlayer coupling and magnetic anisotropy χ⊥ > χ‖.
Note that the interlayer component of the effective interaction
vertex V̂ (q) [Eq. (8)] is induced by a finite interlayer hopping
contained in the RPA susceptibility χ̂ (q), although the origi-
nal electron-electron interaction Hint [Eq. (6)] does not couple
the layers.

We also investigated superconductivity based on the Kohn-
Luttinger framework within the second order perturbation
theory [65]. In this approximation, the intrasublattice Eu

fx(x2−3y2 )-wave state is always stable and we do not find
violation of the selection rule. This is because the magnetic
anisotropy in the bare susceptibility is weak and its effect
on superconductivity is negligible. In other words, exchange
enhancement of magnetic anisotropy, which is taken into ac-
count in the RPA, plays an essential role to stabilize the A2u

state violating the selection rule.
On the other hand, the SC phase diagram in the presence

of the Zeeman SOC is qualitatively the same irrespective
of the magnitude of the interlayer hopping [Figs. 9(c) and
9(d)]. The staggered Zeeman SOC stabilizes the A2u or Eu

SC states, depending on magnitude of the Zeeman SOC. The
A2u SC state is stabilized in a small Zeeman SOC region,
while the Eu SC state is stabilized in a large Zeeman SOC re-
gion. Both SC states are indeed compatible with the selection
rule. The leading order parameter for the A2u (Eu) SC state
is dz0 ({dz0

1 , dz0
2 }) with fx(x2−3y2 )-wave (p-wave) symmetry

[Fig. 10(a)] [Figs. 11(c) and 11(d)]. Note that the leading
order parameter for the Eu SC state changes as {dy0

1 , dx0
2 }

( fx(x2−3y2 ) wave) → {dz0
1 , dz0

2 } (p wave) by increasing the
SOC α2 so as to be compatible with the selection rule. The
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stabilization of the Eu SC state against the A2u SC state may
be attributed to the parity-mixing effect for the intralayer
pairing. In locally NCS crystals, parity-mixing effect induces
an intrasublattice staggered spin-singlet (spin-triplet) compo-
nent for odd-parity (even-parity) SC states. The symmetry of
the parity-mixing-induced component is determined by the
compatibility relation between the global symmetry and the
local site symmetry. In our model, the global and local site
symmetries are classified as D3d and C3v , respectively. Then
the parity-mixing occurs between A1g and A2u, A2g and A1u,
and Eg and Eu (see second column of Table I) at each layer.
As shown in Fig. 10, the parity mixing effect induces an
s-wave component d0z in the A2u SC state, and it becomes
comparable to the leading fx(x2−3y2 )-wave component dz0 in
the large Zeeman SOC region. On the other hand, an intrasub-
lattice staggered d-wave component (not shown) appears in
the Eu SC state as a consequence of the parity-mixing effect.
Since the s-wave pairing is unfavorable in the presence of the
Coulomb interaction, the strongly parity-mixed f + s-wave
A2u SC state is overwhelmed by the p + d-wave Eu SC state
in the large Zeeman SOC region. The critical value α2 ∼ 0.1
corresponds to α2 = 20 meV when we adopt t = 200 meV
[53]. This value lies in the realistic range of TMDs. Finally,
we note that the competition between the selection rule and
magnetic anisotropy does not occur in the case of the Zeeman
SOC, in contrast to the case of the Rashba SOC.

C. Topological superconductivity

Finally, we discuss topological superconductivity. The Z2

part of topological invariants for the odd-parity SC states is
determined by the occupation numbers at the TRI momenta in
the Brillouin zone [1–3]. In our model, the number of discon-
nected FSs enclosing the TRI momenta (� and M points) is
even. Thus the Z2 invariant for a TRI odd-parity SC state (DIII
class) is trivial. The SC states that belong to one-dimensional
IRs do not break the time-reversal symmetry, and hence the
A1u and A2u SC states are topologically trivial.

On the other hand, the SC states classified into 2D IRs
may realize spontaneous time-reversal symmetry breaking,
depending on the superposition of two gap functions. Then the
integer topological invariant (Chern number in class D) can be
a nonzero even number. For instance, the Eu p-wave SC state
in a large Zeeman SOC region [Figs. 9(c) and 9(d)] should be
a chiral px + ipy paring state in order to fully gap out the FS
[i.e., the order parameter is written as ∼(�px ± i�py )σ̄ zτ 0].
This Eu px + ipy-wave pairing state is identified as a topo-
logical SC state in class D with the Chern number νCh = ±4
(see Appendix B). A similar topological SC state is proposed
in monolayer TMDs [59], while it is a parity-mixed chiral
p + d-wave pairing state owing to violation of the global
inversion symmetry.

In contrast, the Eu f -wave SC states under the Rashba
SOC do not break the time-reversal symmetry, and therefore,
they are topologically trivial. In order to fully gap out the FS,
indeed, the order parameter for the Eu fx(x2−3y2 )-wave pairing
state [Fig. 9(a)] should be ∼� f (σ̄ x ± σ̄ y)τ 0, while that for the
Eu interlayer pairing state [Fig. 9(b)] should be ∼(� f τ x ±
�sτ y)σ̄ z. Time-reversal symmetry is preserved, while these

states may realize nematic superconductivity with sponta-
neous rotation symmetry breaking. When we assume super-
position breaking the time-reversal symmetry, the nonunitary
SC state gains less condensation energy, and it is unstable.

V. SUMMARY AND DISCUSSION

In summary, we have studied unconventional supercon-
ductivity in a 2D locally NCS triangular lattice, which is
relevant to the crystal structure of bilayer TMDs with 2Hb

stacking. By assuming disconnected FSs and strong electron
correlation, we have clarified the dominant FM spin fluctua-
tions on the basis of the RPA. The significant enhancement
of the FM fluctuation is assisted by the type-II vHS due to
a finite interlayer coupling, and hence it is a characteristic of
the bilayer structure. The SC instability has been discussed
based on the analysis of the linearized Eliashberg equation.
The odd-parity spin-triplet superconductivity is favored by
the FM fluctuation, and we found that fully gapped f -wave
pairing state is stabilized in a wide range of the interlayer
coupling and carrier density. Furthermore, impacts of the stag-
gered Rashba or Zeeman antisymmetric SOC on the magnetic
fluctuation and superconductivity have been elucidated. The
magnetic anisotropy is enhanced by increasing the SOC, and
a FM-like magnetic structure with in-plane spin alignment,
such as in a few-layer VSe2 [54], is favored by either Rashba
or Zeeman SOC. We found that the odd-parity A2u or Eu SC
states with either f -wave or p-wave gap functions are stabi-
lized depending on magnitude of the SOC, interlayer hopping,
and Coulomb interaction. The stability of each odd-parity SC
states is determined by a combination of the selection rule for
locally NCS superconductors [44,51], magnetic anisotropy,
and parity-mixing effect in the SC state. In addition, topo-
logical properties of the stable odd-parity pairing states have
been studied based on the FS formula [1–3] and estimation of
topological invariants. Then, the Eu p + ip-wave pairing state
has been identified as a topological SC state in class D with the
Chern number νCh = 4. This state is stabilized by a moderate
Zeeman SOC realistic in TMDs.

Our results suggest odd-parity superconductivity ubiqui-
tous in 2Hb-stacked bilayer TMDs, such as bilayer MoS2

in which gate-induced superconductivity is realized [60,66].
An essential ingredient for the odd-parity superconduc-
tivity is underlying FM fluctuations induced by a strong
electron correlation. Although dominance of the electron-
phonon coupling for the superconductivity in a few-layer
TMDs is proposed by some theoretical studies [67–69], the
electron-electron interaction is also expected to affect the
superconductivity owing to the d-orbital character of carriers
in TMDs [56–59]. Indeed, a recent tunneling spectroscopy
measurement for monolayer MoS2 has revealed anisotropic
SC gap, which suggests that the microscopic origin of
the superconductivity cannot be captured by a conventional
phonon-driven mechanism [70]. Thus, various bilayer TMDs
have a potential for hosting FM fluctuations and odd-parity
superconductivity. This study clarifies a way to control odd-
parity SC phases by SOC and carrier doping, and to realize
topological superconductivity in 2D TMDs.

Our study also sheds light on a possibility of odd-parity
superconductivity in a variety of 2D magnetic van der Waals
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materials [71] not only TMDs. In van der Waals materials,
strong enhancement of spin fluctuations, which potentially
leads to unconventional superconductivity, is expected owing
to the 2D nature. In fact, ferromagnetism has been detected
in atomically thin film of CrI3 [72], Cr2Ge2Te6 [73], VSe2

[54], V5Se8 [74], and MnSex [55]. Such FM van der Waals
materials may offer a platform for multiple odd-parity SC
phases.
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APPENDIX A: SYMMETRY OF SUPERCONDUCTING
STATES

In this Appendix we study symmetry constraints for SC
states. First, we consider transformation of the Bloch state
under space group operations. A creation operator of a Bloch
state with spin s on layer m is defined as

c†
k,ms =

∑
R

c†
s (R + rm)e−ik·R, (A1)

where R represents the position for the unit cell and rm is the
relative position of the layer m in a unit cell. Using Eq. (A1),
the creation operator is transformed by a space group opera-
tion g = {p|a} as follows:

gc†
k,msg

−1 =
∑

R

gc†
s (R + rm)g−1e−ik·R

=
∑

R

e−ik·R ∑
s′

c†
s′ (p(R + rm) + a)D(1/2)

s′s (p),

(A2)

where D(1/2)(p) is a representation matrix of the point group
operation p in the spin space. By defining R′ + rpm ≡ p(R +
rm) + a, Eq. (A2) is rewritten as

gc†
k,msg

−1 =
∑

R′
e−ik·[p−1(R′+rpm−prm−a)]

×
∑

s′
c†

s′ (R′ + rpm)D(1/2)
s′s (p)

= eipk·a ∑
m′,s′

c†
pk,m′s′D

(perm)
m′m,k (p, k)D(1/2)

s′s (p). (A3)

Here we introduced a representation matrix for the permuta-
tion of layers as

D(perm)
m′m (p, k) = e−ipk·(rpm−prm )δm′,pm. (A4)

We investigate the symmetry of SC states based on the pair
amplitude

Fms,m′s′ (k) = 〈ck,msc−k,m′s′ 〉, (A5)

which satisfies the fermionic antisymmetry

Fms,m′s′ (k) = −Fm′s′,ms(−k). (A6)

FIG. 12. Schematic of the band structure near the K and K ′

points in a large Zeeman SOC region. The Fermi energy EF lies
between the Zeeman gap.

From Eq. (A3) it is revealed that the pair amplitude is trans-
formed by a space group operation g as

gF�
ms,m′s′ (k)g−1 =

∑
{mj ,s j }

F�
m1s1,m2s2

(pk)D� (g)

×D(perm)
m1m2,mm′ (p, k)D(1/2)

s1s2,ss′ (p), (A7)

where the representation matrices are introduced as

D(perm)
m1m2,mm′ (p, k) = D(perm)

m1m (p, k)D(perm)
m2m′ (p,−k), (A8)

D(1/2)
s1s2,ss′ (p) = D(1/2)

s1s (p)D(1/2)
s2s′ (p), (A9)

and D� (g) is the representation matrix of the � IR for the
gap function. Whereas D� (g) = ±1 for one-dimensional IRs,
D� (g) is 2 × 2 matrix for 2D IRs. Equations (A6) and (A7)
are the symmetry constraints for the SC states. In the main
text, the linearized Eliashberg equation is solved under these
symmetry constraints for each of the IRs of D3d point group.

APPENDIX B: CHERN NUMBER FOR Eu PAIRING STATE

Here we derive the Chern number for the Eu px + ipy-wave
pairing state in a large Zeeman SOC region [Figs. 9(c) and
9(d)]. Figure 12 illustrates the band structure near the Fermi
level under a large Zeeman SOC. Since the fourfold degener-
acy at the K (K ′) point is lifted by the Zeeman SOC, the band
structure possesses a nearly parabolic shape around the K (K ′)
point. In addition, the interlayer hybridization is negligible
around the K (K ′) point owing to the threefold rotational sym-
metry [53,62,63]. Then the effective Hamiltonian for electrons
near the Fermi level is derived as

H̃ =
∑
q,m,s

(ε̃q − μ)ψ†
q,msψq,ms

+ 1

2

∑
q,m,s,s′

�̃qσ̄
z
ss′ψ

†
q,msψ

†
−q,ms′ + H.c., (B1)

where ε̃q = q2/(2m) is the effective kinetic energy with
a parabolic dispersion, �̃q = �̃p(qx + iqy) is the ef-
fective chiral p-wave gap function, and the annihila-
tion operators are defined as (ψq,a↑, ψq,a↓, ψq,b↑, ψq,b↓) ≡
(cK+q,a↑, c−K+q,a↓, c−K+q,b↑, cK+q,b↓). We assume that �̃p is
a real number. By using the vector operator

�̂†
q,m = (ψ†

q,m↑, ψ−q,m↑, ψ
†
q,m↓, ψ−q,m↓, ), (B2)
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we obtain the matrix representation of the effective Hamilto-
nian as follows:

H̃ = 1

2

∑
q

(�̂†
q,a, �̂

†
q,b)H̃q

(
�̂q,a

�̂q,b

)
+ const., (B3)

where the Hamiltonian matrix H̃q is given by

H̃q = τ 0 ⊗
(

(ε̃q − μ)σ z �̃p(qxσ
x − qyσ

y)

�̃p(qxσ
x − qyσ

y) (ε̃q − μ)σ z

)
. (B4)

Here we carry out an unitary transformation as

UH̃qU
† = τ 0 ⊗

(
H̃+

q 0

0 H̃−
q

)
, (B5)

H̃±
q =

(
ε̃q − μ ±�̃p(qx + iqy)

±�̃p(qx − iqy) −ε̃q + μ

)
, (B6)

where the unitary matrix U is defined as

U = 1√
2
τ 0 ⊗

(
σ 0 σ 0

σ 0 −σ 0

)
. (B7)

Equation (B6) is the Bogoliubov–de Gennes Hamiltonian for
the spinless chiral p-wave superconductivity. Thus, the spin-
full chiral p-wave SC state is converted to two pairs of the
spinless chiral p-wave SC states [59]. Since a spinless chiral
p-wave SC state gives the Chern number 1, the total Chern
number of the Eu chiral p-wave SC state is obtained as νCh =
1 × 2 × 2 = 4.
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