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Field-induced tricritical behavior in the Néel-type skyrmion host GaV4S8
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The lacunar spinel compound GaV4S8 exhibits a Néel-type skyrmion, which holds great promise for future
spintronics and ultrahigh-density magnetic memory devices. To gain more insight into the magnetic interactions,
the critical behavior of GaV4S8 is studied by dc magnetization measurement around the Curie temperature (TC).
A set of reliable critical exponents (β = 0.220 ± 0.024, γ = 0.909 ± 0.005, and δ = 5.161 ± 0.003) is obtained
by the modified Arrott plot technique, the Kouvel-Fisher method, and critical isothermal analysis. The generated
critical exponents fulfill the universality class of tricritical mean-field theory, which suggests a field-induced
tricritical phenomenon. Based on the scaling equations, boundaries between the skyrmion and ferromagnetic
phases can be distinguished. A tricritical point is revealed at the temperature of TTr = 12 K and field of HTr =
60 mT, which is located at the intersection point among the skyrmion, ferromagnetic, and paramagnetic phases. It
is suggested that the origin of the tricritical behavior in GaV4S8 is related to the skyrmion state near the magnetic
transition temperature TC.
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I. INTRODUCTION

The skyrmion state, a topologically protected nanoscale
vortexlike spin structure, has attracted significant attention
due to its potential application in high-density informa-
tion storage technology [1–3]. For skyrmion configurations,
there are two basic types classified by the magnetic domain
walls [4,5]. One is the Bloch-type domain walls, where the
spins rotate in the plane parallel to the domain boundary
to form whirlpool-like skyrmions. Such Bloch vortices have
been observed in chiral magnets, such as FeGe, MnSi, and
Cu2OSeO3, etc. [1,3,6–9]. The other is the Néel-type domain
walls with spins rotating in a plane perpendicular to the do-
main boundary, where the spins rotate in the radial planes
from their cores to peripheries. The Néel-type domain walls
are expected to emerge in polar magnets with Cnv crystal
symmetry [4]. The polar magnetic semiconductor GaV4S8

has been reported as one of the rare materials which host
the Néel-type skyrmion lattice. At room temperature, the
crystal structure of GaV4S8 is a noncentrosymmetric cubic
cell with space group F 4̄3m [10]. It undergoes a cubic-
to-rhombohedral structural phase transition at temperature
TJT = 44 K [11]. The magnetic order emerges below TC =
12.7 K [11–14], which is slightly affected by the external
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field [15]. The weakly coupled cubane (V4S4)5+ units form
face-centered cubic lattices and are separated by a (GaS4)5−
tetrahedron. GaV4S8 exhibits various ordering phases, includ-
ing ferromagnetic, cycloidal, and Néel-type skyrmion lattice
phases. In particular, the skyrmion phase emerges in a narrow
temperature range just below TC and in the field range from
10 to 100 mT [4].

Recently, a field-induced tricritical phenomenon was re-
vealed in the Bloch-type skyrmion materials, such as MnSi
and Cu2OSeO3, which usually appears when the first-order
transition is suppressed [16–18]. However, the critical be-
havior of the Néel-type skyrmion material has not been
thoroughly investigated. In particular, multiple field-induced
phases and tricriticality are expected in this system. Based on
this motivation, critical behavior of the Néel-type skyrmion
host GaV4S8 is investigated by means of bulk dc magne-
tization, which reveals a field-induced tricritical behavior.
Moreover, a tricritical point is found to be located at the
intersection point of the skyrmion, ferromagnetic, and para-
magnetic phases.

II. EXPERIMENTAL METHODS

Polycrystalline GaV4S8 was prepared by solid-state reac-
tion using high-purity Ga, V, and S in an appropriate ratio
[14]. The structure was checked by powder x-ray diffraction
(XRD). The XRD pattern was fitted by the Rietveld method,
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which indicates a single phase. The magnetization of the sam-
ple was measured using a Quantum Design superconducting
quantum interference device vibrating sample magnetometer
(SQUID VSM). Isothermal magnetization was collected at
an interval of 0.05 K around the Curie temperature. The
no-overshoot mode was applied to ensure a precise magnetic
field. In order to minimize the demagnetizing field, the sample
was processed into a slender ellipsoid shape, and the magnetic
field was applied along the longest axis [16]. The sample was
first heated above TC and then cooled to the target temperature
before measurement to make sure each curve was initially
magnetized. Moreover, the applied magnetic field Ha has been
corrected into the internal field as H = Ha–NM (where M
is the measured magnetization and N is the demagnetization
factor) [19]. The calculated H was used for the analysis of the
critical behavior.

III. RESULTS AND DISCUSSION

Figure 1(a) depicts the temperature dependence of mag-
netization [M(T )] under an applied field of 1000 Oe with a
zero-field cooling model. As shown in the inset of Fig. 1(a),
a paramagnetic-to-ferromagnetic (PM-FM) transition occurs
at TC = 12 K determined by the tip on the curve of dM/dT
vs T . Figure 1(b) gives the isothermal magnetization [M(H )]
at T = 2 K. The inset of Fig. 1(b) plots the magnified M(H )
in the low-field region, which shows that the saturation field
HS ≈ 10 kOe. Almost no magnetic hysteresis is found on the
M(H ) curve, suggesting no coercive force in GaV4S8.

According to the theory of magnetic phase transition, one
can characterize the critical behavior of a second-order phase
transition using a series of critical exponents, β, γ , δ, etc.,
which are combined by magnetic equations of state [20,21].
The exponents β and γ can be obtained from spontaneous
magnetization MS and initial susceptibility χ0 below and
above TC, respectively, while δ is the critical isotherm expo-
nent. The mathematical definitions of the critical exponents
are given as

MS (T ) = M0(−ε)β, ε < 0, T < TC, (1)

χ−1
0 (T ) = (h0/M0)εγ , ε > 0, T > TC, (2)

M = DH1/δ, ε = 0, T = TC, (3)

where ε = (T − TC )/TC is the reduced temperature, and M0,
h0/M0, and D are the critical amplitudes. Moreover, the mag-
netic equation of state in the critical region can be described
using the scaling functions,

M(H, ε) = εβ f±(H/εβ+γ ), (4)

where f+ for T > TC and f− for T < TC, respectively, are
regular functions. Furthermore, the mathematical correlations
for renormalized magnetization m = ε−βM(H, ε) and renor-
malized field h = ε−(β+γ )H fulfill

m2 = f±(h/m). (5)

In this scenario, critical exponents are included in the crit-
ical region by using Eqs. (4) and (5), respectively.

FIG. 1. (a) Temperature dependence of zero-field-cooling mag-
netization [M(T )] under H = 1000 Oe for GaV4S8 (inset plots
dM/dT vs T ); (b) isothermal magnetization [M(H )] at T = 2 K
[inset shows the M(H ) in the low-field region].

FIG. 2. (a) Isothermal magnetization curves in the vicinity of TC

[inset shows the enlarged view of M(H ) in the high-field region];
(b) Arrott plot (isotherms of M2 vs H/M) for GaV4S8.
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FIG. 3. Modified Arrott plot [isotherms of M1/β vs (H/M )1/γ with (a) 3D Heisenberg model (β = 0.365, γ = 1.386); (b) 3D XY model
(β = 0.345, γ = 1.316); (c) 3D Ising model (β = 0.325, γ = 1.24); and (d) tricritical mean-field model (β = 0.25, γ = 1.0). Each curve
was processed by a proper vertical translation for clear presentation.

In order to perform the critical phenomenon analysis, ini-
tial isothermal M(H ) curves within the critical region (|ε| <

10−2) were collected as shown in Fig. 2(a). For the analysis of
magnetic transition order in GaV4S8, we generate the Arrott
plot of M2 vs H/M in Fig. 2(b). According to Banerjee’s
criterion, the order of the magnetic transition can be judged
by the slope of the high-field straight line: A positive slope
corresponds to the second-order transition while the negative
corresponds to the first-order one [22]. In this way, the positive
slope in Fig. 2(b) indicates a second-order PM-FM transition
in GaV4S8. Nevertheless, all curves in the Arrott plot are not
rigorous straight lines even in the high-field region, suggesting
the mean-field model with β = 0.5 and γ = 1.0 is not appli-
cable to describe the critical phenomenon of GaV4S8.

Generally, the initial M(H ) curves around TC should fulfill
the Arrott-Noakes equation of state [23]:

(H/M )1/γ = (T − TC )/TC + (M/M1)1/β, (6)

where the M1/β vs (H/M )1/γ constitutes to the modified Ar-
rott plot (MAP). In order to gain the critical exponents of
GaV4S8, four kinds of theoretical models, including the three-
dimensional (3D) Heisenberg model (β = 0.365, γ = 1.386),
3D XY model (β = 0.345, γ = 1.316), 3D Ising model (β =
0.325, γ = 1.24), and tricritical mean-field model (β = 0.25,
γ = 1.0), are adopted to generate the MAPs [24,25]. As
shown in Fig. 3, all MAPs based on the four models exhibit

a bunch of quasistraight lines in the high-field region. In
order to distinguish which model is the best, we extract the
normalized slope NS = S(T )/S(TC) to compare them with the
ideal value “1” [26]. As shown in Fig. 4, the normalized slope
demonstrates that the tricritical mean-field model is the best
interpretation for the critical behavior of GaV4S8.

FIG. 4. Normalized slopes [NS = S(T )/S(TC)] of theoretical
critical models as a function of temperature.
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FIG. 5. (a) Temperature dependence of spontaneous magnetiza-
tion MS (left axis) and inverse initial susceptibility χ−1

0 (right axis)
[the solid curves are fitted by Eqs. (1) and (2)]; (b) Kouvel-Fisher
plot of MS (left axis) and χ−1

0 (right axis) for GaV4S8 (straight lines
are the linear fitting to the data).

In order to achieve the precise critical exponents β and
γ , a rigorous iterative method is adopted [19]. The critical
exponents of the tricritical mean-field model are chosen as
the starting values. The starting values of MS(T ) and χ−1

0 (T )
are determined by the linear extrapolation from the high-field
region to the intercepts with the axes M1/β and (H/M )1/γ

in the former modified Arrott plot. New values of β and
γ are obtained by following Eqs. (1) and (2), respectively.
The critical temperature TC is varied as a free parameter in
the fitting process. This procedure is repeated until stable
values of β, γ , and TC are achieved. In this way, the fi-
nally obtained MS(T ) and χ−1

0 (T ) are plotted as a function
of temperature in Fig. 5(a), which gives β = 0.220 ± 0.024
with TC = 12.007 ± 0.012 and γ = 0.909 ± 0.005 with TC =
12.035 ± 0.001 for GaV4S8. Moreover, the parameters M0 =
8.054 ± 0.740 and h0/M0 = 20125.732 ± 387.191 are also
obtained.

More accurately, the critical exponents can be obtained
by the Kouvel-Fisher (KF) plot method [27]. According to
the KF plot, the temperature dependence of MS(dMS/dT )−1

and χ−1
0 (dχ−1

0 /dT −1) should be straight lines with the slopes
1/β and 1/γ , respectively. Meanwhile, the intercepts of the
fitted straight lines on the temperature axis yield the critical
temperature TC. As shown in Fig. 5(b), from the fitted straight
lines of MS(dMS/dT )−1 and χ−1

0 (dχ−1
0 /dT −1), it is obtained

that β = 0.216 ± 0.054 with TC = 12.009 ± 0.077 and γ =
0.910 ± 0.011 with TC = 12.035 ± 0.015, respectively. Note
that TC’s obtained from the modified Arrott plot and the KF
plot show a very small difference with that deduced from
M(T ) measurement and in other reports [4,15]. In fact, due

FIG. 6. Isothermal magnetization [M(H )] at T = 12 K for
GaV4S8. The inset represents the same plot on a log-log scale with
the fitted straight line following Eq. (3).

to the enhancement or weakening of the phase, the TC can
be changed by the external field. The fitting process in the
modified Arrott plot and the KF method are extrapolated from
a higher field, resulting in the slight difference. The critical
exponents β, γ as well as TC obtained by the modified Arrott
plot and the KF plot match well enough, suggesting the results
are reliable and unambiguous.

Figure 6 shows the isothermal magnetization M(H ) at
T = 12 K as well as its log-log plot in the inset. According
to Eq. (3), the critical isotherm M(H ) at T = TC should be-
have as a straight line on log-log scale with the slope 1/δ.
Consequently, a linear fitting to Eq. (3) in the inset of Fig. 6
yields the critical exponent δ = 5.161 ± 0.003. These critical
exponents are unified by the Widom scaling law expressed as
[28]

δ = 1 + γ

β
. (7)

Using the independently obtained β and γ by modified
Arrott plot and KF plot, δ = 5.132 ± 0.109 and δ = 5.213 ±
0.250, respectively, are yielded; the values are close to the ex-
perimentally obtained value (5.161 ± 0.003) generated from
the critical isotherm. The results unambiguously indicate the
self-consistency of the deduced critical exponents.

According to scaling theory, the M(H ) curves should col-
lapse on two independent branches above and below the Curie
temperature, respectively. Based on Eqs. (4) and (5), all data
should follow two universal rules in the plots of M|ε|−β

vs H |ε|−(γ+β ) and m2 vs h/m. As shown in Figs. 7(a) and
7(b), all experimental data in the high-field region collapse
onto two independent branches: one for T < TC and the other
for T > TC. This scaling behavior clearly indicates that the
magnetic interactions get properly renormalized following the
scaling equations of state. Nevertheless, it is also noted that
the low-field region below TC cannot be collapsed onto one
curve very well (shown in the insets of Fig. 7), which needs
be investigated further. It has been indicated the of the uni-
axial exchange anisotropy exits in single-crystal GaV4S8 by
magnetization study [4]. It is shown that the strong anisotropy

094431-4



FIELD-INDUCED TRICRITICAL BEHAVIOR IN THE … PHYSICAL REVIEW B 102, 094431 (2020)

(a)

(b)

FIG. 7. (a) Scaling plots of renormalized magnetization m vs
renormalized field h; (b) m2 vs h/m around the critical temperature
for GaV4S8. The insets are those on the log-log scale.

of GaV4S8 plays an important role in modulating low-field
spin textures and skyrmion dynamics [15,29,30]. However,
the sample used here is polycrystalline, in which anisotropy
should not act very much.

In order to discover the low-field splitting of universal-
ity scaling phenomenon in Fig 7, we magnify the low-field
isothermal magnetization curves of GaV4S8 with a temper-
ature span from 9.3 to 11.9 K. The m vs h curves at low
fields are shown in Fig. 8(a). It is clearly found that there
is one turning point between low-field and higher-field data
on each scaling curve. Moreover, the turning point changes
monotonously with temperature. We extract those turning
points on a magnetic phase diagram, as shown in Fig. 8(b). We
note that, remarkably, all the turning points fall on the bound-
ary between ferromagnetic and skyrmion lattice [4,13,30],
which suggests that these turning points just distinguish the
skyrmion and the ferromagnetic phases.

The critical exponents of GaV4S8 obtained from various
methods, as well as those from different theoretical models
and related skyrmion materials, are summarized in Table I
for comparison. The critical exponents of GaV4S8 are very
close to the tricritical mean-field model. It should be noted
that the critical exponents of the Bloch-type skyrmion hosts
FeGe and Fe0.8Co0.2Si are close to the universality class of the
3D Heisenberg model, while MnSi is described with tricritical
mean-field theory. In MnSi, a first-order phase transition in-
duced by fluctuation is exhibited, which can be suppressed by
field or pressure. When the first-order transition is suppressed,
a tricritical mean-field behavior appears [16]. For Cu2OSeO3,
its critical behavior approaches the 3D Heisenberg model
under zero or very low field. However, recent investigation

FIG. 8. (a) Magnified m vs h below TC in the low-field region on
a log-log scale with the fitted red solid lines; (b) the magnetic phase
diagram of GaV4S8 derived from the [M(T )] and critical analysis
(SKL = skyrmion lattice). The cycloidal state is marked; refer to
Ref. [4].

shows a field-induced tricritical phenomenon, where a tricrit-
ical point and a Lifshitz point are revealed [18]. The critical
analysis of Cu2OSeO3 demonstrates that the critical behaviors
and multiple phases can be modulated by external means.

As mentioned above, the critical exponent values of
GaV4S8 are mostly close to those predicted by the tricritical
mean-field theory, which unambiguously indicates a tricritical
behavior. As is known, the tricritical phenomenon usually
occurs at the boundary between a first-order phase transition
and a second-order one, suggesting the rich variety in the
phase diagram for GaV4S8. It should be pointed out that
first-order phase transition from skyrmion to ferromagnetic
here is judged only by the scaling analysis. Actually, the
first-order nature of skyrmion-ferromagnetic and cycloidal-
skyrmion phase transitions by small-angle neutron scattering
(SANS) investigations of GaV4S8 has been indicated [4],
which further confirms the reliability of the analysis of critical
phenomena.

The existence of first-order transition in other lacunar
spinel compounds should be noted. Another close V4-cluster
compound GeV4S8 undergoes an orbital and ferroelectric or-
dering at the Jahn-Teller transition around 30 K and exhibits
antiferromagnetic order below about 14 K [33–35]. Moreover,
the nature of both phase transitions in GeV4S8 is first order
[35]. Therefore, it is suggested that the first-order character-
istics in GaV4S8 might correlate with the lattice modulation
from GeV4S8 to GaV4S8.

Furthermore, it is necessary to reveal the nature as well
as the exchange distance in this material. As is known, for a
homogeneous magnet, the universality class of the magnetic
phase transition depends on the exchange distance J (r). Con-
sidering that the interaction between spins is treated as an
attractive interaction, a renormalization group theory analysis
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TABLE I. Comparison of critical exponents determined from different methods of GaV4S8 with different theoretical models and related
materials (MAP = modified Arrott plot; KFP = Kouvel-Fisher plot; PC = polycrystal; SC = single crystal; cal = calculated).

Composition Reference Technique β γ δ

MAP 0.220 ± 0.024 0.909 ± 0.005 5.132 ± 0.109cal

GaV4S PC
8 This work KFP 0.216 ± 0.054 0.910 ± 0.011 5.213 ± 0.250cal

Critical isotherm – – 5.161 ± 0.003
Mean field [24] Theory 0.5 1.0 3.0
3D Heisenberg [24] Theory 0.365 1.386 4.8
3D XY [24] Theory 0.345 1.316 4.81
3D Ising [24] Theory 0.325 1.24 4.82
Tricritical mean field [25] Theory 0.25 1.0 5
MnSiSC [16] MAP 0.242 ± 0.006 0.915 ± 0.003 4.734 ± 0.006
FeGeSC [31] MAP 0.336 ± 0.004 1.352 ± 0.003 5.267 ± 0.001
Fe0.8Co0.2SiPC [32] Hall 0.371 ± 0.001 1.38 ± 0.002 4.78 ± 0.01
Cu2OSeOSC

3 [17] AC 0.37(1) 1.44(4) 4.9(1)

suggests the interaction decays with distance r as [36,37]

J (r) ≈ r−(d+σ ), (8)

where d = 3 is the spatial dimensionality and σ is a positive
constant. Moreover, the susceptibility exponent γ is predi-
cated as

γ = 1 + 4

d

n + 2

n + 8
�σ + 8(n + 2)(n − 4)

d2(n + 8)2

×
[

1 + 2G
(

d
2

)
(7n + 20)

(n − 4)(n + 8)

]
�σ 2, (9)

where �σ = (σ − d
2 ) and G( d

2 ) = 3 − ( 1
4 )( d

2 )2; n is the
spin dimensionality. In this compound, it is found that σ =
1.316 ± 0.004 from Eq. (9). Thus, the interaction distance
decays as J (r) ≈ r−4.3.

IV. CONCLUSION

In summary, the critical behavior of the Néel-type
skyrmion host GaV4S8 has been investigated around TC. We
obtain the reliable critical exponents (β = 0.220 ± 0.024,
γ = 0.909 ± 0.005, and δ = 5.161 ± 0.003) by using vari-
ous techniques including the modified Arrott plot technique,
the Kouvel-Fisher method, and critical isotherm analysis.
The critical exponents generated from different methods are
self-consistent. The critical exponents of GaV4S8 belong
to the universality class of the tricritical mean-field model,
which unambiguously suggests a field-induced tricritical phe-
nomenon. A tricritical point is determined as (TTr = 12 K,
HTr = 60 mT), located at the intersection point among the
skyrmion, ferromagnetic, and paramagnetic phases.
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