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Magnetism and its coexistence with superconductivity in CaK(Fe0.949Ni0.051)4As4:
Muon spin rotation/relaxation studies
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The magnetic response of CaK(Fe0.949Ni0.051)4As4 was investigated by means of the muon spin
rotation/relaxation. The long-range commensurate magnetic order sets in below the Néel temperature TN =
50.0(5) K. The density-functional theory calculations have identified three possible muon stopping sites. The
experimental data were found to be consistent with only one type of magnetic structure, namely, the long-range
magnetic spin-vortex-crystal order with the hedgehog motif within the ab plane and the antiferromagnetic
stacking along the c direction. The value of the ordered magnetic moment at T ≈ 3 K was estimated to be
mFe = 0.38(11)μB (μB is the Bohr magneton). A microscopic coexistence of magnetic and superconducting
phases accompanied by a reduction of the magnetic order parameter below the superconducting transition
temperature Tc � 9 K is observed. Comparison with 11, 122, and 1144 families of Fe-based pnictides points
to existence of correlation between the reduction of the magnetic order parameter at T → 0 and the ratio of the
transition temperatures Tc/TN. Such correlations were found to be described by Machida’s model for coexistence
of itinerant spin-density-wave magnetism and superconductivity [K. Machida, J. Phys. Soc. Jpn. 50, 2195 (1981);
S. L. Bud’ko et al., Phys. Rev. B 98, 144520 (2018)].
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I. INTRODUCTION

Since their discovery, iron-based superconductors (Fe-
SC’s) have attracted much interest. The materials belonging
to various classes of Fe-SC’s were found to be characterized
by unconventional superconducting properties, as well as by a
strong interplay of superconductivity with various electronic
ground states such as, e.g., nematic phase and spin-density-
wave magnetism [1–7]. All Fe-SC’s have a layered structure
and share a common Fe2An2 (An = P, As, Se, Te) layers (see
also Fig. 1), analogous to the CuO2 sheets in high-temperature
cuprates [8].

Recently, a new, 1144 Fe-SC family (AeAFe4As4, Ae =
Ca, Sr, Eu and A = K, Rb, Cs), with the transition tem-
perature Tc reaching �36 K, was synthesized [9–12]. The
crystallographic structure of AeAFe4As4 (see, e.g., Fig. 1 for
CaKFe4As4 representative of 1144 family) is different com-
pared to intensively studied materials belonging to 122 family
of Fe-SC’s. The Ae and A sites form alternating planes along
the crystallographic c axis and are separated by Fe2As2 layers.
There are two distinct As sites, As1 and As2, neighboring
K and Ca, respectively, rather than one As site found in
CaFe2As2 and KFe2As2 (see Fig. 1). Partial substitution of
Fe by Co or Ni in CaKFe4As4 (electron doping) shift the
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ground state from superconducting to antiferromagnetically
(AFM) ordered [11–13]. The resistivity and the specific-heat
measurements [10–12], as well as the Mössbauer [13,14],
the nuclear magnetic resonance (NMR) [13], and the neutron
scattering studies [15] reveal the appearance of a magnetic
order. The magnetism was further identified as the hedge-
hog spin-vortex-crystal (SVC) order, which is characterized
by noncollinear Fe moments featuring an alternating all-in
and all-out motif around the As1 sites within the ab planes
and antiferromagnetic coupling along the c direction [13,15].
In addition, the interplay of magnetism and superconduc-
tivity in CaK(Fe1−xNix )4As4 was clearly detected in NMR,
Mössbauer spectroscopy, and neutron scattering experiments
[10–16]. As both states compete for the same electrons at the
Fermi surface, the magnetic order parameter was found to be
strongly reduced below Tc.

This paper reports the results of the muon spin
rotation/relaxation (μSR) studies of CaK(Fe0.949Ni0.051)4As4

single-crystal sample. The density-functional theory calcula-
tions have identified three possible muon stopping sites. The
experimental data were found to be consistent with only one
type of the magnetic structure, namely, the long-range mag-
netic spin-vortex-crystal order with the hedgehog motif within
the ab plane and the AFM stacking along the c direction.
The value of the ordered magnetic moment at T ≈ 3 K was
estimated to be mFe = 0.38(11)μB (μB is the Bohr magne-
ton). All these results stay in agreement with those published
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FIG. 1. The crystal structure of CaKFe4As4 within the P4/mmm
group representation. Three muon stopping sites (denoted by dia-
monds) are μ1, the Wyckoff position is (0.5,0.5,0.301), the local
symmetry is 2h; μ2, the Wyckoff position is (0,0,0.186), the lo-
cal symmetry is 2g; and μ3, the Wyckoff position is (0,0,0.5), the
local symmetry is 1b. The crystal structure is visualized by using the
VESTA package [18].

previously in Refs. [12–15]. The temperature evolution of the
magnetic order parameter mFe(T ) was analyzed by using the
approach of Machida [14,17], accounting for coexistence of a
spin-density-wave magnetism and superconductivity. The the-
ory results of Refs. [14,17] were further extended for studying
the superconductivity induced suppression of the magnetic
order parameter in the limit of T → 0.

The paper is organized as follows. The experimental
details, including the sample preparation procedure, the de-
scription of μSR setup and the details of the muon-site
calculations are given in Sec. II. The results of the weak
transverse-field and zero-field μSR experiments are presented
in Sec. III. Section IV discusses the experimental data. Con-
clusions follow in Sec. V. Appendices A and B describe
the results of calculations of the dipolar fields at the muon
stopping sites and extensions of Machida’s theory at the limit
of T → 0, respectively.

II. EXPERIMENTAL DETAILS

A. Sample preparation and characterization

CaK(Fe0.949Ni0.051)4As4 single crystals were grown from
a high-temperature Fe-As rich melt and extensively character-
ized by thermodynamic and transport measurements [10–15].
The selected crystal with dimensions of �4.0 × 4.0 ×
0.1 mm3 was used. The magnetic ordering temperature TN �
50.6(5) and the superconducting transition temperature Tc �
9.0(8) K, for CaK(Fe0.949Ni0.051)4As4 single crystals from the
same grown batch, were inferred from temperature-dependent
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FIG. 2. (a) The schematic representation of an arrangement of
positron counters at the GPS (General Purpose Surface) spectrometer
at the Paul Scherrer Institute, Switzerland [19]. The letters F, B,
U, and D denote the forward, backward, up, and down detectors,
respectively. The single-crystalline sample (blue rectangle) has its c
axis aligned along the incoming muon beam (red arrow). The initial
muon spin polarization Pμ was rotated by 45o within the vertical (y-z)
plane. (b) CaK(Fe0.949Ni0.051)4As4 sample sandwiched between Ag
(degrader and stopper) sheets.

electrical-resistance, heat-capacity, and magnetization studies
of Kreyssig et al. [15].

B. Muon spin rotation/relaxation experiments

The muon spin rotation/relaxation (μSR) experiments
were carried out at the πM3 beam line using the GPS (General
Purpose Surface) spectrometer at the Paul Scherrer Insti-
tute, Switzerland [19]. The zero-field (ZF) and the weak
transverse-field (wTF) μSR measurements were performed at
temperatures ranging from �1.5 to 100 K. The 100% spin-
polarized muons with the momentum of �28.6 MeV/c were
implanted into the crystal along the c axis (see Fig. 2). Muons
thermalize rapidly without a significant loss of their initial
spin polarization and stop in the matter at the depth of about
0.15 g/cm2. For CaK(Fe0.949Ni0.051)4As4 with the density of
�5.2 g/cm3 this corresponds to a depth of �0.3 mm. In
order to measure the sample with a thickness of �0.1 mm, as
CaK(Fe0.949Ni0.051)4As4 single crystal studied here, a special
sample holder described in Ref. [20] was used. The sample
was sandwiched between silver sheets, with the first one play-
ing a role of a “degrader” by decelerating the muons in the
incoming muon beam and the second one as a “stopper” by
stopping the muons which were still able to penetrate through
the sample [see Fig. 2(b)]. The detailed description of μSR
technique can be found, e.g., in Refs. [21–24].

The μSR experiments were performed in the so-called
spin-rotated mode, i.e., when the initial muon spin polar-
ization (Pμ) is turned by a certain angle relative to the
muon beam momentum [vμ, see Fig. 2(a)]. Such geometry
is particularly suitable to perform experiments on single-
crystalline samples since it allows to probe independently
the time evolution of the “parallel” and “perpendicular”
components of the muon spin polarization [P(t )] by ac-
cessing the response of the backward/forward (B/F) and
up/down (U/D) positron counters. In a case of the single-
crystalline CaK(Fe0.949Ni0.051)4As4 sample with the c axis
aligned along the muon momentum (see Fig. 2) the up/down
and backward/forward counters access the P⊥c(t ) and P‖c(t )
components of the muon spin polarization, respectively.
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The experimental data were analyzed by using the MUSRFIT

package [25]. The typical counting statistics were �2 × 107

and 3 × 106 positron events for ZF and wTF experiments,
respectively.

C. Muon stopping positions

The muon stopping sites can be identified as a local inter-
stitial minima of the valence electron electrostatic potential
which can be further restored from the electron density distri-
bution. In order to find them, ab initio calculations within the
framework of density-functional theory were performed. As
the initial structural data, the P4/mmm space-group symmetry
of CaKFe4As4 with one formula unit (Z = 1) was consid-
ered (see Fig. 1). The Ca ions reside at 1a Wyckoff position
(0,0,0), K at the 1d position (0.5,0.5,0.5), Fe at the 4i position
(0,0.5,0.76820), As1 at the 2g position (0,0,0.34150), and
As2 at the 2h position (0.5,0.5,0.12310). The lattice constants
were taken to be a = 3.8659 Å and c = 12.8840 Å [11,12].
The all-electron full-potential linearized augmented plane-
wave method (ELK code) [26], with the local spin-density
approximation [27], for the exchange correlation potential
and with the revised generalized gradient approximation of
Perdew-Burke-Ernzerhof [28] was applied. The calculations
were performed on a 13 × 13 × 4 grid which corresponds to
84 points in the irreducible Brillouin zone.

Three types of possible muon positions were detected
(see Fig. 1). The first one (μ1) stays in-between K-As2 ions
and has coordinates (0.5,0.5,0.301). The local symmetry of
this position is 2h. Two other positions are located on the
line along the c direction connecting the nearest Ca-As1-
As1-Ca ions. The local symmetries and positions are μ2-2g
(0,0,0.186) and μ3-1b (0,0,0.5). The positions μ1 and μ2
have the same local symmetry (2g and 2h) as they were found
in Ba1−xAxFe2As2 [29,30]. The occupancy of the muon sites
decreases from the site μ1 to the site μ3 (μ1 → μ2 → μ3),
as it follows from the ratio of corresponding electrostatic
potentials: (−ϕμ1)/(−ϕμ2)/(−ϕμ3) � 1.00/0.96/0.93. Two
points need to be mentioned: (i) Few muon stopping positions
with a much higher electrostatic potentials were assumed to be
unoccupied by muons and, therefore, not considered. (ii) It is
assumed that the muon sites calculated for CaKFe4As4 do not
strongly change under the low level of Fe to Ni replacement.

III. RESULTS

A. Weak transverse-field μSR experiments

μSR experiments under weak transverse-field (wTF) ap-
plied perpendicular to the muon spin polarization are a
straightforward method to determine the onset of the mag-
netic transition and the magnetic volume fraction. In this
case, the contribution to the asymmetry from muons expe-
riencing a vanishing internal spontaneous magnetization can
be accurately determined. Muons stopping in a nonmagnetic
environment produce long-lived oscillations, which reflect
the coherent muon precession around the external field Bex.
Muons stopping in magnetically ordered parts of the sample
give rise to a more complex, distinguishable signal, reflecting
the vector combination of internal and external fields.
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FIG. 3. (a) WTF-μSR time spectra (Bex = 3 mT) of
CaK(Fe0.949Ni0.051)4As4 measured on up/down set of positron
counters below (T � 1.5 K) and above (T = 70 K) the magnetic
transition temperature (TN � 50 K). The solid lines are fits of
Eq. (3) to the data (see text for details). (b) The same as (a) but for
backward/forward set of detectors.

Figure 3 shows the wTF-μSR time spectra of
CaK(Fe0.949Ni0.051)4As4 single-crystal sample measured
above (T � 70 K) and below (T � 1.5 K) the magnetic
transition (TN � 50 K). The external magnetic field
Bex = 3 mT was applied along the x direction [see Fig. 2(a)].
The angle between the initial muon spin polarization and
the muon momentum was set to 45o. Figures 3(a) and
3(b) correspond to the data collected on up/down and
backward/forward set of detectors.

The time evolution of the muon spin asymmetry in μSR
experiments A(t ) can be described as

A(t ) = A(0)P(t ) = As(0)Ps(t ) + Abg(0)Pbg(t ). (1)

Here, the indices “s” and “bg” denote the sample and
background contributions, respectively. As(0) [Abg(0)] are the
initial asymmetry and Ps(t ) [Pbg(t )] the time evolution of the
muon spin polarization belonging to the sample (background).
The background component represents the muons missing
the sample and stopped, e.g., in Ag degrader sheets [see
Fig. 2(b)], cryostat walls, cryostat windows, etc. Considering
the transition of CaK(Fe0.949Ni0.051)4As4 from nonmagnetic
(nm) to the magnetic (m) state [12–15], the sample contribu-
tion was further assumed to consist of two parts [31]:

As(t ) = Anm(0)Pnm(t ) + Am(0)Pm(t ). (2)

In analysis of wTF-μSR data only the nonmagnetic sample
component was considered. The magnetic term [Am(0)Pm(t )]
vanishes within the first ∼0.1 μs (see Sec. IIIB1) and thus it is

094504-3



RUSTEM KHASANOV et al. PHYSICAL REVIEW B 102, 094504 (2020)

0 20 40 60

0.10

0.15

0.20

0.25

Up/Down
Backward/Forward

A
(0
)

T (K)

FIG. 4. Temperature dependencies of the initial asymmetry A(0)
for the up/down and backward/forward set of positron counters. The
solid lines are fits of Eq. (4) to A(0) vs T data. See text for details.

not observed with the present data binning (�0.126 μs). The
“nm” and “bg” contributions in Eqs. (1) and (2) were further
combined into the single term

A(t ) = A(0) cos(γμBext + φ) e−σ 2t2/2. (3)

Here, φ is the initial phase of the muon spin ensemble, and
σ is the Gaussian relaxation rate. The solid lines in Fig. 3
correspond to the fit of Eq. (3) to the wTF-μSR data.

Figure 4 shows the temperature dependence of the initial
asymmetry A(0) obtained from the fit of wTF-μSR data by
means of Eq. (3). The magnetic ordering temperature TN and
the width of the magnetic transition �TN were determined by
using the phenomenological function [32]

A(0, T ) = As(0)
1

1 + exp([TN − T ]/�TN)
+ Abg(0). (4)

The results of the fit are represented by solid lines. The
fit results for the up/down (backward/forward) set of de-
tectors are TN = 50.0(2) K [49.7(2) K], �T = 0.5(1) K
[0.6(1) K], As(0) = 0.111(2) [0.108(2)], and Abg(0) =
0.112(1) [0.105(1)].

The results of wTF-μSR experiments can be summarized
as follows:

(i) The value of the magnetic ordering temperature TN =
49.9(3) K coincides rather well with 50.0(6) K obtained by
Kreyssig et al. [15] in resistivity, specific heat, and neutron
scattering experiments on the sample with the similar doping
level.

(ii) The width of the transition �TN = 0.5(2) K is rather
small suggesting that the magnetic order sets inside the sample
uniformly. In other words, the magnetic ordering temperature
TN stays the same (within �0.5 K accuracy) over the full
sample volume.

(iii) The fact that As(0) � Abg(0) implies that 50% of all
the muons stop in the sample, while the rest contribute to the
background.

B. Zero-field μSR experiments

1. P⊥c and P‖c set of data

In ZF-μSR experiments, the muon spin precesses in inter-
nal field(s) at the muon stopping site(s) which are created by
the surrounding magnetic moments (nuclear or electronic in
origin). Figure 5 shows the ZF-μSR time spectra collected
on up/down [Fig. 5(a)] and backward/forward [Fig. 5(e)] set
of positron counters. In order to improve statistics, the data
sets collected at temperatures ranging from �1.5 up to 5 K
are combined together. Obviously, oscillations of the muon
spin polarization corresponding to the precession of the muon
spin in internal field (Bint) are observed for the up/down, but
they are missing for the backward/forward set of detectors.
Bearing in mind that the up/down and backward/forward
responses correspond to the time evolution of P⊥c and P‖c

components of the muon spin polarization, respectively (see
Sec. II B and Fig. 2), one concludes that internal fields on
the muon stopping sites are aligned along the c axis of the
CaK(Fe0.949Ni0.051)4As4 single crystal.

The analysis of the sample response in ZF-μSR experi-
ments was performed by considering the presence of three
muon stopping sites as inferred from the muon site calcula-
tions (see Sec. II C and Fig. 1):

AZF
m (t ) =

3∑
i=1

Ai(0) e−σ 2
i t2/2 cos(γμBint,it ). (5)

Here, Ai(0), σi, and Bint,i are the initial asymmetry, the Gaus-
sian relaxation rate, and the internal field of the ith component,
respectively. Fits of Eq. (1) with the sample part described by
Eq. (5) to the ZF-μSR data are presented in Figs. 5(a) and 5(e)
by solid red lines. The parameters obtained from the fits are
summarized in Table I.

From the results of the fit, the following three important
points emerge:

(i) Three components (two oscillating, No. 1 and No. 2,
and one fast relaxing nonoscillating, No. 3) are clearly re-
solved by fitting the up/down (P⊥c) set of data. The time
evolutions of these components are presented in Figs. 5(b),
5(c), and 5(d).

(ii) The fit of the backward/forward (P‖c) set of data could
be performed by using only two components (the slow and
the fast relaxing ones). The relative weight (the fraction) of
the fast relaxing component is the same (within the exper-
imental accuracy) as the nonoscillating fast relaxing one in
the up/down (P⊥c) set of data. It is reasonable to assume,
therefore, that in both set of experiments the nonoscillating
fast relaxing component (No. 3) originates from the same
muon stopping site. The slow relaxing contribution was fur-
ther assigned to two oscillating components (No. 1 and No. 2)
observed in up/down set of positron counters.

(iii) The ratio between the sample and the background
asymmetries was fixed to that determined in wTF experi-
ments [As(0) � Abg(0) � 0.5A(0)]. The time evolution of the
background component is presented in Figs. 5(a) and 5(e) by
dashed lines.

2. Temperature dependence of the internal field Bint

The value of the internal field at the muon stopping position
is determined by surrounding magnetic moments. In a case
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FIG. 5. (a) ZF-μSR time spectra of CaK(Fe0.949Ni0.051)4As4 measured on up/down set of positron counters. The experiment probes the
time evolution of P⊥c component of the muon spin polarization. In order to improve statistics, the data sets collected at temperatures ranging
from 1.5 up to 5 K are combined together. The solid line is the fit of Eq. (1) with the sample part described by Eq. (5) to the data. The dashed
line is the time evolution of the background component. (b)–(d) Contributions of components Nos. 1, 2, and 3, respectively. (e) The same as in
(a), but for backward/forward set of positron counters. In this experiment the time evolution of P‖c component of the muon spin polarization
is probed. (f)–(h) Represent contributions of the first, second, and third components, respectively.

of magnetically ordered samples Bint is directly proportional
to the value of the ordered magnetic moments [Fe moments
in a case of CaK(Fe0.949Ni0.051)4As4 studied here]. Conse-
quently, the temperature dependence of Bint reflects precisely
the temperature evolution of the magnetic order parameter
Bint ∝ mFe.

The temperature dependence of Bint,1 is shown in Fig. 6.
The fit was performed globally. In this case, Eq. (1) was
fit to the full set of ZF up/down data with certain param-
eters kept global and some of them remaining individual

for each particular data set. The “global” parameters were
the initial asymmetries [A1(0), A2(0), A3(0)] and the ratio
between the internal fields (Bint,2/Bint,1). The individual pa-
rameters were Bint,1, and the relaxation rates σ1 and σ3. Note
that the preliminary fit with all the parameters remaining
“free” reveal that the relaxation rates σ1 and σ2 stay almost
equal. So it was assumed, additionally, σ1 = σ2. Above the
magnetic transition, a weak Gauss-Kubo-Toyabe damping of
the signal was observed caused by the dipole-dipole interac-
tion of the muon magnetic moment with randomly oriented

TABLE I. Parameters obtained from the fit of ZF-μSR time spectra of CaK(Fe0.949Ni0.051)4As4. The meaning of the parameters is as
follows: Bint,i is the internal field, fi is the volume fraction [ fi = Ai(0)/{A1(0) + A2(0) + A3(0)}], and σi is the Gaussian relaxation rate of the
ith component, respectively.

Polarization Bint (mT) Volume fraction Relaxation rate (μs−1)

component Detector set Bint,1 Bint,2 Bint,3 f1 f2 f3 σ1 σ2 σ3

P⊥c Up/down 177.2(1.5) 25.7(1.3) 0 0.23(2) 0.15(1) 0.62(6) 16.3(1.4) 9.7(1.2) 92.8(7.4)
P‖c Backward/forward 0 0 0 0.25a 0.16a 0.59(7) 0.39(6) 0.39(6) 69.9(5.3)

aThe ratio between f1 and f2 was kept the same as for P⊥c set of experiments.
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FIG. 6. Temperature dependence of the internal field Bint,1. The
solid line is the fit of Eq. (6) to the data with the parameters TN =
50.2(3) K, α = 2.52(9), β = 0.35(2), and Bint (0) = 179(1) mT.

nuclear magnetic moments in the paramagnetic temperature
regime.

The results presented in Fig. 6 imply that the onset tem-
perature of the long-range magnetic order, corresponding to
decreasing Bint down to zero, is consistent with the results of
resistivity and the neutron scattering experiments of Kreyssig
et al. [15], as well as with the results of wTF-μSR measure-
ments presented in Sec. III A. The temperature dependence
of Bint is characteristic of a second-order phase transition,
consistent with the results of heat capacity, 75As nuclear mag-
netic resonance (NMR), neutron scattering, and Mössbauer
spectroscopy experiments [12–15].

The temperature dependence of Bint (T ) was analyzed using
a fit to the temperature-dependent magnetic order parameter
of the form [33]

Bint (T ) = Bint (0)

[
1 −

(
T

TN

)α]β

. (6)

The fit was made by considering points above the supercon-
ducting transition temperature Tc � 9 K. The small reduction
of Bint below Tc is caused by interaction between the magnetic
and superconducting order parameters and it is discussed later.
The fit yields TN = 50.2(3) K, α = 2.52(9), β = 0.35(2), and
Bint (0) = 179(1) mT. The value of the effective critical ex-
ponent β lies quite close to the critical exponent β = 0.325
expected for a three-dimensional (3D) magnetic system (3D
Ising universality class) [34].

IV. DISCUSSION

A. Consistency of ZF-μSR results with the “hedgehog”-type
of magnetic order

The results of Sec. IIIB1 reveal the presence of three
contributions to the time evolution of the muon spin po-
larization (see components Nos. 1, 2, and 3 in Fig. 5 and
Table I). Considering the results of muon-site calculations

presented in Sec. II C, these three components could be fur-
ther assigned to three different muon stopping sites within
the unit cell of CaK(Fe1−xNix )4As4. Internal fields at two
muon stopping positions (components Nos. 1 and 2) are
aligned along the crystallographic c direction, while the very
broad distribution of fields with the average value centered
at zero (component No. 3) corresponds to the third muon
position.

The symmetry analysis calculations presented in
Appendix A considers eight different magnetic spin-vortex-
crystal (SVC) structures with orthogonal iron moments
lying in the ab plane. The structures were presented by
magnetic order parameters from one-dimensional irreducible
representations τ1 − τ8. The SVC structures were divided
into two groups with so-called “hedgehog” and “loop” motif
in accordance with its orthogonal arrangement of the spin
pattern [13]. The SVC structures preserve the C4 symmetry
and become consistent with the tetragonal lattice symmetry.

The results of Appendix A exclude the “loop” SVC
structures from consideration. With four “hedgehog” SVC
magnetic structures left, the one, corresponding to the τ1
irreducible representation, results in two different fields at the
muon stopping sites μ2 and μ3 and the zero field on the site
μ1, respectively. The rest gives the single field either at the site
μ2 (τ4) or μ1 (τ5 and τ8) and zero fields at the muon sites left
(see Table II in Appendix A). In all cases, only z component
is present, which corresponds to an alignment of the internal
magnetic field on the muon position along the crystallographic
c direction.

By comparing these results with the ZF-μSR data (see
Fig. 5 and Table I), we conclude that only one single type
of the magnetic structure becomes consistent with the exper-
iment. This is the SVC structure with the hedgehog motif
corresponding to the τ1 irreducible representation. The ar-
rangement of Fe moments is presented in Fig. 7. This structure
is characterized by noncollinear Fe moments featuring an
alternating all-in and all-out motif around the As1 sites within
the ab planes and antiferromagnetic coupling along the c
direction. Overall, this structure is fully consistent with that
reported in NMR, Mössbauer, and neutron scattering experi-
ments [13,15].

Following results presented in Appendix A, the compo-
nents Nos. 1, 2, and 3 of ZF-μSR signal (see Sec. IIIB1
and Fig. 5) could be assigned to μ2, μ3, and μ1 muon
stopping sites, respectively. Three important points need to be
considered:

(i) The calculations predict the dipolar fields at the first
and the second muon stopping sites resulting in Bint,μ2 �
366 mT per 1μB and Bint,μ3 � 94 mT per 1μB, respectively
(μB is the Bohr magneton). By averaging over the experi-
mentally measured Bint,1 � 177.2 mT and Bint,2 � 25.7 mT
(see Table I) the value of the ordered Fe moments is
found to be mFe = 0.38(0.11)μB. Such value stays in agree-
ment with mFe = 0.37(10)μB obtained in neutron scattering
experiments [15].

(ii) The fact that the values of the magnetic moment ob-
tained from Bint,1 (mFe � 0.48 μB) and Bint,2 (mFe � 0.27 μB)
are �45% different could be explained by taking into account
that calculations consider only the local dipolar fields and
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Fe

FIG. 7. The magnetic structure of CaK(Fe1−xNix )4As4 which is
consistent with the results of ZF-μSR measurements. Only the mag-
netic (Fe) ions are shown. Arrows represent the ordered Fe moments.
Diamond symbols correspond to different muon stopping sites. The
magnetic unit cell (P4/mbm group representation) is doubled and
45o rotated in the ab plane with respect to the crystallographic one
(P4/mmm group representation). See Appendix A for details. The
structure is visualized by using VESTA package [18].

neglect contact hyperfine contributions. Similar differences
were found, e.g., in La2CuO4 [35], RFeAsO (R = La, Ce, Pr,
and Sm) [36], Ba1−xKxFe2As2 [29], Ba1−xNaxFe2As2 [30],
MnP [37,38], etc.

(iii) The occupancy of the muon stopping sites predicted
by calculations is μ1 → μ2 → μ3. Experiment reveals the
volume fractions of the first, second, and third components
of ZF-μSR signal to follow: f3 → f1 → f2 (see Table I).
Considering the correspondence of the components Nos. 3,
1, and 2 of ZF-μSR signal to the muon stopping sites μ1, μ2,
and μ3 (see the discussion above), this leads to an additional
agreement between the theory and the experiment.

We believe that this peculiar, noncollinear SVC magnetic
phase is stabilized by the specific crystal structure of 1144
system. Following Meier et al. [13] magnetism arising from
Fermi surface nesting in the 1144 structure is notably different
from the majority of Fe-SC’s. The details of its chemical
structure and space group break the degeneracy between the
pairs of relevant antiferromagnetic orders. For most Fe-SC’s
such magnetism is characterized by double-degenerate mag-
netic order parameters leading to formation of the stripe-type
magnetic order. The reduced symmetry in the 1144 structure
breaks some of this degeneracy and favors the formation of
the spin-vortex type of the magnetic order.

B. Coexistence of superconductivity and magnetism
in CaK(Fe0.949Ni0.051)4As4

Theory works of Fernandes et al. [39], Vorontsov et al.
[40], and Schmiedt et al. [41] reveal that magnetism in Fe-
based superconductors may coexist with superconductivity.

As a result, a commensurate spin-density wave (SDW) can
coexist with a superconducting s± state. In the case of coexis-
tence of magnetic order and superconductivity, an interaction
between both order parameters is expected. This may change
the magnitude of the order parameters and alter the critical
temperatures with respect to the decoupled situation.

Here, we used the approach of Machida [17], who
has considered the coexistence of spin-density-wave (SDW)
type of magnetism with superconductivity within the three-
dimensional single-band case. The model was recently em-
ployed by Bud’ko et al. [14] with the possible application to
the multiple-band materials as, e.g., CaK(Fe0.949Ni0.051)4As4

studied here. Within this model the SDW order is assumed to
develop over a nested part of the Fermi surface whereas the
superconductivity forms over the full Fermi surface(s).

1. Temperature dependence of the magnetic order parameter

Following Refs. [14,17] the superconducting (�) and the
magnetic (M) order parameters could be obtained by solving
the system of two coupled self-consistent equations:

ln
T

Ts0
= 2πT

ωs∑
ω>0

[
1

2M

(
M + �√

ω2 + (M + �)2

+ M − �√
ω2 + (M − �)2

)
− 1

ω

]
(7)

and

ln
T

Tc0
= n12πT

ωD∑
ω>0

[
1

2�

(
� + M√

ω2 + (� + M )2

+ � − M√
ω2 + (� − M )2

)
− 1

ω

]

+n22πT
ωD∑

ω>0

(
1√

ω2 + �2
− 1

ω

)
. (8)

Here, ω = πT (2n + 1) are Matsubara frequencies with a
positive integer n, ωD is the Debye frequency, ωs is a corre-
sponding limit for SDW, Ts0 is the SDW ordering temperature,
Tc0 is the superconducting transition temperature in absence
of magnetism, n1 is partial density of states (DOS) on the
Fermi surface part responsible for SDW, and n2 = 1 − n1. The
sums in Eqs. (7) and (8) are convergent and for ωD 
 Tc0 and
ωs 
 Ts0 the upper limits of summation can be extended to
infinity. Only the case when first the magnetic and then the
superconducting order sets in, i.e., for Ts0 > Tc0, is considered.

The comparison of Machida’s approach with the temper-
ature evolution of the magnetic order parameter obtained
in this study is shown in Fig. 8. The mFe(T ) dependence
was obtained by normalizing the Bint (T ) curve (Fig. 6) to
mFe(20 K) = 0.37μB as obtained by Kreyssig et al. [15] in
neutron scattering experiments. The parameters of the mod-
eled curve are Ts0/Tc0 = 2 and n1 = 0.35. Note that the theory
captures all major features of the experimentally obtained
mFe(T ). The initial increase below TN � 51 K, the saturation
in 30 � T � 10 K temperature region, and the slight drop
below the superconducting transition temperature Tc � 9 K
(see the inset in Fig. 8) are reproduced quite precisely.
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FIG. 8. Temperature dependence of the magnetic order parame-
ter mFe of CaK(Fe0.949Ni0.051)4As4. The solid line is the analysis by
using the approach of Machida [14,17]. The inset shows extension
of the low-temperature part. The position of the superconducting
transition temperature Tc is marked by the arrow.

It should be noted here that the theory of Machida does
not allow to get a “unique” value of the fitting parameters
(see also the analysis of Mössbauer spectroscopy data from
Ref. [14]). Similar mFe(T ) curves could be obtained with the
different set of parameters. As is stressed already in Ref. [14],
a unique determination of fit parameters would require addi-
tional boundary conditions on them.

2. Suppression of the magnetic order parameter in the
superconducting state

The theory of Machida allows to obtain the reduction of
the magnetic order parameter in the presence of superconduc-
tivity. Calculations presented in Appendix B show that at the
limit of T → 0, Eqs. (7) and (8) transform to

(m + δ) ln(m + δ) + (m − δ) ln(|m − δ|) = 0 (9)

and

δ ln(δ Ts0/Tc0) + n1[(m + δ) ln(m + δ) − d ln δ] = 0. (10)

Here, δ and m are dimensionless superconducting and mag-
netic order parameters defined as δ = �(T = 0)/M0 and
m = M(T = 0)/M0 (M0 is the zero-temperature value of the
magnetic order parameter in the absence of superconducting
order). Solutions for m vs δ values follow the blue solid line
presented in Fig. 9. The upper part of the curve corresponds to
the monotonic decrease of m with increasing δ. By approach-
ing the point δ � 0.55, m � 0.67, the tendency changes. With
further decreasing m, δ decreases as well, by approaching
δ � 0.37 at m = 0. The theory also predicts that δ remains
always smaller than 1 and that the maximum value it may
achieve corresponds to δ � 0.55 at m � 0.7. This suggests
that the magnetism is more robust than superconductivity and
that the presence of nearly negligible magnetic contribution
(see the point δ � 0.37 for m → 0) is enough to suppress
partially the superconductivity.

0.0 0.2 0.4 0.6
0.0

0.2

0.4

0.6

0.8

1.0

m
=
M
(0
)/M

0

δ = Δ(0)/M0 = Tc/TN

Machida-approach
1144 present study
1144
11
122

FIG. 9. Dependence of the normalized magnetic m = M(0)/M0

vs the superconducting order parameter δ = �(0)/M0 obtained
within the framework of Machida approach [17] [M0 is the zero-
temperature value of the magnetic order parameter in absence
of superconductivity, while M(0) = M(T = 0) and �(0) = �(T =
0) are T = 0 values of the magnetic and the superconducting
order parameters, respectively]. The closed and open stars are ex-
perimental points obtained within present studies and by means
of Mössbauer spectroscopy and neutron scattering experiments in
CaK(Fe1−xNix )4As4 (1144 family of Fe-SC’s) [14,15]. The open
squares and closed circles are the experimental data for samples
belonging to 11 [42,43] and 122 families of Fe-SC’s [30,44–57],
respectively.

Comparison with the experimental data could be made by
taking into account that within the Machida’s approach:

δ = �(T = 0)

M0
= Tc

Ts0
= Tc

TN
. (11)

The closed and open symbols in Fig. 9 correspond to the
experimental data for various Fe-SC’s belonging to 1144 [as
CaK(Fe0.949Ni0.051)4As4] [14,15], 11 [42,43], and 122 fam-
ilies [30,44–57]. The closed star corresponds to the sample
studied here. The other data were obtained from the results of
neutron scattering, Mössbauer, NMR, and μSR experiments.
The cases when the appearance of superconductivity had vi-
sual influence on the temperature evolution of the magnetic
order parameter were considered. This, normally, occurs close
to the boundary between the magnetic and superconducting
regimes.

Qualitatively, the experimental data presented in Fig. 9
follow the upper branch of m vs δ curve. The question remains
as to whether or not the lower part of the curve (m � 0.65) is
just a nonphysical solution of the theory or it may correspond
to something not yet experimentally observed. One could as-
sume that varying certain external parameters as, e.g., pressure
or density of impurities, may allow to verify all these features
of Machida’s model.

At the end of this section we would mention that the
reduction of the magnetic order parameter as a function of
Tc/TN for 122 family of Fe-SC’s was studied by Materne et al.
[57] based on a Landau theory for coupled superconducting
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and magnetic order parameters. A quadratic relation between
M(0)/M0 and Tc/TN was reported. Note, however, that the
Landau approach used in Ref. [57] requires knowledge of four
parameters.

V. CONCLUSIONS

The zero-field (ZF) and weak transverse-field
(wTF) muon spin rotation/relaxation experiments on
CaK(Fe0.949Ni0.051)4As4 single-crystal sample were
performed. The main results could be summarized as
follows:

(i) The sharp transition to the magnetic state with the
ordering temperature TN = 50.0(5) K in both ZF and wTF-
μSR experiments is detected. The value of TN is found to be
in agreement with 50.0(6) K obtained in resistivity, specific
heat, and neutron scattering experiments on samples with the
similar doping level [12,13,15].

(ii) The calculation of the muon-stopping sites and the
symmetry analysis allow to identify the type of the magnetic
order in CaK(Fe1−xNix )4As4. The long-range magnetic spin-
vortex-crystal order with the hedgehog motif within the ab
plane and the antiferromagnetic stacking along the c direction
agrees with the experiment. The value of the ordered magnetic
moment was estimated to be mFe = 0.38(11)μB in agreement
with 0.37(10)μB from neutron scattering experiments [15].
The type of the magnetic order is the same as determined in
NMR, Mössbauer spectroscopy, and neutron scattering exper-
iments [13,15].

(iii) A reduction of the magnetic order parameter below
the superconducting transition was detected. The temperature
evolution of the magnetic order parameter mFe(T ) is well
reproduced within the approach of Machida [14,17], which
accounts for coexistence of a spin-density-wave magnetism
and superconductivity.

(iv) The theory of Machida was further applied in or-
der to follow the interplay/coexistence of the magnetic
and superconducting order parameters for T approaching
zero. Comparison with the experiment reveals that the data
points for various Fe-based superconducting materials be-
longing to three different families reproduces reasonably
well only the upper branch of M(0)/M0 vs Tc/TN curve.
The question on whether or not the lower part of the
curve [M(0)/M0 � 0.65] corresponds to a nonphysical solu-
tion or it has not yet been experimentally detected, remains
unexplored.
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APPENDIX A: DIPOLAR FIELDS AT THE MUON
STOPPING SITES

The dipolar field analysis follows the procedure described
in the Supplemental Material part of Refs. [29,30].

The single- and double-Q magnetic structures which can
arise in the P4/mmm setting with Q1 = ( 1

2 , 1
2 , 0) and Q2 =

(− 1
2 , 1

2 , 0) were considered. For convenience, the crystal
structure of CaKFe4As4 was described within the space group
P4/mbm (N127) [the subgroup of indices 2 of the parent
group P4/mmm (N123) with doubled unit cell]. The P4/mbm
subgroup has the same origin as the parent group P4/mmm
and the basis (a, b, c) rotated in the ab plane on 45o compared
to the basis (a′, b′, c′) of the P4/mmm, so that a = b = √

2a′
and c = c′ (see Fig. 1). In P4/mbm setting, the muon sites
become μ1–4 f (0,0.5, 0.301); μ2–4e (0,0, 0.186); and μ3–2b
(0,0,0.5). The primitive cell of CaKFe4As4 and descriptions
of all ion and muon positions in P4/mbm setting are given
in Fig. 10. Note that within the P4/mbm representation used
here the magnetic and the crystallographic structures share
the similar unit cell. In such a case the symmetry treatment
for the Fe- and muon-site magnetic representations could be
performed for the propagation vector K0 = (0, 0, 0).

Eight different double-Q magnetic spin-vortex-crystal
(SVC) structures with orthogonal Fe moments lying in the

Fe
As1
K

Ca

As2

FIG. 10. The crystal structure of CaKFe4As4 and the muon stop-
ping sites μ1, μ2, and μ3 within the tetragonal subgroup P4/mbm
(N127) of the space group P4/mmm (N123). The P4/mbm sub-
group has the same origin as the parent group P4/mmm and the
basis (a, b, c) rotated in the ab plane on 45o compared to the basis
(a′, b′, c′) of the P4/mmm. Atoms and muon stopping sites are at
the following positions: Ca, 2a (0,0,0); K, 2c (0,0.5,0.5); As1, 4e
(0,0,0.35408); As2, 4 f (0,0.5,0.12310); Fe, 8k (0.25, 0.75, 0.76800);
μ1–4 f (0,0.5, 0.301); μ2–4e (0,0, 0.186); and μ3–2b (0,0,0.5). The
crystal structure is visualized by using the VESTA package [18].
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TABLE II. The results of dipolar field calculations for various spin-vortex-crystal (SVC) magnetic structures of CaKFe4As4. P4/mbm
crystal structure with K0 = (0; 0; 0) magnetic propagation vector were considered. The values of fields at the muon sites were calculated by
means of Eqs. (A1)–(A3), assuming that each Fe carries the magnetic moment of 1μB.

μ1 (4 f ) μ2 (4e) μ3 (2b)

Field value Field value Field value
Fe SVC Field for 1μB/Fe Field for 1μB/Fe Field for 1μB/Fe

IR order parameter motif symmetry (mT) symmetry (mT) symmetry (mT)

τ1 − A1g L(−)
3x + L(−)

1y Hedgehog 0 L(I )
2z 365.58 lz 94.36

τ2 − A1u L(+)
1x − L(+)

3y Loop L(I )
3z 0 L(I )

3z 0 0

τ3 − A2g L(−)
1x − L(−)

3y Loop F (II )
3z 0 F (I )

z 0 mz 0

τ4 − A2u L(+)
3x + L(+)

1y Hedgehog 0 L(I )
1z 356.04 0

τ5 − B1g L(−)
3x − L(−)

1y Hedgehog L(II )
2z 417.66 0 0

τ6 − B1u L(+)
1x + L(+)

3y Loop 0 0 0

τ7 − B2g L(−)
1x + L(−)

3y Loop 0 0 0

τ8 − B2u L(+)
3x − L(+)

1y Hedgehog L(II )
1z 414.53 0 0

ab plane were introduced. They were presented by magnetic
order parameters from one-dimensional irreducible represen-
tations (IR’s) from τ1 to τ8. The SVC structures were divided
into two groups with so-defined “hedgehog” (τ1, τ4, τ5, and
τ8) and “loop” (τ2, τ3, τ6, τ7) motif in accordance with its
orthogonal arrangement of the spin pattern [13]. In addition
to double Q, the single-Q magnetic structures with τ9 and
τ10 IR’s could be considered (not shown, see Refs. [29,30]
for details). The magnetic structures corresponding to τ1–τ8

irreversible representations are shown in Figs. 18 and 19 of
Ref. [30].

Table II summarizes the outcome of the dipolar field cal-
culations for the magnetic order parameters of CaKFe4As4.
The linear combinations of Fe-magnetic moments [ �F (+),(−),
�L(+),(−)

1 , �L(+),(−)
2 , and �L(+),(−)

3 ] and the staggered magnetic
fields at muon sites ( �F I,II , �LI,II

1 , �LI,II
2 , and �LI,II

3 ) are described
in Ref. [30]. The values of magnetic fields at muon stopping
sites were calculated by means of Eqs. (A1)–(A3). Values of
Fe moments were set to 1μB.

Fields at μ1 (4 f ) muon sites with coordinates
(0, 0.5, 0.301) are

⎛
⎜⎝

Bx

By

Bz

⎞
⎟⎠ =

⎛
⎜⎝

0 0 0
0 0 295.33
0 295.33 0

⎞
⎟⎠

⎛
⎜⎝

L(−)
1x

L(−)
1y

L(−)
1z

⎞
⎟⎠ +

⎛
⎜⎝

0 0 −295.33
0 0 0

−295.33 0 0

⎞
⎟⎠

⎛
⎜⎝

L(−)
3x

L(−)
3y

L(−)
3z

⎞
⎟⎠

+

⎛
⎜⎝

0 0 0
0 0 293.12
0 293.12 0

⎞
⎟⎠

⎛
⎜⎝

L(+)
1x

L(+)
1y

L(+)
1z

⎞
⎟⎠ +

⎛
⎜⎝

0 0 −293.12
0 0 0

−293.12 0 0

⎞
⎟⎠

⎛
⎜⎝

L(+)
3x

L(+)
3y

L(+)
3z

⎞
⎟⎠. (A1)

The field at one of μ2 (4e) muon sites with coordinates (0, 0, 0.186) is
⎛
⎜⎝

Bx

By

Bz

⎞
⎟⎠ =

⎛
⎜⎝

0 0 0
0 0 258.51
0 258.51 0

⎞
⎟⎠

⎛
⎜⎝

L(−)
1x

L(−)
1y

L(−)
1z

⎞
⎟⎠ +

⎛
⎜⎝

0 0 258.51
0 0 0

258.51 0 0

⎞
⎟⎠

⎛
⎜⎝

L(−)
3x

L(−)
3y

L(−)
3z

⎞
⎟⎠

+

⎛
⎜⎝

0 0 0
0 0 251.76
0 251.76 0

⎞
⎟⎠

⎛
⎜⎝

L(+)
1x

L(+)
1y

L(+)
1z

⎞
⎟⎠ +

⎛
⎜⎝

0 0 251.76
0 0 0

251.76 0 0

⎞
⎟⎠

⎛
⎜⎝

L(+)
3x

L(+)
3y

L(+)
3z

⎞
⎟⎠. (A2)

Fields at μ3 (2b) muon sites with coordinates (0, 0, 0.5) are

⎛
⎝Bx

By

Bz

⎞
⎠ =

⎛
⎝0 0 0

0 0 −66.73
0 −66.73 0

⎞
⎠

⎛
⎜⎝

L(−)
1x

L(−)
1y

L(−)
1z

⎞
⎟⎠ +

⎛
⎝ 0 0 −66.73

0 0 0
−66.73 0 0

⎞
⎠

⎛
⎜⎝

L(−)
3x

L(−)
3y

L(−)
3z

⎞
⎟⎠. (A3)
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The calculations imply that magnetic structures, with the
corresponding τ2 and τ3 IR’s, cannot be seen at any of three
(4 f , 4e, and 2b) muon stopping sites. The structures corre-
sponding to τ6 and τ7 IR’s may result in nonzero fields at
muon sites only for a case of deviation of Fe ions from the
starting 8k (0.25, 0.75, z) position to 8k (x, x + 0.5, z) with
x = 0.25. However, the x-ray diffraction studies were not
detecting any lattice distortions in CaK(Fe0.949Ni0.051)4As4

below TN � 50 K [13]. The iron position 8k (0.25, 0.75, z)
is expected, therefore, to stay unchanged in the magnetic
ordered state. These arguments exclude all loop-type SVC
structures from the consideration. The differentiation between
four hedgehog SVC magnetic structures could be further
made by comparing the ZF-μSR data with the results of
calculations presented in Table II.

The symmetry analysis presented in Table II could be ap-
plied to determine the hyperfine magnetic fields induced by
SVC orders at As1 (4e) and As2 (4 f ) ions. The respective
staggered magnetic fields will have the same direction and
distribution for μ2 and As1 sites, as well as for μ3 and As2
sites. The As-NMR studies reveal the presence of hyperfine
fields at As1 and the absence of such a field at As2 ions in the
magnetically ordered state in CaK(Fe1−xNix )4As4 [13]. This
is consistent with the τ1 or τ4 representations of the hedgehog
SVC order.

APPENDIX B: MACHIDA APPROACH

The Machida’s self-consistent gap equations for the cou-
pled magnetic (M) and the superconducting (�) order
parameters are given in Refs. [14,17] [see also Eqs. (7) and
(8) in Sec. IVB1]. Here we consider the derivation of M and
� at T = 0.

The variables used in Machida’s theory are described in
Sec. IVB1. The pure magnetic order parameter is assumed
to satisfy the BCS relation M0/Ts0 = π/eγ ≈ 1.76 (M0 is
zero-temperature energy gap in the electron spectrum in the
absence of superconducting order). It is convenient for our
purpose to use dimensionless variables:

t = T

Ts0
, δ = �

M0
, m = M

M0
. (B1)

Note that these m and δ differ from those used in Ref. [14].
This normalization is convenient because m(0) = 1.

1. Solution at T = 0

Considering Eq. (7) at T → 0, the sum could be replaced
with an integral according to 2πT

∑
ω → ∫ ωs

0 d (h̄ω). After
integration in first two terms and summation in the last term
from n = 0 to the maximum corresponding to ωs = 2πT Ns,
Eq. (7) transforms to

ln
T

Ts0
= M + �

2M
ln

2ωs

M + �
+ M − �

2M
ln

2ωs

|M − �|
− ln(4eγ Ns). (B2)

Here, the standard treatment of

2πT
ωs∑

ω>0

1

ω
=

Ns∑
n=0

1

n + 1/2
= ψ

(
3

2
+ Ns

)
− ψ

(
1

2

)

for Ns 
 1 is used.
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(c)

FIG. 11. (a) m and (b) δ as a function of the parameter
R = Tc0/Ts0 = �0/M0 corresponding to solutions of the system of
Eqs. (B3) and (B5) for n1 = 0.3. The blue (red) branches represent
solutions for m increasing (decreasing) as a function of R (see text
for details). (c) The R dependence of the quantity δ2 + n1m2 entering
the condensation energy at T = 0 [Eq. (B9)].

With the use of dimensionless variables of Eq. (B1),
Eq. (B2) is further transformed to

(m + δ) ln(m + δ) + (m − δ) ln |m − δ| = 0. (B3)

In the absence of superconductivity this reduces to ln m = 0,
i.e., m = 1 and M(0) = M0 as it should.

Similar manipulations with Eq. (8) give

ln
T

Tc0
= n1

[
M + �

2�
ln

2ωD

M + �
− M − �

2�
ln

2ωD

|M − �|
]

+ n2 ln
2ωD

�
− ln(4eγ ND), (B4)

where ND = ωD/2πT . In dimensionless variables it takes the
form

n1
(m − δ) ln |R(m − δ)| − (m + δ) ln[R(m + δ)]

2δ

−n2 ln(Rδ) = 0. (B5)

Here,

R = Ts0

Tc0
= M0

�0
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FIG. 12. The same as in Fig. 11 but for n1 = 0.05.

and �0 is the superconducting gap in the absence of SDW
order. In particular, if n1 = 0, we have ln Rδ = 0, i.e.,

Rδ = M0

�0

�

M0
= �

�0
= 1

and � = �0, as it should.
A more compact form of Eq. (B5) is

δ ln(Rδ) + n1[(m + δ) ln(m + δ) − δ ln δ] = 0. (B6)

Hence, we have a system of two equations [Eqs. (B3) and
(B5)], which can be solved for m and δ if n1 and R are given.
In particular, one can fix n1 and plot m and δ as a function
of R as is done in panels (a) and (b) of Figs. 11 and 12 for
n1 = 0.3 and 0.05. Two solution branches, corresponding to
the increase and decrease of m with increasing R, are repre-
sented by blue and red color, respectively.

Similar calculations can be performed by keeping the pa-
rameter R constant and evaluating n1 (not shown).

2. Solution boundaries

One can get insight to numerical procedure of solving the
system of equations for m and δ by noting that Eq. (B3) does
not contain material parameters R and n1, i.e., it is universal.
Consider the left-hand side of this equation as a function
�(m, δ) one may plot a contour �(m, δ) = 0. Figures 13
and 14 represent such contours as a red/blue curve. The
separation of m(δ) on the “red” and the “blue” branches is the

0.0 0.5 1.0
0.0

0.2

0.4

0.6

R=4.0

R=2.72

R=1.28

R=2.0δ

m

n1 = 0.3

FIG. 13. Solutions of Eqs. (B3) and (B5). Points (m, δ) on the
red/blue curve are solutions of (B3). The black curves are contours
of constant R’s calculated with the help of Eq. (B5) [or Eq. (B6)]
for n1 = 0.3. The points, where two curves cross, correspond to
solutions of the system of Eqs. (B3) and (B5).

same as for m(R)’s presented in Figs. 11 and 12 for n1 = 0.3
and 0.05, respectively.

Points δ vs m at these curves satisfy Eq. (B3). In particular,
if the superconductivity is completely suppressed, δ = 0, and
�(m, 0) = 2m ln m = 0 yields m = 1 (the point δ = 0 and
m = 1 is the rightmost edge of the blue curve at Figs. 13
and 14).

In order to obtain the left edge, i.e., the limit of small m at
finite δ, one expands � in powers of m:

(δ + m)(ln δ + m/δ) + (m − δ)(ln δ − m/δ)

= 2m(ln δ + 1) = 0. (B7)

Hence, at small m we have δ = 1/e ≈ 0.368, that confirms the
numerical result for the leftmost edge of the red/blue curve.

0.0 0.5 1.0
0.0

0.2

0.4

0.6

R=4.0

R=2.72

R=2.0

δ

m

R=1.71

n1 = 0.05

FIG. 14. The same as in Fig. 13, but for n1 = 0.05.
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The second equation of the system, Eq. (B6), can be
written as

R = exp

[
− (1 − n1)δ ln δ + n1(m + δ) ln(m + δ)

δ

]
. (B8)

One can now plot contours of R(m, δ, n1) = const for a fixed
n1, e.g., for n1 = 0.3 (Fig. 13), on the same graph. In such a
case the solutions of both equations are at the points where the
red/blue curve crosses contours of constant R (see, e.g., the
gray points for R = 2 curve). As expected, the contour touch
the left edge of m(δ) curve corresponds to R = e = 2.718.
Following the data presented in Fig. 11, there are no solutions
at all if R � 1.28, there is a single solution for R � 1.28,
there are two solutions for 1.28 � R < e ≈ 2.72, and only one
solution if R > e.

A similar situation is shown in Fig. 14 for n1 = 0.05: no
solutions for R � 1.7, two solutions in the interval 1.7 � R <

e ≈ 2.72, and a single solution for R > e.

3. Condensation energy

Within Machida’s model, the condensation energy of both
phases at T = 0 is

N (0)�2(0)

2
+ N1M2(0)

2
= N (0)M2

0

2
(δ2 + n1m2). (B9)

Here, N1 is the density of states (DOS) on the Fermi-surface
part responsible for SDW and N (0) is the full DOS.

Figures 11(c) and 12(c) compare the condensation energies
for two types of solutions as they are represented by the blue
and red curves, respectively. Obviously, in the region where
two solutions for a given DOS n1 are possible, (m1, δ1) and
(m2, δ2), the blue curve stays above the red one. By decreasing
n1, the difference between them decreases and both of them
will coincide at the limit of n1 → 0, i.e., for a case when
the magnetism completely vanishes. The question remains
whether or not the m vs δ solutions corresponding to the
red part of the curve are just nonphysical or correspond to
something observable.
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