
PHYSICAL REVIEW B 102, 094503 (2020)

Higher-order topological Dirac superconductors

Rui-Xing Zhang ,* Yi-Ting Hsu , and S. Das Sarma
Condensed Matter Theory Center and Joint Quantum Institute, Department of Physics, University of Maryland,

College Park, Maryland 20742-4111, USA

(Received 20 March 2020; revised 21 July 2020; accepted 24 August 2020; published 3 September 2020)

We introduce higher-order topological Dirac superconductor (HOTDSC) as a gapless topological phase of
matter in three dimensions, which extends the notion of Dirac phase to a higher-order topological version.
Topologically distinct from the traditional topological superconductors and known Dirac superconductors, a
HOTDSC features Majorana hinge modes between adjacent surfaces, which are direct consequences of the
symmetry-protected higher-order band topology manifesting in the system. Specifically, we show that rotational,
spatial inversion, and time-reversal symmetries together protect the coexistence of bulk Dirac nodes and hinge
Majorana modes in a seamless way. We define a set of topological indices that fully characterizes the HOTDSC.
We further show that a practical way to realize the HOTDSC phase is to introduce unconventional odd-parity
pairing to a three-dimensional Dirac semimetal while preserving the necessary symmetries. As a concrete
demonstration of our idea, we construct a corresponding minimal lattice model for HOTDSC obeying the
symmetry constraints. Our model exhibits the expected topological invariants in the bulk and the defining spec-
troscopic features on an open geometry, as we explicitly verify both analytically and numerically. Remarkably,
the HOTDSC phase offers an example of a “higher-order topological quantum critical point, which enables
realizations of various higher-order topological phases under different symmetry-breaking patterns. In particular,
by breaking the inversion symmetry of a HOTDSC, we arrive at a higher-order Weyl superconductor, which is
yet another gapless topological state that exhibits hybrid higher-order topology.
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I. INTRODUCTION

Dirac physics is one of the central concepts driving the
intellectual revolution of topological phases in condensed
matter physics [1,2]. Since the seminal proposal of quan-
tum spin Hall effect in graphene with a hypothetically large
spin-orbit coupling [3,4], it has been known that gapping a
Dirac system is a natural way to achieve a gapped topo-
logical state. On the other hand, boundary modes with
Dirac dispersion often emerge on the (d − 1)-dimensional
boundaries of a d-dimensional topological phase, enforced
by the bulk-boundary correspondence principle. For ex-
ample, two-dimensional (2D) and three-dimensional (3D)
time-reversal-invariant topological insulators (TI) are known
to host one-dimensional (1D) helical Dirac edge states [3–6]
and 2D Dirac surface states [1,2], respectively. A 3D mass-
less Dirac fermion is by definition fourfold-degenerate in its
energy dispersion, which can be stabilized in solids only in
the presence of certain crystalline symmetries [7–10]. A bulk
electronic system with such 3D massless Dirac fermion is
known as a 3D Dirac semimetal, which was first observed with
angle-resolved photoemission spectroscopy in Na3Bi [7] and
Cd3As2 [11]. In those materials, the bulk Dirac points are sup-
ported by the combined protection of time-reversal symmetry
(TRS), spatial inversion symmetry, and certain out-of-plane
rotational symmetries. When projected onto the surface, the
bulk Dirac points are connected by arc-like surface states on
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the Fermi surface, which manifests the topological nature of
a DSM. Such DSMs can be driven to a 3D TI or a Weyl
semimetal by explicit or spontaneous symmetry breakings.
Another intriguing 3D Dirac phase is the 3D Dirac supercon-
ductor (DSC) [12], whose defining features are gapless Dirac
points in the bulk Bogoliubov–de Gennes (BdG) spectrum
and Majorana Fermi-arc surface states. Candidate materials
for 3D DSCs include CuxBi2Se3 [12], doped DSMs [13,14],
and iron-based superconductors [15].

On the other hand, a recent development in the topologi-
cal classification of matter is the extension of band topology
into a “higher-order” version [16–25], where the topologically
protected boundary modes can live in a lower codimension
than those in traditional topological materials. Specifically,
we adapt the definition in which an �-th order topological
state has anomalous gapless modes on its d − �-dimensional
boundary. In this definition, � = 1 and � > 1 correspond re-
spectively to traditional and higher-order topological phases.
For example, a 3D second-order TI has energy gaps on its
2D surfaces, but the hinges connecting different surfaces can
host 1D channels that penetrate both bulk and surface gaps.
The robustness of this type of higher-order topology often
originates from the protection of certain crystalline symme-
tries in the sense that the boundary modes of a higher-order
topological phase cannot be removed without either closing
the bulk gap or breaking these symmetries [26]. This type
of higher-order topological phases are often referred to as
“intrinsic,” which is in contrast to the “extrinsic” ones that
lack crystalline symmetry protection.
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FIG. 1. (a) A schematic plot of a higher-order topological Dirac superconductor in a hexagonal prism geometry. This exotic phase is
featured by the coexistence of BdG Dirac nodes in the 3D bulk (the colored spheres) and Majorana modes on the 1D hinges (the red and
blue lines). A schematic dispersion plot is shown for the HOTDSC phase in the prism geometry, which describes how the hinge Majorana
modes connect the bulk Dirac nodes. (b) The higher-order topological Dirac superconductor as a higher-order topological quantum critical
point. Various topological or higher-order topological phases can be achieved upon explicit or spontaneous symmetry breaking. A detailed
discussion is presented in Sec. IV.

While higher-order TIs have attracted considerable atten-
tion, there has been relatively little research on higher-order
topology in superconductors [27–40]. One major differ-
ence between the two cases is that in the latter, the hinge
or corner-localized states are essentially Majorana modes.
So far, extrinsic higher-order topological superconductiv-
ity has been theoretically proposed in TI/unconventional
superconductor heterostructures [28–31], iron-based super-
conductors [41–43], and other platforms [34,35,39,40],
whereas inversion-protected intrinsic superconductivity has
been proposed in gated monolayer WTe2 [44] and doped fer-
romagnetic nodal semimetals [45]. Overall, intrinsic higher-
order 3D topological superconductors (TSCs) remain largely
unexplored.

Here we raise the following important conceptual ques-
tions: Can an intrinsic 3D higher-order version of supercon-
ducting Dirac phases in principle exist? If so, what are the
protecting symmetries? In spite of several proposals on elec-
tronic higher-order topological semimetallic phases [45–49],
we are not aware of any literature on exploring the coexistence
of higher-order topology and nodal superconductivity, which
still remains an important open question.

In this work, we introduce a type of gapless topological
phase, the higher-order topological Dirac superconductor
(HOTDSC), as an example of a symmetry-protected higher-
order topological nodal superconducting phase [50]. The
HOTDSC gets its name from simultaneously hosting 3D bulk
Dirac nodes, 2D gapped surface states, and 1D flat-band-like
hinge Majorana modes in the BdG spectrum, all of which
are enforced by symmetries [see Fig. 1(a)]. We first show
that the bulk Dirac points and the Majorana hinge modes are
protected by C6 rotation and inversion symmetry, respectively.
We then define a set of topological invariants accordingly
that fully characterize this phase. Importantly, we point out
that introducing superconductivity to doped DSMs can be
a practical way to experimentally realize this exotic higher-
order phase. Through a systematic study of superconducting

DSMs with various rotational symmetries (see Table I), we
find that C6 is the only rotation symmetry that can protect
our HOTDSC.

To develop the theory, we construct a minimal model for
the HOTDSC phase by introducing a time-reversal pairing
gap that is odd under both C6 rotation and inversion to a
C6-symmetric doped DSM. Specifically, we show analytically
and numerically that our minimal model, both in the contin-
uum limit and on a hexagonal prism lattice, not only exhibits
the expected topological invariants, but also possesses a pair
of robust bulk Dirac points, gapped 2D surfaces, and Majorana
hinge modes. Hence the bulk-boundary correspondence for
the HOTDSC phase is explicitly demonstrated in our model.

Importantly, our proposed HOTDSC phase also offers
an example of a higher-order topological quantum criti-
cal point. As shown in Fig. 1(b), a variety of higher-order
topological phases could be achieved upon different symme-
try breakings of a HOTDSC, including an intrinsic/extrinsic
higher-order TSC, a Weyl superconductor, and a higher-order
Weyl superconductor. In particular, the higher-order Weyl
superconductor is a type of gapless topological state that
has never before been defined or studied. Different from a
HOTDSC, a higher-order Weyl superconductor not only fea-
tures 3D bulk Weyl nodes connected by 2D surface Majorana
Fermi arcs in the BdG spectrum, but also possesses coexisting
1D flat-band-like hinge Majorana modes. Remarkably, the
higher-order Weyl superconductor offers a natural example
for “hybrid higher-order topology” [38], where 2D surface
state and 1D hinge modes coexist and are protected against
mixing with each other by the translational symmetry.

The paper is organized as follows. In Sec. II we present
a detailed discussion of the bulk topological invariants that
are crucial for defining the HOTDSC phase. By clarifying the
topological nature of superconducting DSMs, we identify the
symmetry requirements for HOTDSC phase. In Sec. II A we
briefly review the extension of symmetry operations from a
normal electron system to its BdG counterpart. In Sec. II B
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TABLE I. Summary of topological properties for superconducting DSMs with an n-fold rotation symmetry. For our purpose, we have
considered only odd-parity pairing terms for DSMs that preserve TRS. The pairing term is even (odd) under n-fold rotation symmetry when
α = 0 (α = n/2). The presence of hinge Majorana modes indicates that the BdG system is higher-order topological. ∗For n = 6, α = 0, the
normal state is a DSM if j = ± 1

2 , ± 3
2 or j = ± 3

2 , ± 5
2 , and the superconducting state is a mirror TSC with |CM | = 2. For j = ± 1

2 ,± 5
2 , the

normal state is a double DSM and the superconducting state has |CM | = 6.∗∗The resulting superconducting state hosts two pairs of double
Dirac nodes in the BdG spectrum.

we first review the definition of topological charge for elec-
tronic DSMs and further generalize the theory to describe
BdG Dirac systems. This extension allows us to establish
the deep connection between superconducting DSMs and
Dirac superconductors. In Sec. II C we discuss how to use
a symmetry indicator κ2d for 2D inversion-symmetric BdG
systems to diagnose Majorana hinge modes in 3D HOTDSC.
In Sec. II D we develop a simple relation between the mirror
Chern number of a BdG system and that of its normal part.
The above discussions on the topological indices pave the way
for clarifying the required conditions of HOTDSC, which is
concluded in Sec. II E.

In Sec. III we present a minimal lattice model for the
HOTDSC phase and establish the defining properties of
the HOTDSC phase both analytically and numerically. In
Sec. III A we start by introducing a tight-binding model for
3D C6-symmetric DSM on a hexagonal lattice. In Sec. III B
we classify pairing terms that satisfy the symmetry require-
ment for HOTDSC, thus leading to the nontrivial bulk Dirac
physics. In Sec. III C we analytically solve our supercon-
ducting model for the low-energy surface state in a cylinder
geometry and construct an effective boundary BdG theory
for our model. This effective theory shows an anisotropic
surface pairing gap that directly implies the existence of hinge
Majorana states. In Sec. III D we numerically calculate the
energy spectrum in an infinite long hexagonal prism geometry

to unambiguously and explicitly demonstrate the coexistence
of bulk Dirac physics and hinge Majorana physics.

In Sec. IV we establish the HOTDSC phase as a higher-
order topological quantum critical point and introduce the
concept of higher-order Weyl SC. We then show how various
topological phases (especially the higher-order Weyl physics)
naturally emerge from the HOTDSC by breaking different
symmetries. Finally in Sec. V we summarize our results and
discuss possible directions for the experimental realization of
our predictions.

II. SYMMETRIES AND TOPOLOGICAL
INVARIANTS FOR HOTDSC

In this section, we establish the theoretical framework for
a HOTDSC phase by introducing the crucial symmetries and
the corresponding topological invariants. Specifically, we first
define a topological charge Qj for Cn rotation symmetry and
a mirror Chern number CM for a mirror symmetry in the z
direction. We then apply an inversion symmetry indicator κ2d

for 2D time-reversal gapped superconductors to study a high-
symmetry plane in a 3D HOTDSC. These three invariants
govern the topological properties of the 3D bulk, 2D surfaces,
and 1D hinges respectively in a 3D superconductor. Our recipe
for realizing a HOTDSC are determined by both the symmetry
constraints and the values of {Qj, CM , κ2d}.
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A. Symmetry for BdG systems

We start by reviewing the symmetry properties of a general
BdG Hamiltonian

H (k) =
(

h(k) �(k)
�†(k) −h(−k)∗

)
(1)

defined in the Nambu basis

�(k) = (c1,k, c2,k, . . . , cN,k, c†
1,−k, c†

2,−k, . . . , c†
N,−k )T , (2)

where ci,k (c†
i,−k) annihilates an electron (a hole) at momen-

tum k with band index i = 1, 2, . . . , N . H (k) satisfies the
particle-hole symmetry (PHS)

� =
(

0 IN

IN 0

)
K = τxK. (3)

IN is an N × N identity matrix and K is the complex con-
jugation. We define the Pauli matrix τi to characterize the
particle-hole degree of freedom.

Let us assume that the normal state Hamiltonian h(k) is
invariant under a unitary symmetry Ã with Ãh(k)Ã† = h(Ãk).
When the pairing function satisfies

Ã�(k)ÃT = χ�(Ãk), (4)

with χ being a U (1) phase factor, the BdG Hamiltonian H (k)
is invariant under the BdG extension of Ã,

A =
(

Ã 0
0 χ Ã∗

)
. (5)

When we further require H (k) to be invariant under the time-
reversal operation 
, the requirement that [
, A] = 0 will
impose a strong constraint on both χ and the pairing function.
Specifically, the time-reversal operation for a general BdG
system is given by


 =
(

T 0
0 T ∗

)
K, (6)

where T is the unitary part of the normal-state time-reversal
operation. Together with Eq. (5), we arrive at

χ = ±1 ∈ R. (7)

Therefore, for a time-reversal-invariant BdG system that re-
spects A symmetry, the pairing function can be either even
(χ = 1) or odd (χ = −1) under Ã, following Eq. (4).

Next, we will consider time-reversal BdG Hamiltonians
with symmetry A being the rotational, mirror, and inversion
symmetries, and discuss their corresponding topological in-
dices. These three crystalline symmetries are necessary for
protecting a HOTDSC phase, which guarantee gapless 3D
Dirac nodes, gapped 2D surface states, and gapless 1D hinge
modes, respectively.

B. Rotation topological charge Qj

In this subsection, we discuss how certain rotational sym-
metries can stabilize 3D bulk Dirac nodes in both Dirac
semimetals (DSM) and Dirac superconductors (DSC), and
discuss their corresponding topological indices. Following
Refs. [13] and [51], we first define a set of topological charges
{Q̃ j} for 3D DSM that (1) characterizes the existence of

rotation-protected bulk Dirac nodes and (2) relies only on
the rotation eigenvalues at time-reversal-invariant momenta
(TRIM) along the rotation axis (e.g., � and Z). These topo-
logical charges are hence symmetry indicators. Based on the
definition of {Q̃ j}, we will then define analogous topological
charges {Qj} for Dirac superconductors (DSC). The deep
connection between {Q̃ j} and {Qj} offers a simple approach
to determine what kind of DSC physics can be achieved by a
given superconducting DSM system in the weak pairing limit.

1. Topological charge for Dirac semimetals

For a DSM whose bulk Dirac nodes are away from
TRIMs, the presence of symmetry-protected bulk Dirac nodes
can be diagnosed by a set of topological charges {Q̃ j} de-
fined on the rotation axis (e.g. kz axis) [51]. Generally,
for an electronic system with an n-fold rotation symmetry
C̃n, there are n inequivalent irreducible representations (ir-
rep) labeled by the z-component angular momentum j =
± 1

2 , ± 3
2 , . . . ,±(� n+1

2 � − 1
2 ), where �x� is the floor function.

Note that for n ∈ odd, the irreps with j = ± n
2 are essentially

the same. Since the Hamiltonian along the kz axis

h(0, 0, kz ) =
⊕

j

h j (kz ) (8)

is block-diagonal in irrep j, we can define an independent
topological charge Qj for each block Hamiltonian h j (kz ).

These topological charges {Q̃ j} are defined as follows. For
a given irrep j, the Hamiltonian h j (kz ) at each kz can be
viewed as a zero-dimensional system with C̃n symmetry. Since
both h j (0) and h j (π ) are gapped (as the Dirac nodes are away
from TRIMs), we can define a quantity

ω j (ki ) = 1
2

[
Nc

j (ki ) − Nv
j (ki )

]
(9)

for each of them, which measures the number difference be-
tween the filled states Nv

j (ki ) and the empty states Nc
j (ki ) at

ki = 0, π for irrep j. When ω j (0) �= ω j (π ), there necessarily
exist gapless modes between 0 and π along kz that cannot
be removed without closing the gaps at ki. The number of
the gapless modes is simply given by the topological charge
[13,51]

Q̃ j = ω j (0) − ω j (π ). (10)

When Q̃ j = 0, h j (0) and h j (π ) are topologically equivalent
and one can generally find an adiabatic path along kz to
smoothly deform hj (0) to h j (π ) without closing the energy
gap, and hence with no gapless points in between. When Q̃ j �=
0, there necessarily exist |Q̃ j | of gapless 1D unidirectional
modes along the kz axis that are either left movers (Q̃ j < 0)
or right movers (Q̃ j > 0).

To determine the number of robust Dirac points from
the topological charges {Q̃ j}, we need to consider two ad-
ditional constraints. First, in the presence of inversion and
time-reversal symmetries, the spectra of hj (kz ) and h− j (kz )
are degenerate. The two irreps ± j therefore have the same
topological charge

Q̃ j = Q̃− j . (11)

Second, the definition of a Dirac point requires the number
of left movers and that of right movers to be the same, which
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imposes a “charge conservation” condition∑
j

Q̃ j = 0. (12)

With the constraints in Eq. (11) and Eq. (12), the number
of independent topological charges for a Cn-invariant system
is (1) n/2 − 1 when n is even and (2) (n − 1)/2 when n is odd.
Our choice of independent topological charges is given by{

Q̃ 1
2
, Q̃ 3

2
, ..., Q̃ n−1

2 −1

}
, for n ∈ even,{

Q̃ 1
2
, Q̃ 3

2
, ..., Q̃ n

2 −1
}
, for n ∈ odd. (13)

Since the Dirac points always come in pairs, the total number
of bulk Dirac points (DPs) along kz axis is given by

Number of DPs = 2
∑

j

|Q̃ j |, (14)

where only independent Q̃ j’s defined in Eq. (13) will be
counted. We emphasize that a nontrivial Q̃ j is a necessary but
insufficient condition for the existence of bulk Dirac points.
For example, when a pair of Dirac points is formed by the
band inversion of the same set of bands and both live in
kz ∈ [0, π ], Q̃ j is incapable of diagnosing them.

2. Topological charge for Dirac superconductors

We now generalize the concept of topological charges to
describe rotational symmetric DSCs in the weak pairing limit.
Consider a superconductor whose normal state is invariant
under an n-fold rotational operation C̃n, and the pairing gap
transforming under C̃n as

C̃n�(k)C̃T = ei 2π
n α�(Cnk), (15)

where α = 0, 1, 2, . . . , n − 1. We can define an n-fold rota-
tional operation in the Nambu basis for the corresponding
BdG Hamiltonian

Cn =
(

C̃n 0
0 ei 2π

n αC̃∗
n ,

)
(16)

such that the BdG Hamiltonian is invariant under Cn.
Due to the presence of both time-reversal and inversion

symmetries, every electron band belonging to irrep j is
grouped with another electron band with − j to form a 2D
irrep, whose particle-hole partners are thus a pair of degener-
ate hole bands with ±(α − j). Therefore, a Dirac-like gapless
crossing among such two pairs of degenerate BdG bands
can be achieved only if α �= 0, when the electron and hole
bands belong to different irreps. Moreover, as we previously
discussed in Sec. II A, the compatibility relation with TRS
requires

ei 2π
n α = −1, (17)

which implies that α = n
2 ∈ Z. This leads to the following two

choices of n and α to achieve a time-reversal DSC: (1) n =
4, α = 2 and (2) n = 6, α = 3. In the weak pairing limit, the
topological charge for such a DSC can be defined by summing
over the Q̃(e)

j from the electrons and the Q̃(h)
j from the holes.

In particular,

(i) n = 4, α = 2: For the electron part, there are four
inequivalent irreps j = ± 1

2 ,± 3
2 , based on which a single in-

dependent topological charge Q̃(e)
1
2

is well defined. Since PHS

will transform the electron state |± 1
2 , e〉 and |± 3

2 , e〉 to the
hole state |± 3

2 , h〉 and |± 1
2 , h〉, respectively, the topological

charge for the holes can be related to that of the electrons by

Q̃(h)
1
2

= −Q̃(e)
3
2

= Q̃(e)
1
2

. (18)

The total topological charge for the entire BdG system is given
by

Q 1
2

= Q̃(e)
1
2

+ Q̃(h)
1
2

= 2Q(e)
1
2

. (19)

When Q 1
2

�= 0, the BdG system is a DSC protected by C4

symmetry.
(ii) n = 6, α = 3: For C̃6 symmetry, there are six irreps

j = ± 1
2 ,± 3

2 ,± 5
2 . As a result, one can define two independent

topological charges Q̃(e)
1
2

and Q̃(e)
3
2

to characterize the Dirac

nodes for the electron part. While PHS transforms the elec-
tron states |± 1

2 , e〉 and |± 5
2 , e〉 to the hole states |± 5

2 , h〉 and
|± 1

2 , h〉, respectively, the electron states |± 3
2 , e〉 are trans-

formed into |± 3
2 , h〉. Therefore, we have

Q̃(h)
1
2

= Q̃(e)
1
2

+ Q̃(e)
3
2

, Q̃(h)
3
2

= −Q̃(e)
3
2

. (20)

As a result, the topological charges for such a BdG system are
given by

Q 1
2

= Q̃(e)
1
2

+ Q̃(h)
1
2

= 2Q̃(e)
1
2

+ Q̃(e)
3
2

,

Q 3
2

= Q̃(e)
3
2

+ Q̃(h)
3
2

= 0. (21)

For Q 1
2

�= 0, since the BdG Dirac point is formed between

electron bands with j = ± 1
2 and hole bands with j = ± 5

2 , it is
actually a “double” Dirac point with a linear dispersion along
kz and quadratic in-plane dispersions [52]. By definition, such
a BdG system is dubbed a double DSC.

3. From Dirac semimetal to Dirac superconductor

The relations in Eq. (19) and Eq. (21) reveal deep connec-
tions between DSMs and DSCs. In particular, starting from a
DSM with a nontrivial Q̃ j , the final SC state is guaranteed a
DSC if Q 1

2
�= 0.

As an example, let us consider a C̃6-symmetric DSM with a
pair of bulk Dirac points, which consists of | j = ± 1

2 〉 and | j =
± 3

2 〉. Without loss of generality, we assume the topological
charges to be Q(e)

1
2

= −Q(e)
3
2

= 1. By developing time-reversal-

symmetric superconductivity with α = 3, we follow Eq. (21)
and arrive at

Q 1
2

= 1, Q 3
2

= 0. (22)

Therefore, the final SC state is a double DSC with a pair of
double Dirac points along kz axis.

Similarly, we can apply this topology analysis to study
the possibility of DSC phase for a superconducting DSM
with other rotation symmetries or irreps. A summary of these
results is listed in Table I.
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C. Inversion symmetry indicator κ2d

In this subsection, we discuss how to diagnose the exis-
tence of inversion-protected 1D Majorana hinge modes in a
3D DSC phase. This is in fact not a straightforward task since
DSC is a gapless phase, and the classification and an indicator
that can diagnose boundary modes for such a 3D gapless
superconductor with time-reversal and inversion symmetries
are still unknown to the best of our knowledge. Given that the
Dirac nodes are generally away from the high-symmetry plane
kz = 0, here we propose to diagnose the existence of Majorana
hinge modes in a 3D DSC by studying the inversion-protected
topology in its kz = 0 plane, which is effectively a 2D gapped
class-DIII system with a 2D inversion symmetry [53].

We do so by using a Z4 inversion symmetry indicator κ2d

for 2D gapped inversion-symmetric DIII superconductors. A
2D indicator of such kind was first conjectured in Ref. [44] for
a half-filled case, generalized later in several works [54,55],
and recently one of us and collaborator have shown that the
classification is indeed Z4 and that κ2d used in this work
can indeed faithfully diagnose the boundary modes based
on a combined K group and real-space topological crystal
analysis [56]. Such a boundary diagnostic depends only on
the inversion eigenvalues of occupied BdG bands at the four
high-symmetry points, and can detect whether a given 2D su-
perconductor has no boundary modes, Majorana edge modes,
or Majorana corner modes.

The inversion operator for a BdG Hamiltonian is de-
fined as follows. For a superconductor whose superconducing
gap transforms under the normal-state inversion P̃k as
P̃k�(k)P̃T

k = η�(−k), we can define an inversion operator
in the Nambu basis

Pk =
(
P̃k 0
0 ηP̃k

)
(23)

such that the BdG Hamiltonian is invariant under Pk . Here
η = ±1 indicates that the superconducting gap is parity-even
or -odd.

With the BdG inversion operator P defined, we can now
write the inversion symmetry indicator

κ2d = 1

2

∑
k

{N+[H (k)] − N+[H0(k)]} mod 4, (24)

where N+[h] denotes the number of even-parity occupied
bands in a given Hamiltonian h, and the factor 1/2 accounts
for the Kramers degeneracy. Here, H (k) is the BdG Hamilto-
nian of interest with 2Ñ bands at a high-symmetry point k =
�, X,Y, M, and H0(k) is a reference BdG Hamiltonian with
the same number of bands 2Ñ . This latter term with H0(k)
removes the contribution to the former term that originates
from the k-dependent phase factors carried by the inversion
operator Pk itself. In the rest of this paper, we will take
H0(k) = [IÑ ,−IÑ ] regardless of the actual form of the given
BdG Hamiltonian. Specifically, while κ2d = 1 and 3 corre-
spond to first-order topological phases with Majorana edge
modes [57], κ2d = 2 corresponds to a higher-order 2D strong
phase featuring two inversion-protected Majorana Kramers
pairs, one on each of the opposite corners.

We now turn back to the 3D nodel superconductors. For
a given 3D DSC Hdsc(k), since its kz = 0 plane is gapped,

we can compute κ2d for Hdsc(kz = 0). When κ2d = 2, we
expect corner Majorana Kramers pairs on the kz = 0 plane,
and consequently twofold degenerate Majorana hinge modes
in the spectrum of Hdsc(k). These hinge modes originate from
extending the kz = 0 corner Majoranas in the kz direction up
to the kz planes where the 2D bulk gap closes, i.e., the planes
where the Dirac nodes lie within.

In the weak-pairing limit, we can further relate this BdG
indicator κ2d to an analogous inversion symmetry indicator
κ̃2d defined for a normal state as [55]

κ2d = (1 − η)κ̃2d , (25)

where η = 1 and −1 are for even- and odd-parity super-
conductors, respectively. However, a 2D normal state with
both time-reversal and inversion symmetries has a Z2 clas-
sification, just like a 2D class-AII system without inversion.
This means that the inversion symmetry does not induce
new phases additional to the ones protected by time-reversal
symmetry. This Z2 indicator is therefore just the familiar Z2

topological index ν for a time-reversal-invariant normal state.
For even-parity superconductors (η = 1), it is clear that κ2d

is always zero because of the exact cancellation between the
contribution to κ̃2d (or ν) from the electrons and from the
holes. We therefore should restrict ourselves to odd-parity
superconductors (η = −1) to search for topologically non-
trivial phases. In particular, to achieve a HOTDSC, a good
starting point according to Eq. (25) is a topological normal
state whose kz = 0 plane has ν = 1. As we further introduce
odd-parity pairing, we will obtain a κ2d = 2 superconducting
state at kz = 0 with inversion-protected corner Majoranas,
which further indicates the existence of 1D hinge Majorana
modes in the 3D DSC.

D. Mirror Chern number CM

In this subsection, we discuss the mirror symmetry Mz that
sends z → −z and the corresponding mirror Chern number
CM for BdG systems. For our purpose of achieving a robust
DSC from a C̃n-symmetric DSM, we focus on the cases where
n = 4, 6 with α = n/2, as concluded in Sec. II B 3. Impor-
tantly, since such a DSC is always invariant under a twofold
rotational C2 and spatial inversion P , it automatically has
the mirror symmetry Mz = C2P . It is therefore important to
study the corresponding mirror Chern number CM , since Mz

can protect unwanted gapless surface states (for our purpose)
when CM is nonzero, as we show in the following.

For a Cn-symmetric BdG Hamiltonian, Mz can be defined
in the Nambu basis as

Mz = (Cn)
n
2 P =

(
C̃2 0
0 (−1)αC̃∗

2

)(
P̃ 0
0 ηP̃

)

=
(

M̃z 0
0 (−1)αηM̃∗

z

)

=
(

M̃z 0
0 (−1)αM̃z

)
, (26)

where C̃2, P̃, M̃z are the twofold rotation, inversion, and mir-
ror operators for normal state Hamiltonian, respectively. In the
last step of Eq. (26), we make use of the fact that M̃∗

z = −M̃z

for spinful fermions and η = −1 for odd-parity pairing.
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Given a normal state with an electronic mirror Chern num-
ber C̃M , the CM for the BdG system is

CM = [1 + (−1)α]C̃M =
{

2C̃M α ∈ even,

0 α ∈ odd.
(27)

This relation implies that Mz-protected 2D surface states can
only exist when α is even. To achieve a HOTDSC, where the
2D surface has to be gapped, we are therefore limited to the
case with n = 6 and α = 3.

E. A recipe for HOTDSC

As we discussed above, the band topology of a supercon-
ducting Dirac semimetal is characterized by the following
topological indices:

{Qj, CM , κ2d}, (28)

which characterize the existence of 3D rotation-protected bulk
Dirac nodes, 2D mirror-protected Majorana surface states, and
1D inversion-protected hinge Majorana modes, respectively.
Based on our topological index analysis, we have summarized
the possible superconducting states for DSMs with time-
reversal-invariant odd-parity pairing in Table I.

In particular, starting from a C̃3-symmetric DSM, odd-
parity pairing can spoil the bulk Dirac physics and drive the
system into a higher-order TSC with inversion protected hinge
Majorana modes. With C̃4 symmetry, the superconducting
DSM could be (1 a mirror-protected TSC with gapped bulk
and Majorana surface states when α = 0 and (2) a DSC with
bulk Dirac nodes and Majorana surface states when α = 2.
Similar mirror TSC phase can be achieved for a C̃6-invariant
DSM when the pairing satisfies α = 0. Finally, one of our
main findings is that a HOTDSC phase is only possible in
a C̃6-symmetric superconducting DSM whose pairing is odd
under both inversion and sixfold rotation.

III. MODEL

In this section, we construct a minimal k · p model and the
corresponding tight-binding model on a 3D hexagonal lattice
that realize the HOTDSC phase predicted by our general topo-
logical index analysis in the previous section. Our models for
a HOTDSC phase exhibit the expected set of bulk topological
indices and the defining properties in the spectrum, namely
the gapless bulk Dirac nodes, gapped surface states, and gap-
less Majorana hinge modes, as we demonstrate analytically
and numerically below in the continuum and lattice models
respectively. As we show in the following, our numerical
and analytical results are completely consistent with each
other, providing compelling support for our predictions on
HOTDSC.

A. Tight-binding model for C6-symmetric DSM

1. The minimal k · p model for DSM

We start with a four-band minimal continuum model for a
3D DSM that was considered in Refs. [7,11],

h0 = v(kxγ1 − kyγ2) + m(k)γ5, (29)

up to O(k2) order, where the mass term is given by m(k) =
M0 − M1(k2

x + k2
y ) − M2k2

z . Here the Dirac matrices are de-
fined as

γ1 = sz ⊗ σx, γ2 = s0 ⊗ σy,

γ3 = sx ⊗ σx, γ4 = sy ⊗ σx,

γ5 = s0 ⊗ σz, (30)

where si and σi denote the Pauli matrices in the spin
s =↑,↓ and orbital σ = s, p bases, respectively. The four
basis states can therefore be labeled by their z-component
angular momenta as | 1

2 〉, | 3
2 〉, | − 1

2 〉, | − 3
2 〉. In such spin and

orbital bases, the spatial inversion symmetry and time-reversal
symmetry are given by

P̃ = s0 ⊗ σz = γ5, 
̃ = isy ⊗ σ0K = iγ13K, (31)

where γi j ≡ [γi, γ j]/(2i). The continuum model respects a
continuous rotational symmetry around the z axis

C̃∞ = eiθJz (32)

for an arbitrary rotation angle θ , where the generator is
a diagonal matrix Jz = diag{ 1

2 , 3
2 ,− 1

2 ,− 3
2 }. This rotational

symmetry prevents avoided crossings between bands of dif-
ferent irreps and is thus the symmetry that protects gapless
Dirac points. In particular, when M0M2 > 0, this model has
two C̃∞-protected fourfold degenerate bulk Dirac points at

kx = ky = 0, kz = ±k0 = ±
√

M0

M2
. (33)

These bulk Dirac points remain robust even when we regular-
ize the model on a lattice and break the continuous C̃∞ down
to a discrete rotational symmetry C̃n with n = 3, 4, 6, as we
previously discussed in Sec. II B 1.

We also include the symmetry-allowed next leading order
term h1(k) for this DSM model in our later discussions [7]. In
particular,

h1(k) = vz

⎛
⎜⎜⎝

0 0 0 kzk2
−

0 0 kzk2
− 0

0 kzk2
+ 0 0

kzk2
+ 0 0 0

⎞
⎟⎟⎠, (34)

which clearly vanishes along kz axis. Physically, h1(k) has
no effect on the bulk Dirac nodes but is able to deform the
dispersion of Fermi arc surface states [58].

2. The lattice model

We now regularize the continuum model and put it on a
hexagonal lattice characterized by the lattice vectors a1 =
(1, 0, 0), a2 = 1

2 (1,
√

3, 0), and a3 = (0, 0, 1), as shown in
Fig. 2(a). The resulting tight-binding model has the form

htb(k) =
5∑

i=1

di(k)γi (35)

with

d1 = v0[2 sin k1 + sin(k1 − k2) + sin k2],

d2 =
√

3v0[sin k2 − sin(k1 − k2)],
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FIG. 2. (a) The hexagonal lattice structure and lattice vectors
for the tight-binding model . (b) The (010) surface spectrum of the
lattice DSM model, which clearly shows the bulk Dirac point and the
Fermi-arc surface states. We choose v0 = 0.25, uz = 0.1, t = 1, tz =
2, k0 = 0.3π . The high-symmetry momenta in the surface Brillouin
zone are defined as �̄ = (0, 0), X̄ = (π, 0), Z̄ = (0, π ), which fol-
lows the notation (kx, ky ).

d3 = uz sin kz[2 cos k1 − cos(k1 − k2) − cos k2],

d4 = −uz

√
3 sin kz[cos(k1 − k2) − cos k2],

d5 = t[cos k1 + cos k2 + cos(k1 − k2) − 3]

+ tz(cos kz − cos k0), (36)

where we have defined k1 = kx and k2 = (kx + √
3ky)/2.

In the long-wavelength limit, htb reproduces the continuum
model in Eq. (29) and Eq. (34) if we replace v0 → 4

3v,
uz → 4

3vz, t → 4
3 M1, tz → 2M2, and k0 → cos−1 (1 − M0

2M2
).

Nonetheless, instead of the continuous rotational symmetry
C̃∞, htb preserves the sixfold rotational symmetry

C̃6 = ei π
3 Jz (37)

such that C̃6htb(k1, k2, kz )C̃†
6 = htb(k1 − k2, k1, kz ). Together

with the fact that there exists a pair of bulk Dirac points at
k = (0, 0,±k0), we have shown that htb is a lattice model that
realizes a C6-symmetric DSM.

We numerically demonstrate the existence of bulk Dirac
points along �-Z and the corresponding Fermi arc states by
plotting the (010) surface spectrum in a semi-infinite geome-
try using the iterative Green function method [see Fig. 2(b)].
It is easy to check that the bulk Dirac points are labeled
by the topological charge Q(e)

1
2

= −Q(e)
3
2

= 1 (as discussed in

Sec. II B 1), and the Fermi arc surface states are protected by
the mirror Chern number C̃M = 1.

B. Odd-parity superconductivity and higher-order topology

We now consider a doped C̃6-symmetric DSM model and
introduce symmetry-allowed pairing gaps to construct the
BdG Hamiltonian H (k) = H0(k) + H�(k) for a HOTDSC
phase.

Starting from the continuum limit, the minimal Hamiltoni-
ain for a doped DSM can be written in the Nambu basis as

H0(k) = v(kxτ0 ⊗ γ1 − kyτz ⊗ γ2)

+ m(k)τz ⊗ γ5 − μτz ⊗ γ0, (38)

where μ denotes the chemical potential capturing the doping
effect, and τi denote the Pauli matrices in the particle-hole

FIG. 3. A schematic plot of the BdG band structure along kz for
our doped DSM model. The BdG (normal) Dirac nodes are shown
in the purple (orange) dots. Notice the anticrossing between |± 3

2 , e〉
state (blue solid line) and |± 3

2 , h〉 state (blue dashed line), which
originates from the pz-wave pairing in H�(k).

basis. For our purpose, we will ignore the O(k3) term in
Eq. (34) in H (k) for now and will include it as a perturbation
in later discussions.

To obtain a HOTDSC phase, the pairing term in H�, as
already discussed in Sec. II, has to be time-reversal symmet-
ric, but odd under both inversion and sixfold rotation. This
requires the full Hamiltonian H (k) to be invariant under the
following symmetry operations defined in the Nambu basis:


 = iτ0 ⊗ γ13K, I = τz ⊗ γ5, C6 =
(

C̃6 0
0 −C̃∗

6

)
.

(39)

Given the above symmetry constraints, we find that the gen-
eral symmetry-preserving pairing term that respects fermionic
statistics has the form

H�(k) = �1[kzτx ⊗ sz ⊗ (σ0 − σz )]

+ �2
[(

k2
x − k2

y

)
τy ⊗ sy ⊗ σx − 2kxkyτx ⊗ sx ⊗ σy

]
+ �3[kz(kxτy ⊗ s0 ⊗ σy + kyτx ⊗ sz ⊗ σy)], (40)

up to O(k2) order, where parameters �1,2,3 are assumed to
be real for simplicity. Here the �2 and �3 terms correspond
to two distinct nodal d-wave pairings, and the �1 term cor-
responds to a pz-wave pairing, with all of these terms being
time-reversal symmetric and odd under inversion and six-
fold rotation (i.e., α = 3). Throughout our work, we will set
�3 = 0 for simplicity since it is irrelevant to the topologi-
cal physics we study. Importantly, the pz-wave pairing exists
only between electrons and holes with j = ± 3

2 to respect the
rotational symmetry, which therefore leaves us two pairs of
rotation-protected Dirac nodes between the BdG bands com-
prising mostly j = ±1/2 electron and j = ±5/2 hole bands
respectively (see Fig. 3 for a schematic demonstration).

Recall that the normal state H0(k) is a DSM with the
following topological indices:

Q(e)
1
2

= −Q(e)
3
2

= 1, C̃M = 1, ν = 1. (41)

Following the results in Sec. II, it is then straightforward to
show that our BdG system H (k) hosts the following BdG
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indices:

Q 1
2

= 1, Q 3
2

= 0, CM = 0, κ2d = 2, (42)

which are exactly the indices that correspond to a HOTDSC
with a pair of bulk double Dirac nodes, gapped surface
states, and hinge Majorana modes. As we have discussed the
Dirac physics in the bulk, in the following, we will demon-
strate that the hinges are gapless while the surface states
are gapped by analytically constructing an effective surface
theory (Sec. III C) and numerically calculating the boundary
spectrum on an open geometry (Sec. III D).

C. Effective boundary theory and bulk-boundary
correspondence

Building an effective surface theory is a crucial step in un-
derstanding the higher-order bulk-boundary correspondence
for HOTDSCs. For our purpose, we focus on the surface
spectrum for an infinite long cylinder geometry. Here we work
with the cylindrical coordinate (r, θ, z), where an open surface
around the cylinder is labeled by the polar angle θ . Because of
the nontrivial bulk topological indices of our model, we expect
topological features in the boundary spectrum. For example,
if the surface state for our system has a θ -dependent energy
gap that vanishes at some special angles, this clearly suggests
gapless hinge Majorana physics in our system.

Our starting point is the continuum Hamiltonian H0(k) on
a cylindrical geometry, whose surface states will be solved
analytically. In the weak pairing limit, we treat h1(k) in the
normal state and the pairing term H�(k) as perturbations,
and we project them onto the low-energy bases spanned
by the surface states of H0(k) later. In the absence of
the perturbations, the normal state Hamiltonian H0(k) =
diag[h↑(k), h↓(k),−h↓(k),−h↑(k)] is block-diagonal,
where

h↑(k) =
(

m(k) vk+
vk− −m(k)

)
. (43)

Since h↓(m(k), v) = h↑(m(k),−v)∗, we need to solve only
for the surface Fermi arc states for the 2 × 2 Hamiltonian
h↑(k). To transform h↑(k) into the cylindrical coordinate,
we write k+ = eiθ (kr + ikθ ) and k− = e−iθ (kr − ikθ ), where
kr = −i ∂

∂r and kθ = −i 1
r

∂
∂θ

. For a large system whose radius r
is much larger than the lattice constant a, we can further make
the approximation k2

x + k2
y = k2

r + k2
θ − i 1

r kr ≈ k2
r + k2

θ . To
solve for the eigenstates localized on the 2D open surface at
r = R, we write down an ansatz wave function

ψl (r, kz, θ ) = N eikzzeilθ f (r)ξ (θ ), (44)

where N is the normalization factor and l ∈ Z. Here f (r)
is the radial part of ψl and ξ (θ ) is a two-component spinor.
With this ansatz, we arrive at the following surface-localized
eigenstates and their eigenenergies following Ref. [59,60]:

ψe,↑,l = eilθ

(
ieiθ

1

)
, Ee,↑,l = v

R

(
l + 1

2

)
,

ψe,↓,l = eilθ

(−ie−iθ

1

)
, Ee,↓,l = − v

R

(
l − 1

2

)
,

FIG. 4. The relations among various low-energy surface fermion
fields in the cylindrical geometry. The blue (red) arrows connect
the fermion fields that are particle-hole (time-reversal) partners. The
green arrows connect pairs of fermion fields that form Cooper pairs.

ψh,↑,l = eilθ

(−ie−iθ

1

)
, Eh,↑,l = v

R

(
l − 1

2

)
,

ψh,↓,l = eilθ

(
ieiθ

1

)
, Eh,↓,l = − v

R

(
l + 1

2

)
. (45)

Here we have dropped the spatial part f (r) and the plane-wave
factor eikzz for simplicity. As discussed in Refs. [59,60], the
electronic surface states ψe,↑,l and ψe,↓,l exist only between
the bulk Dirac points at kz = ±k0 and thus manifest them-
selves as the Fermi arc states. Interestingly, Eq. (45) predicts
the Fermi arc states having a finite-size gap of v

R , which
is numerically confirmed in Appendix A. Physically, such
finite-size gap will generally appear in the energy spectrum
when placing Dirac fermions on the surface of a cylinder,
which happens in topological insulator nanowires [61] and
Weyl/Dirac semimetal nanowires [59,60]. The physical origin
of this factor has been attributed to the spin Berry phase
accumulated while the Dirac fermion (e.g., TI surface state or
Fermi arc state of semimetals) circulates around the cylinder,
which can be canceled by inserting magnetic flux to the cylin-
der. So in this sense, this factor is a combined effect of the
spin texture of the Dirac fermion [59–61] and the curvature of
the cylindrical geometry [62].

The next step is to project the perturbation terms onto
the low-energy surface states to obtain an effective surface
theory. To fully incorporate the time-reversal symmetry 
,
the particle-hole symmetry �, and the Cooper pairing �, the
minimal set of basis states of the effective theory necessarily
consists of eight fermionic fields (see Fig. 4). Nonetheless, we
can simplify the basis by dividing these eight fields into

�1,l = (ψe,↑,l , ψe,↓,−l , ψh,↑,l+1, ψh,↓,−l−1)T ,

�2,l = (ψe,↑,−l−1, ψe,↓,l+1, ψh,↑,−l , ψh,↓,l )
T . (46)

Since the two sets of states are related by �1,l = �2,−l−1

and are decoupled from each other, we need to construct only
the low-energy theory spanned by �1,l . In the basis of �1,l ,
the symmetry operations are given by

P = (−1)l+1μ0 ⊗ s0, 
 = iμ0 ⊗ syK, C6 = ei π
3 Jz ,

(47)
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where the rotation generator is given by

Jz = diag

{
l + 3

2
,−

(
l + 3

2

)
, l + 5

2
,−

(
l + 5

2

)}
. (48)

By projecting h1(k) in Eq. (34) and pairing term H� in
Eq. (40) onto �1,l , the resulting effective Hamiltonian and its
eigenvalues are given by

Heff,l = v

R

(
l + 1

2

)
+

⎛
⎜⎜⎜⎝

0 −ivzkze−i(2l+3)θ �1kzeiθ �2e−i(2l+1)θ sin 3θ

ivzkzei(2l+3)θ 0 −�2ei(2l+1)θ sin 3θ −�1kze−iθ

�1kze−iθ −�2e−i(2l+1)θ sin 3θ 0 ivzkze−i(2l−1)θ

�2ei(2l+1)θ sin 3θ −�1kzeiθ −ivzkzei(2l−1)θ 0

⎞
⎟⎟⎟⎠ (49)

El (kz, θ ) = v

R

(
l + 1

2

)
±

√
(vzkz sin 3θ )2 + [

√
(2�2 sin 3θ )2 + (vzkz cos 3θ )2 ± �1kz]2, (50)

where we have taken the large R limit with k± ≈ e±iθ kr , since
kθ is of O( 1

R ). The dispersion relation El (kz, θ ) generally
shows a finite energy gap for kz �= 0. On the other hand, the
energy gap at kz = 0 is given by

Egap(θ ) = 4|�2 sin 3θ |. (51)

In Fig. 5(a) we schematically show the spatial profile of the
surface gap function Egap as a function of θ around the cylin-
der. It is clear that the surface gap vanishes only at six special
angles with

θ = nπ

3
, n = 0, 1, 2, 3, 4, 5, (52)

which directly suggests the existence of zero-energy hinge
Majorana modes that live in between the projected bulk Dirac
nodes along kz, if the system is placed in an open geometry.

FIG. 5. Surface physics of the HOTDSC phase. (a) A schematic
plot of the effective pairing gap of the Fermi-arc surface states as a
function of polar angle θ , following the analytical result in Eq. (51).
(b) Numerically, two distinct surface terminations are considered: (1)
the smooth surface (red dots) with θ = π/2 along the x direction and
(2) the rough surface (blue dots) with θ = 0 along the y direction.
The surface state spectrum of HOTDSC is calculated for both the
smooth and rough surfaces in (c) and (d), respectively. The gapless
(gapped) surface state for the rough (smooth) surface agrees with our
analytical prediction.

D. Numerical evidence for HOTDSC phase

Next, we numerically verify the HOTDSC physics in our
model. The first step is to verify the analytical prediction for
surface physics from the previous subsection. We will then
proceed to directly show the coexistence of bulk Dirac nodes
and hinge Majorana modes by numerically calculating the
energy spectrum in a hexagonal prism geometry, which will
unambiguously demonstrate the higher-order Dirac nature of
our model.

We start by regularizing our continuum BdG model (in-
cluding H�) onto a 3D hexagonal lattice and arrive at

HTB(k) = d1τ0 ⊗ γ1 + d2τz ⊗ γ2 + d3τ0 ⊗ γ3

+ d4τz ⊗ γ4 + d5τz ⊗ γ5 − μτz ⊗ I4

+ d6τy ⊗ γ4 + d7τx ⊗ γ35

+ d8τx ⊗ (γ5 − γ12), (53)

where we have defined

d6(k) = �2[2 cos k1 − cos(k1 − k2) − cos k2],

d7(k) = −
√

3�2[cos(k1 − k2) − cos k2],

d8(k) = �1 sin kz. (54)

Next, we numerically verify the surface gap closing con-
dition in Eq. (51) by solving for the boundary-localized
eigenstates of our minimal lattice model on a 3D hexagonal
lattice. Specifically, we consider the two semi-infinite config-
urations for side surfaces shown in Fig. 5(b): (1) the rough
surface (colored in blue) along the y direction with θ = 0
and (2) the smooth surface (colored in red) along x direction
with θ = π/2. We then calculate the surface-state spectra for
both the smooth and the rough surfaces with �1 = 0.1 and
�2 = 0.25, as shown in Figs. 5(c) and 5(d), respectively. We
find that both surface calculations show one single bulk Dirac
point at zero energy in the presence of finite pairing param-
eters, as indicated by the topological indices of our model.
In particular, the smooth surface acquires a finite surface gap
while the rough surface (θ = 0) remains gapless even in the
presence of finite superconducting pairing [63], which vali-
dates our analytical prediction for the projected pairing gap
on the surfaces in Eq. (51).

To directly reveal the hinge Majorana modes, it is neces-
sary to place our model in an infinite long hexagonal prism
geometry along the z direction, as shown in Fig. 6(a). For
our purpose, all six side surfaces around the infinite prism are
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FIG. 6. (a) A schematic plot of the hexagonal prism geometry of the HOTDSC model with the pairing function �s on two neighboring
surfaces with θ = π/6 and θ = π/2. (b) A plot of the evolution of effective surface pairing �s as a function of θ in the 2D plane spanned by
the real and imaginary parts of �s. It is important to notice that the trajectory necessarily crosses the origin while evolving from θ = π/6 (red
dot) to θ = π/2 (purple dot), which is guaranteed by the higher-order topology. (c) The energy dispersion of our HOTDSC model is calculated
in the infinitely long hexagonal prism geometry, which clearly reveals the gapless bulk Dirac nodes, a surface pairing gap near kz = 0, and
the in-gap hinge Majorana modes between the bulk nodes. The scaling behavior of the finite size gap δDP of the bulk Dirac nodes is shown in
(d). By calculating the spatial profile of wave functions in the prism cross section, we verify (1) the hinge nature of the zero-energy Majorana
modes at kz = 0 in (e) and (2) the surface nature of the low-energy gapped state at kz = 0 (the red dot) in (f).

taken to be “smooth surfaces,” which are defined by the polar
angle

θs = (2n + 1)π

6
, n = 0, 1, . . . , 5. (55)

According to Eq. (51), all six surfaces share a surface pairing
gap that is proportional to |�2|, which just follows our calcu-
lation in Fig. 5(c). As an example, we focus on two adjacent
surfaces: the pink surface with θ = π/6 and the purple surface
with θ = π/2, which are shown in Fig. 6(a). The projected
pairing function that controls the surface gap is simply the
off-diagonal term in Eq. (49):

�s(θ ) = �2e−i(2l+1)θ sin 3θ. (56)

Interestingly, the surface pairing �ss for the pink and purple
surfaces in Fig. 6(a) differ by a phase of 4π/3 for the l = 0
surface state. Therefore, rather surprisingly, the neighboring
smooth surfaces are not forming a surface mass domain wall
with a π -phase difference. Although the π -phase domain
wall physics serves as the key to understanding the boundary
physics in many higher-order topological systems, the pre-
dicted hinge Majorana modes in our HOTDSC system seems
to arise from a different origin.

To resolve the origin of hinge Majorana modes, we con-
sider a 2D parameter space spanned by the real and imaginary
parts of �s(θ ) projected onto the surfaces. As we change the
value of θ from 0 to π , the possible value of �s for the l = 0
surface state is constrained to the 1D closed loop trajectory
shown in Fig. 6(b). To demonstrate, we label the surface gaps
�s for the pink and purple surfaces in Fig. 6(a) by pink and
purple dots in Fig. 6(b), respectively. While in general gapped

hinges are expected for a trajectory that avoids the origin of
the parameter space, the trajectory in our case necessarily
goes through the origin and thus enforces the existence of
gapless hinge modes.

From a different perspective, we can adiabatically rotate
the surfaces with polar angles θ = π

6 and θ̃ = π
6 [in Fig. 6(a)]

to θ ′ = π
3 − δθ and θ̃ ′ = π

3 + δθ , respectively, which will not
close the surface gaps on both surfaces. As δθ → 0, the sur-
face mass for these two neighboring surfaces now becomes
�(θ ′) ∼ −δθ and �(θ̃ ′) ∼ +δθ , which recovers a π -phase
difference that was “hidden” in the hexagonal prism geometry
and thus explains the origin of the hinge modes.

Now we are ready to perform numerical calculation on
the energy spectrum in the same infinite hexagonal prism
geometry. The side length (or the “radius”) R of the hexagonal
cross section is taken to be 14 unit cells. In Fig. 6(c) we plot
the energy spectrum of the hexagonal wire as a function of
kz with the same set of parameters as that in Fig. 5(c). Just
as we expect, at kz = 0, the surface Fermi arc state opens a
finite pairing gap. We plot the in-plane spatial profile of the
gapped state shown by the red dot in Fig. 6(f), which confirms
its surface-state nature. Remarkably, inside the surface pairing
gap, there exist six pairs of 1D Majorana channels. As shown
in Fig. 6(e), we find one pair of hinge Majorana modes on each
of the six hinges of the hexagonal prism. Notably, any attempt
to eliminate these hinge Majorana modes will necessarily
break the crystalline and TRS symmetries or close the bulk
gap, which directly implies the intrinsic higher-order topology
in the system.

Figure 6(c) also reveals the bulk BdG Dirac nodes. Al-
though the Dirac points appear to be gapped due to finite-size
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effects, the scaling behavior of the finite-size gap δDP in
Fig. 6(d) clearly indicates the existence of gapless Dirac
points in the thermodynamic limit. The red dashed line shows
a polynomial-function fit of δDP as a function of the prism
radius R with

δDP(R) = a

R
+ b

R2
+ O

(
1

R3

)
(57)

and a ≈ b/2 ≈ 2.7. As expected, δDP(∞) = 0 in the thermo-
dynamic limit, confirming the gaplessness of the Dirac point
in the system.

Therefore, the 3D bulk BdG Dirac physics and the coex-
isting hinge Majorana physics together establish our system
as a higher-order topological Dirac superconductor protected
by time-reversal symmetry, inversion symmetry, and sixfold
rotational symmetry. The exotic boundary phenomena shown
in the above numerical calculations originate from and agree
with our theoretical symmetry indicator analysis. Hence, we
have established the bulk-boundary correspondence of the
HOTDSC phase in our minimal model.

IV. A HIGHER-ORDER TOPOLOGICAL QUANTUM
CRITICAL POINT

In this section, we establish the HOTDSC phase as a
higher-order topological quantum critical point, which could
be driven into various (higher-order) topological phases
through either spontaneous or explicit symmetry breaking,
as shown in Fig. 1(b). In particular, we define and construct
a higher-order version of Weyl superconductors, a concept
which has not before been discussed in the literature. This
exotic higher-order gapless phase could be achieved by break-
ing inversion symmetry in a HOTDSC. In the following, we
will discuss in details the resulting topological phases upon
various symmetry breakings. The concepts of higher-order
Weyl superconductor and higher-order topological quantum
critical point arising from HOTDSC are among our important
theoretical findings.

A. � breaking: Double Weyl superconductor

When TRS is explicitly or spontaneously broken, each bulk
Dirac node will immediately split into a pair of bulk Weyl
nodes that carry monopole charges of ±2 in momentum space.
Such Weyl nodes are often known as the double Weyl points,
whose effective Hamiltonian generally takes the following
form:

hdW =
(

vzkz v‖k2
+

v‖k2
− −vzkz

)
, (58)

which hosts a quadratic in-plane dispersion, while keeping the
dispersion linear along kz. In addition, the hinge Majorana
modes are expected to develop a Zeeman-like gap due to
TRS breaking, which trivializes the higher-order topology of
the system. Therefore, we expect that the broken TRS of a
HOTDSC phase should lead to a double Weyl superconductor,
which features double Weyl nodes in the bulk and Majorana
Fermi-arc states on the surface.

We now numerically demonstrate the emergence of dou-
ble Weyl superconductivity upon TRS brekaing. To model

FIG. 7. For the TRS-breaking phase of a HOTDSC, a plot of
its Fermi surface at zero energy for the smooth (010) surface (a),
which clearly reveals the Majorana Fermi arcs connecting the bulk
Weyl nodes (red and green dots). The color in these plots denotes
the intensity of density of states at zero energy. This confirms the
TRS-breaking phase as a Weyl superconductor, which agrees with
the energy spectrum calculation performed in the infinite prism ge-
ometry (b). (c) The Fermi surace of inversion-breaking phase for
(010) surface. (d) In addition to the bulk Weyl nodes and the Ma-
jorana Fermi arc states, the in-gap hinge Majorana modes show up
around kz = 0 in the infinite prism geometry, which establishes the
inversion-breaking phase as a higher-order Weyl superconductor.

the effect of TRS breaking, we add a generalized Zeeman-
like TRS-breaking term to our minimal lattice model for
HOTDSC:

Hz = g0τz ⊗ sz ⊗ σ0 + g1τz ⊗ sz ⊗ σz. (59)

In Fig. 7(a) we show the Fermi surface for the spectrum
of the (010) surface with g0 = 0.1, g1 = 0.2, where the red
and green dots denote the bulk Weyl nodes with a monopole
charge of +2 and −2, respectively. In addition, the Majorana
Fermi arc states connecting the Weyl nodes always come in
pairs, which is a signature of a Weyl superconductor with
higher monopole charges.

We now examine the fate of hinge Majorana modes under
TRS breaking by calculating the energy spectrum in an infinite
hexagonal prism geometry [see Fig. 7(b)]. In contrast to the
spectrum without TRS breaking in Fig. 5(c), now the spectrum
shows a finite energy gap at kz = 0, which implies the absence
of gapless hinge modes. Moreover, upon the splitting of a
Dirac node into a pair of Weyl nodes with opposite charges, a
continuous distribution of gapless Majorana Fermi-arc surface
states emerge between each pair of Weyl nodes, which is
consistent with our finding in Fig. 7(a). We therefore con-
clude that TRS breaking will indeed trivialize the higher-order
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topology and drive the system into a “conventional” double
Weyl superconductor without any gapless Majorana hinge
modes.

B. P breaking: Higher-order Weyl superconductor

Breaking inversion symmetry P also drives a transition
from a bulk Dirac node to a pair of Weyl nodes, but it is known
that a weak P breaking term does not necessarily gap out the
hinge Majorana modes. Although the hinge Majorana modes
are no longer directly protected by the inversion symmetry,
we expect that they can still exist as a result of extrinsic
higher-order topology as long as the surfaces remain gapped
around kz = 0.

To confirm this picture, we add the following inversion-
breaking perturbation

Hivb = w sin kzτz ⊗ sz ⊗ σz, (60)

to our lattice model, which preserves both TRS and C6 sym-
metry. The Fermi surface plot for the (010) surface is shown
in Fig. 7(c), where we set w = 0.4. Both the bulk Weyl nodes
and the Majorana Fermi arc states are clearly revealed, which
confirms the Weyl superconductor nature of the inversion-
breaking phase. It is worth pointing out that the Weyl points
here are split from a Dirac point in a different way compared
with that in the TRS-breaking phase, as shown in Figs. 7(a)
and 7(c). This is because, given a Weyl point, inversion sym-
metry (TRS) will enforce the existence of another Weyl point
at an opposite crystal momentum with an opposite (same)
monopole charge. We show explicitly how symmetries con-
strain the charges of Weyl points in Figs. 7(a) and 7(c).

We then numerically calculate the energy spectrum of H +
Hivb with w = 0.4 in an infinitely long prism geometry. As
shown in Fig. 7(d), there exist bulk Weyl points and internode
Majorana Fermi arc surface states as expected. Remarkably,
we also find six pairs of hinge Majorana modes that live inside
the pairing gap on the surface, similar to the case of HOTDSC.
The coexisting 3D bulk Weyl points, 2D surface Fermi arc
states, and 1D hinge Majorana states together define the P-
breaking phase as the first example of a truly exotic higher-
order Weyl superconductor.

The topological features of this higher-order Weyl SC,
including the bulk Weyl nodes, surface states and the hinge
modes, are all separated in momentum space. It is therefore, in
principle, possible to detect them individually in momentum-
resolved spectroscopic experiments. Since the appearance of
Majorana Fermi arc states is guaranteed by the bulk Weyl
nature of the system, a higher-order Weyl SC by definition
represents an example of hybrid higher-order topology [38],
where 2D and 1D boundary modes coexist.

C. C6 breaking: Higher-order TSC

When the C6 symmetry is broken, the bulk Dirac points are
expected to be gapped due to the absence of any symmetry
protection. Nonetheless, the remaining symmetries, i.e., time-
reversal and space inversion, will still guarantee the stability
of the Majorana hinge modes. We therefore arrive at a fully
gapped higher-order TSC protected by inversion symmetry,
which is expected to be also characterized by an inversion

symmetry indicator κ2d = 2. In fact, the hinge Majorana
modes will still be robust even if the inversion symmetry is
weakly broken. This will lead to a TRS protected extrinsic
higher-order TSC, as demonstrated in Fig. 1(b).

Given all these resulting higher-order phases upon differ-
ent symmetry-breaking patterns, we expect the higher-order
topology in the HOTDSC phase to be immune to generic weak
nonmagnetic disorder in the system even if such disorder vio-
lates C6 or inversion symmetries. Practically speaking, even
if a material candidate fails to fulfill all the required sym-
metries for the HOTDSC phase listed in Sec. II, this “failed”
HOTDSC candidate could still be one of the exotic topological
phases discussed in this section.

V. CONCLUSION

In summary, we introduce a gapless phase of matter fea-
turing higher-order band topology, namely, the higher-order
topological Dirac superconductor, whose defining properties
are (1) symmetry-protected 3D Dirac nodes, (2) absence of
2d Fermi-arc states, and (3) symmetry-protected 1D Majorana
hinge modes. Such an exotic nodal paired state is therefore
topologically distinct from traditional topological supercon-
ductors and previously proposed Dirac superconductors. We
establish that such a phase can be realized under the protec-
tion of sixfold rotation, spatial inversion, and time-reversal
symmetries in the presence of unconventional pairing that is
odd under inversion and rotation. This HOTDSC phase can
therefore be fully characterized by a corresponding set of
topological indices defined for Bogoliubov–de Gennes Hamil-
tonians. Following the above symmetry criteria, we further
construct a 3D minimal lattice model for a HOTDSC by intro-
ducing symmetry-allowed nodal pairings in a hexagonal Dirac
semimetal. In particular, we verify that our model exhibits
the expected topological invariants and numerically demon-
strate the three defining properties of HOTDSC on an open
geometry.

In terms of materials search for HOTDSC phases, there
are two possible routes to pursue. One is to look for
time-reversal symmetric nodal superconductors with cen-
trosymmetric hexagonal lattices. The other is to look for
Dirac semimetals with the same type of lattices that develop
nodal superconductivity. We point out that heavy fermion
compounds could be an appealing platform that offers promis-
ing candidates. For the first route, there are in fact a few
uranium-based superconductors with hexagonal space group
symmetries that are known to have unconventional pairings
[64]. In particular, UNi2Al3 and UPd2Al3 have C6 rotational
symmetry (space group No. 191) [65], while UPt3 has C6

screw rotational symmetry (space group No. 194) [64], which
we expect to work as normal C6 for our purpose. Moreover,
while UPd2Al3 is often considered as a nonphonon [66] nodal
[67–70] superconductor, UNi2Al3 and UPt3 are experimen-
tally shown to be spin-triplet superconductors [64,71] with
possible point nodes [64,72–74]. As for the second route,
despite that the rotational symmetry is fourfold and the ex-
istence of superconductivity is yet to be explored, it has been
pointed out that heterostructures involving rare-earth Kondo
insulators can lead to a Dirac semimetal phase [75]. We hope
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our theory will inspire more future efforts towards realizing
higher-order topology in heavy fermion superconductors and
beyond. We believe that HOTDSC should exist in nature (or
could be synthesized in the laboratory) since all the individual
ingredients for its existence have already been realized in
different situations.

Recently we became aware of a related work [62] that also
discusses higher-order Dirac physics.
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APPENDIX A: SURFACE GAP SCALING OF
CYLINDRICAL DIRAC SEMIMETAL

In this Appendix, we discuss the finite-size effect of the
surface Fermi arc states when a DSM is placed in a cylindrical
(hexagonal prism) geometry. In the cylindrical geometry, the
energy spectrum of Fermi arc surface states in the DSM model
follows Eq. (45), which shows a finite-size gap between Ee,↑,0

and Ee,↑,−1:

δanalytical = Ee,↑,0 − Ee,↑,−1 = v

R
. (A1)

Physically, this finite energy gap originates from the spin
Berry phase effect of the Fermi arc states [59].

As shown in Fig. 8, we numerically calculate the surface
gap of the DSM model at kz = 0 for v ∈ {0.5, 1.0, 1.5} in
a hexagonal prism geometry by changing the radius R. By
performing polynomial fittings, we arrive at a simple universal
relation between the numerical finite-size gap δnumerical, v, and
R:

δnumerical = 4v

3R
+ O

(
1

R2

)
. (A2)

The different linear coefficients of δnumerical and δanalytical

comes from the geometric difference between a cylinder and
a hexagonal prism. Therefore, the validity of the analytical
boundary theory for the DSM model is further confirmed by
the numerical results of the finite-size gap in Fig. 8.

FIG. 8. The surface gap scaling of a DSM with different v is
plotted in a hexagonal prism geometry by varying radius R.

APPENDIX B: REAL-SPACE REPRESENTATION
FOR THE DSM HAMILTONIAN

We now provide a real-space representation for the Hamil-
tonian described in Eq. (36) in the second-quantization
language:

H = t
∑

〈r,r′〉,s,σ
c†

r′,s,σ cr,s,σ + tz
∑
r,s,σ

c†
r,s,σ cr+az,s,σ

−μ
∑
r,s,σ

c†
r,s,σ cr,s,σ − iv0

∑
〈r,r′〉,s,σ �=σ ′

e−isθr,r′ c†
r′,s,σ ′cr,s,σ

− iuz

2

∑
〈r,r′〉,s �=s′,σ �=σ ′

e−i2θr,r′ [c†
r′+az,s′,σ ′c†

r,s,σ

− c†
r′−az,s′,σ ′c†

r,s,σ ] + H.c., (B1)

where 〈r, r′〉 denotes the nearest neighboring atom positions
within the horizontal plane. The phase angle characterizes
the relative angle between the displacement vector for the
hopping process and a1,

θr,r′ = arccos
(r′ − r) · a1

|r′ − r| . (B2)

Here s =↑/↓ and σ = s, p are the spin and orbital indices. In
the phase factor of the v0 term, s takes the value ±1 for ↑ and
↓, respectively. The chemical potential is μ = 3t + tz cos k0,
in terms of the parameters in Eq. (36). Physically, both v0 and
uz terms are generated from the spin-orbital coupling effect.
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