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Bosonic representation of a Lipkin-Meshkov-Glick model with Markovian dissipation
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We study the dynamics of a Lipkin-Meshkov-Glick model in the presence of Markovian dissipation, with
a focus on late-time dynamics and the approach to thermal equilibrium. Making use of a vectorized bosonic
representation of the corresponding Lindblad master equation, we use degenerate perturbation theory in the
weak-dissipation limit to analytically obtain the eigenvalues and eigenvectors of the Liouvillian superoperator,
which in turn give access to closed-form analytical expressions for the time evolution of the density operator and
observables. Our approach is valid for large systems but takes into account leading-order finite-size corrections
to the infinite-system result. As an application, we show that the dissipative Lipkin-Meshkov-Glick model
equilibrates by passing through a continuum of thermal states with damped oscillations superimposed, until
finally reaching an equilibrium state with a temperature that in general differs from the bath temperature. We
discuss limitations of our analytic techniques by comparing to exact numerical results.
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I. INTRODUCTION

Dissipation and decoherence are effects that are induced
on a quantum system by its environment [1,2]. These effects
may be seen as a detrimental factor that is to be reduced
and/or undone, and this viewpoint is taken in the majority
of quantum computing schemes, as well as in other tasks in
quantum information processing and storage [3–5]. On the
other hand, dissipation can also act as a welcome resource
for quantum information tasks [6], be it for dissipation-driven
quantum computation [7], for quantum error correction [8],
or for quantum state preparation schemes [9,10]. Benefits
of dissipation can also be exploited in quantum many-body
physics, for example to control transport in experiments with
ultracold atoms [11,12] or to maximize the coherence of con-
densate modes in the spirit of stochastic resonance [13]. All
of these cases demand a thorough understanding of quantum
dissipation and necessitate the development of numerical and
analytical tools for its analysis.

Compared to the already challenging task of treating
unitarily-evolving quantum many-body systems, the consid-
eration of dissipative effects further adds to the technical
complications. For example, exact diagonalization of N uni-
tarily evolving spin-1/2 degrees of freedom requires, in the
absence of symmetries, to deal with matrices of size 2N × 2N ,
whereas the dissipative case described by a Lindblad master
equation requires matrices of size 22N × 22N . In the unitary
case, this scaling behavior restricts such analyses to about
14 spins on a typical (at the time of writing) personal com-
puter, and to only seven spins in the presence of Markovian
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dissipation [14], which accounts for the need to develop ap-
proximation methods that are suitable for dissipative quantum
systems.

In this paper we contribute to the development of analytical
approximation methods, focusing on a Lipkin-Meshkov-Glick
(LMG) model subject to Markovian dissipation, as described
by a Lindblad master equation [15,16]. This model has seen
recent interest in the context of experimental realizations by
means of single-component Bose-Einstein condensates in a
double-well potential [17,18] or by two-component Bose-
Einstein condensates in a single-well potential [19,20]. While
the hitherto reported experiments focus mostly on the co-
herent regime, dissipative effects inevitably become relevant
on longer timescales. Various theoretical studies of the LMG
model with Markovian dissipation have been reported, using
different Lindblad master equations and focusing on different
aspects and parameter regimes [13,21–25]. Methods to treat
these equations include exact diagonalization [23], quantum
kinetic theory at the Hartree level [13,21], and quantum jump
methods [22].

In Ref. [25], methods from asymptotic analysis have been
used to obtain closed-form expressions for the late-time lim-
its of expectation values of observables of interest, as well
as for the rates at which those values are approached. The
methods used in that paper are appealing due to their rigor and
conciseness but are also restricted in scope and applicability,
especially because of the focus on the strict infinite-system
limit. The present paper shares with Ref. [25] the focus on
late-time dynamics and the approach to thermal equilibrium
in the LMG model with Markovian dissipation. For this scope
of application, we develop a versatile approximate toolset
based on a Holstein-Primakoff-type bosonic representation of
spin-S operators in the large-S limit. This limit corresponds
to a large-system limit, but unlike the techniques used in
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Ref. [25], it allows us to account for leading-order finite-size
corrections to the strict infinite-system limit, which has the
merit of circumventing some of the pathologies of the strict
infinite-S system [26]. The Holstein-Primakoff transformation
is performed around the ground state of the infinite system.

The Holstein-Primakoff approximation developed in this
paper permits us to diagonalize the Lindblad superoperator,
which in turn gives access to the time evolution of the full
density operator and hence to expectation values of arbitrary
observables, not just the selected few considered in Ref. [25].
Our method yields well-manageable closed-form expressions.
As a first application, we show that the stationary state of the
dissipative LMG model is a Gibbs thermal state but with a
temperature that in general differs from the imposed bath tem-
perature. As a second application we calculate, for a family of
initial states, the time evolution of the density operator as well
as a selection of observables of interest. Our results show that
the dissipative LMG model thermalizes by passing through
a continuum of thermal states on which damped oscillations
are superimposed. Finally in Sec. V we discuss in detail the
validity as well as the limitations of our analytic techniques
by comparing to exact numerical results.

II. DISSIPATIVE LIPKIN-MESHKOV-GLICK MODEL

The physical motivation we have in mind is that of a system
which, when isolated from its surroundings, evolves unitarily
according to the Lipkin-Meshkov-Glick (LMG) Hamiltonian

HS = − �

2S
S2

x − hSz. (1)

Here Sx and Sz are components of a spin-S vector operator,
� � 0 is a coupling constant, and h denotes a magnetic field
strength. We set h = 1 from here on. The spin quantum num-
ber S is related to the particle number N = 2S of the bosonic
formulation in which the LMG model was originally intro-
duced [27]. In the semiclassical limit of large spin quantum
number S, this model exhibits a quantum phase transition at
� = 1 from a symmetric phase to a symmetry-broken phase.
In the former the model has a nondegenerate ground state
with a zero Sx expectation value. In the limit N → ∞ the
ground state in the symmetry-broken phase will be twofold
degenerate with nonzero Sx expectation values [28].

Dissipative effects can be introduced into the model in
various ways, either by ad hoc procedures, or by coupling
the model to an environment and tracing out the environ-
ment degrees of freedom. There is a plethora of choices
of environments, of system—environment couplings, and of
subsequent approximation techniques to render the resulting
time-evolution equations more manageable [15,16,23]. Here
we use as an example a Lindblad master equation, derived in
Ref. [25], for an LMG model coupled to a bosonic bath by
making use of Born and Markov approximations but avoiding
the use of the secular approximation (see Appendices A and B
of Ref. [25] for details). By avoiding the secular approxima-
tion we obtain a master equation that is not a priori guaranteed
to have a Gibbs thermal state as its equilibrium state. This
provides us with the opportunity to explore richer equilibrium
properties in Sec. III E and more interesting equilibration dy-
namics in Sec. III F.

We consider the master equation

∂tρ = Lρ (2)

that describes the time evolution of the density operator ρ. The
Lindbladian

L = U + D (3)

consists of a unitary part

Uρ = i[ρ,HS + Hγ ] (4)

with [29]

Hγ = γ

4S
{Sx, Sy}, (5)

and a dissipative part

Dρ = LρL† − 1
2 {L†L, ρ} (6)

with jump operator

L =
√

2γ T

S

(
Sx + i

4T
Sy

)
, (7)

where T denotes temperature of the environment. Combining
the above, the Lindblad equation reads

∂tρ = Lρ = i[ρ,HS + Hγ ] + LρL† − 1
2 {L†L, ρ}. (8)

When deriving Eqs. (2)–(8) from a microscopic model of
system and environment, the non-negative parameter γ in
Eqs. (5) and (7) is a measure of the system-environment cou-
pling strength and is assumed to be small. Since in the present
work we are not concerned with such a microscopic point
of view, we “postulate” Eqs. (2)–(8) as our dissipative LMG
model and take the liberty to admit arbitrary nonnegative
values of γ . While we work with these specific equations for
concreteness, the bosonization and vectorization techniques
developed in Sec. III can be applied to a broad range of Lind-
blad master equations describing large-S spin models with
dissipation.

III. BOSONIZATION OF THE LINDBLAD EQUATION

Our treatment of the Lindblad equation (8) uses a combi-
nation of bosonization and vectorization procedures, leading
eventually to a representation of the Lindbladian L as an
operator acting on a two-mode bosonic Fock space, the ele-
ments of which represent density operators. This form of L is
amenable to standard techniques, which provide insight into
the system’s stationary state and its equilibration dynamics.

A. Holstein-Primakoff mapping

Our first step is common to many treatments of the LMG
model. Using the Holstein-Primakoff (HP) mapping [30] we
introduce representations of the spin operators appearing in
HS in terms of bosonic creation and annihilation operators.
These operators describe the low-lying excitations above the
system’s semiclassical ground state. Accordingly, the proper-
ties of this ground state, most notably its magnetization, steer
the construction of the HP mapping.
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In the large-S limit a simple variational calculation [31]
produces the magnetization

m = 〈S〉/S = (sin θ0, 0, cos θ0) (9)

with

θ0 =
{

0 for 0 � � < 1,

± arccos(1/�) for 1 � �,
(10)

where the expectation value is taken with respect to the
semiclassical ground state. The first of the two cases in
(10) corresponds to the symmetric phase with a vanishing
x component of the magnetization. In the second case, the
two possible signs for θ0, and hence for mx = sin θ0, reflect
the doubly degenerate ground state of the symmetry-broken
phase. Only one of these two states can be selected as a
reference point for the HP construction, which introduces
an explicit breaking of the P = exp(iπSz ) parity symmetry
present in HS . As a result, the description of the dynamics
derived from this mapping is unable to capture effects due
to tunneling between the two ground states. A more detailed
discussion of this point will follow in Secs. IV and V.

The HP mapping is applied to a spin operator S′ =
(S′

x, S′
y, S′

z ) that corresponds to an axis system in which the
z′ direction is aligned with the ground state magnetization m.
It follows that S and S′ are related by S = RyS′, where

Ry =
⎛
⎝ cos θ0 0 sin θ0

0 1 0
− sin θ0 0 cos θ0

⎞
⎠ (11)

is a rotation around the y axis. As desired, the magnetization
in the rotated frame is m′ = 〈S′〉/S = (0, 0, 1). Since we have
θ0 = 0 in the symmetric phase, the rotation Ry is nontrivial
only in the symmetry-broken phase. Also, the rotation relating
S and S′ is dictated by HS alone, and it is not obvious that the
presence of Hγ in U , or indeed the dissipator D itself, should
not play a role here. It will be shown below that terms in Hγ

that would necessitate a different choice of S′ are canceled
exactly by terms originating from the dissipator.

The HP mapping amounts to expressing the components of
S′ in terms of the bosonic creation and annihilation operators
a and a† according to [30]

S′
+ =

√
2S − a†aa and S′

z = S − a†a. (12)

It is straightforward to verify that, for S′
+, S′

− = (S′
+)†, and

S′
z satisfying spin commutation relations, this definition guar-

antees that a and a† satisfy bosonic commutation relations.
Combining (12) with the relation S = RyS′ allows the con-
stituents of the Lindbladian, namely HS , Hγ and L, to be
expressed in terms of bosonic operators. In the resulting ex-
pressions we then expand the square roots from S′

± in orders of
1/S, keeping only terms which may contribute to L at orders
O(S), O(S1/2), and O(S0). For HS (1) this yields

HS = ωaa†a + 	a(aa + a†a†) + δ0 (13)

where

ωa = (
mz + � − 3m2

z �/2
)
, (14a)

	a = −m2
z �/4, (14b)

δ0 = −S
(
mz + �m2

x

/
2
) − �m2

z /4, (14c)

and mx and mz are the semiclassical (infinite-S) values given
in Eqs. (9) and (10). Applying the same treatment to Hγ (5)
produces

Hγ = imxγ
√

2S

4
(a† − a) + imzγ

4
(a†a† − aa), (15)

where we have dropped scalar terms, as they do not contribute
to L. For the jump operator (7) we find

L = mx

√
2γ T S + 1

4

√
γ

T
[(4mzT − 1)a† + (4mzT + 1)a]

− mx

√
2γ T

S
a†a. (16)

The first terms in (15) and (16) are of order O(S1/2) and, at
least individually, might contribute nontrivially to Lρ. This
may appear to rule out taking the large-S limit on the level
of the Lindblad equation. We show next that, upon closer
inspection, the contributions from these terms to L actually
cancel. To see this, first note that there is some freedom in
how the unitary term and the dissipator in L are identified. In
fact, for any scalar c we can write L from Eq. (8) in the form

Lρ = i[ρ,HS + H′
γ ] + L′ρL′† − 1

2 {L′†L′, ρ}, (17)

where L′ = L − c, H′
γ = Hγ + Hc, and

Hc = i

2
(c∗L − cL†). (18)

This is due to a cancellation of c-dependent terms between
the modified unitary term and dissipator. This allows us to
shift the jump operator by a scalar and compensate for this
by adding Hc to the generator of the unitary dynamics. If
we chose c = mx

√
2γ T S then this would eliminate the prob-

lematic term from L. For this choice of c we find that Hc =
−imxγ

√
2S(a† − a)/4, which in turn cancels the O(S1/2)

term in H′
γ . Furthermore, with the O(S1/2) term absent from

L′, the final O(S−1/2) term can only contribute at this same
order to the Lindbladian and may therefore be dropped. Com-
bining these results, we conclude that we may proceed with
the original Lindblad equation (8), using (13),

Hγ = imzγ

4
(a†a† − aa), (19)

and

L = 1

4

√
γ

T
[(4mzT − 1)a† + (4mzT + 1)a]. (20)

B. Diagonalizing HS

Before dealing with the Lindbladian it will be useful to per-
form a Bogoliubov transformation to bring HS into diagonal
form. This introduces a new species of b bosons defined by

a = sinh(φb/2)b† + cosh(φb/2)b, (21)

where the Bogoliubov angle φb is set according to

tanh φb = ε with ε = −2	a/ωa. (22)

Substituting (21) and its adjoint into HS produces the diagonal
Hamiltonian

HS = ωbb†b + E0, (23)
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where E0 = δ0 + (ωb − ωa)/2 and ωb = ωa

√
1 − ε2. The lat-

ter parameter can be simplified to

ωb =
{√

1 − � for 0 � � < 1,√
�2 − 1 for 1 � �,

(24)

where the expressions (9) and (10) for the semiclassical
magnetization components have been used. To rewrite the
Lindblad equation (8) entirely in terms of the Bogoliubov b
bosons, we apply the transformation (21) and (22) to Hγ in
(19), which yields

Hγ = imzγ

4
(b†b† − bb), (25)

and to L in (20), which gives

L = √
γ (B+b† + B−b) (26)

with

B± = 1

4
√

T
[(4mzT ± 1) sinh(φb/2)

+ (4mzT ∓ 1) cosh(φb/2)]. (27)

The expression for B± can be simplified by inserting the
solution for φb from (22) and considering the two phases
individually. In both phases B± is found to reduce to

B± = √
mz

(√
T

ωb
∓ 1

4

√
ωb

T

)
. (28)

For later use we note that

B2
− − B2

+ = mz (29)

and
B+
B−

= 4T − ωb

4T + ωb
. (30)

C. Vectorizing the Lindblad equation

In its present form the Lindbladian L is a superoperator,
acting on the density operator ρ, which in turn acts on the
single mode bosonic Fock space B1. There exists a natural
mapping between operators acting on B1 and elements of the
two-mode bosonic Fock space B2 = B1 ⊗ B1. This allows us
to represent the density operator ρ as a vector |ρ〉 in B2, while
the Lindbladian becomes an operator acting on this space.
Working in the basis of b-boson number states, this mapping
amounts to

ρ =
∑

i j

ρi j |i〉〈 j| ←→ |ρ〉 =
∑

i j

ρi j |i〉 ⊗ | j〉. (31)

Under this map the left and right action of operators A =
A(b, b†) and B = B(b, b†) on ρ become

AρB ←→ A ⊗ BT |ρ〉, (32)

where the transpose operation (T ) exchanges b and b† but
leaves scalars unaffected. The unitary term

Uρ = i[ρ,HS + Hγ ], (33)

represented as an operator on B2, reads

U = iI ⊗ (HS + Hγ )T − i(HS + Hγ ) ⊗ I, (34)

while the dissipator

Dρ = LρL† − 1
2 {L†L, ρ} (35)

becomes

D = L ⊗ L∗ − 1
2 (L†L ⊗ I + I ⊗ LT L∗). (36)

Here the conjugation operation (∗) only affects scalars and
leaves the boson operators unchanged. We see from (26) and
(28) that L∗ = L, and so LT = L†. Defining

b1 = b ⊗ I, b2 = I ⊗ b, (37)

the final forms of U and D read

U = iωb(b†
2b2 − b†

1b1) + mzγ

4
(b†

1b†
1 + b†

2b†
2 − H.c.) (38)

and

D = L1L2 − 1
2 (L†

1L1 + L†
2L2), (39)

where

Li = √
γ (B+b†

i + B−bi ). (40)

D. Small-γ perturbative diagonalization of the Lindbladian

We have arrived at a representation of the Lindbladian L =
U + D as an operator acting on a two-mode bosonic Fock
space. This operator is quadratic in creation and annihilation
operators, which suggests to attempt an exact diagonalization
via a Bogoliubov transformation. The approach presented in
Ref. [32] provides a systematic way of constructing the new
species of bosons required for this task. However, within the
weak coupling regime a simpler, perturbative approach will
suffice, one which also allows us to exploit the simple alge-
braic properties of the operators appearing in L. Section III G
contains a brief discussion of the results that the approach of
Ref. [32] produces in the strong coupling regime.

We proceed on the basis of standard perturbation theory
and write L = L0 + γL′, where

L0 = iωb(b†
2b2 − b†

1b1), (41)

while

γL′ = mzγ

4
(b†

1b†
1 + b†

2b†
2 − H.c.)

+ L1L2 − 1

2
(L†

1L1 + L†
2L2) (42)

represents the perturbation. The spectrum of L0 is highly
degenerate, and the eigenspace corresponding to a certain
eigenvalue is spanned by b1- and b2-boson Fock states with a
fixed boson number difference. We must therefore diagonalize
L′ within each of these subspaces individually. Let 
 repre-
sent the value of b†

2b2 − b†
1b1 and consider the projection L′




of L′ into this subspace. Performing this projection amounts
to dropping terms which do not conserve L0. This yields

L′

 = mz/2 − (B2

+ + B2
−) 1

2 (b†
1b1 + b†

2b2 + 1)

+ B2
+b†

1b†
2 + B2

−b1b2, (43)

where we have used (29) to obtain the mz/2 term. The struc-
ture of L′


 is reminiscent of a pairing Hamiltonian, albeit a
non-Hermitian one. In Appendix 1 we detail the construction
of a similarity transformation T which brings this operator
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into diagonal form. This construction is aided by the fact
that the operators appearing in L′


 obey su(1, 1) commuta-
tion relations and therefore transform in a simple way under
SU(1, 1) group transformations. While this construction is
equivalent to performing a nonunitary Bogoliubov transfor-
mation, having an explicit form for T , given in Eqs. (A5) and
(A8), also provides us with direct access to the eigenstates.
Applying T produces

T −1L′

T = −mz

2
(b†

1b1 + b†
2b2). (44)

For a fixed 
 the eigenvalues of b†
1b1 + b†

2b2 are |
| + 2n
for n ∈ N0, and the corresponding eigenstates are combined
b1- and b2-boson Fock states. It is straightforward to check
that the unperturbed part (41) is invariant under the action
of T . Combining these results, we conclude that in the weak
coupling regime the eigenvalues of L are

λ
,n = iωb
 − mzγ

2
(|
| + 2n) (45)

with 
 ∈ Z and n ∈ N0. The eigenstates are the transformed
Fock states

|ρ
,n〉 =
{
T |n, n + 
〉 for 
 � 0,

T |n − 
, n〉 for 
 < 0.
(46)

Note that the bath temperature T does not feature in the
eigenvalues λ
,n but enters into the eigenstates via the trans-
formation T .

E. Stationary state

An eigenstate of the Lindblad superoperator L with zero
eigenvalue is a stationary state of the Lindblad equation (8).
In the vectorized language of Secs. III C and III D, it therefore
follows that |ρ0,0〉 = T |0, 0〉 is the unique stationary state. (In
the symmetry-broken phase this statement should be qualified
further; see Secs. IV and V.) Since the nonzero eigenvalues
of L all have negative real parts, the system always equili-
brates to |ρ0,0〉. At long times the equilibration rate is set by
| Re(λ±1,0)| = mzγ /2, i.e., by the slowest decay rate of the
nonstationary eigenstates of L.

In order to assess whether the stationary state is a Gibbs
thermal state, it is convenient to convert the vectorized state
|ρ0,0〉 into operator form. In Appendix 2 it is shown that
|ρ0,0〉 = T |0, 0〉 can be simplified to produce, up to normal-
ization,

|ρ0,0〉 ∝ e(B+/B− )2b†
1b†

2 |0, 0〉 =
∞∑

n=0

(
B+
B−

)2n

|n, n〉. (47)

Replacing |n, n〉 by |n〉〈n| gives the operator form of the sta-
tionary state,

ρ0,0 ∝ exp[2 ln(B+/B−)b†b] ∝ exp (−HS/Tss ), (48)

where, up to a scalar term, we have identified HS with its
diagonal form in (23) and defined the temperature

Tss = − ωb

2 ln(B+/B−)
. (49)

Comparing ρ0,0 to the Gibbs state ρth = exp(−HS/T ) now
amounts to a comparison of Tss with the bath temperature T .

Using the expression for B+/B− in Eq. (30) we obtain the
expansion

Tss

T
= 1 − ω2

b

48T 2
− ω4

b

2880T 4
+ O

(
ω6

b

T 6

)
. (50)

Already for T � 2ωb it is clear that Tss will match the bath
temperature T very closely, and so within this regime the
stationary state ρ0,0 in (48) indeed coincides with the thermal
Gibbs state.

F. Time evolution of the density operator

The perturbative results of Sec. III D can be used to cal-
culate, for a given initial ρ(0), the time evolution ρ(t ) of
the density operator, which in turn gives access to the time
evolution of expectation values of arbitrary observables. To
this aim, we recall that the perturbative calculation amounted
to diagonalizing the operator

L
 ≡ L0 + γL′

, (51)

with L0 and L′

 as defined in Eqs. (41) and (43). The algebraic

properties of the operators appearing in L
 allow us to apply
exp[tL
] directly to certain types of initial states.

As an illustration, we consider the evolution of the initial
state

ρ(0) = |ψ〉〈ψ|, (52)

where

|ψ〉 = Ry(θ )|GS〉 (53)

is the ground state of the system Hamiltonian HS , rotated
using

Ry(θ ) = exp [−iθSy] (54)

by an angle θ around the y axis. For simplicity we consider
the symmetric phase in which mz = 1. It is now possible
to apply exp[tL
] to the vectorized initial state |ρ(0)〉 and
to bring the result into a simple form. The details of this
calculation are shown in Appendix 3. After switching back to
the nonvectorized language the time-evolved density operator
is given by

ρ(t ) = U (t )ρth(t )U †(t ) (55)

with

U (t ) = exp[−iθe−γ t/2(cos(ωbt )Sy + e−θ sin(ωbt )Sx )],

(56a)

ρth(t ) = (
1 − e−ωb/TS (t )

)
e−HS/TS (t ), (56b)

1

TS (t )
= 1

ωb
log

(
e−ωb/Tss − e−γ t

1 − e−γ t

)
. (56c)

The form of ρ(t ) in (55) provides a simple and intuitive
picture of the dynamics which leads the system to thermal
equilibrium. The density matrix ρth(t ) represents a thermal
state with a time-dependent temperature TS (t ). The latter in-
creases from TS (0) = 0, approaching a final value of Tss, the
steady state temperature identified in Eq. (49). As was shown
in Eq. (50), Tss is essentially equal to the bath temperature
T when T � 2ωb. The behavior of TS (t ) reflects the heating
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FIG. 1. Results for the expectation value of the system Hamil-
tonian HS and for the mx and my components of the magnetization,
plotted as functions of time for the initial state described in the text.
Solid and dashed lines correspond to the predictions of Eqs. (57),
(59a), and (59b). In the top figure the prediction of Eq. (57) is
shown both with (solid line) and without (dashed line) the finite-size
correction terms. The dots show exact numerical results obtained by
solving the original spin-based Lindblad equation (8) for S = 150.
Parameters were set to � = 0.1, γ = 0.15, T = 4, and θ = 1/

√
S.

of the system by the bath and is independent of the rotation
angle θ that characterizes the initial state. In parallel with this
heating process, the unitary transformation U (t ) introduces an
oscillating and damped rotation into ρ(t ). These oscillations
result from the Ry(θ ) rotation in ρ(0), which introduces a
misalignment between the initial state’s magnetization and
that of the stationary state.

From the explicit form of ρ(t ) in (55), various quantities
of interest can be calculated. For the system energy we obtain
the expectation value

〈HS〉
S

= E0

S
+ θ2ωb

2
e−γ t−φb + ωb

S(eωb/TS (t ) − 1)
, (57)

which provides a nice illustration of the two processes de-
scribed above: The second term on the right-hand side of (57)
describes the dissipation of the energy imparted to the system
by the Ry(θ ) rotation in the initial state. The last term on the
right-hand side of (57) is the heat absorbed from the bath and
represents a temperature-dependent finite-size correction to
the S → ∞ limit of 〈HS〉/S. In Ref. [25] the thermalization of
this system was studied using a set of semiclassical equations
of motion for the spin components. This approach provided a
description of the dynamics far away from equilibrium, unlike
the present local description which follows from the Holstein-
Primakoff mapping. However, the results of Ref. [25], being
derived in the strict large-S limit, do not account for quantum
fluctuations, nor any thermal effects. In fact, the predictions
of Ref. [25] coincide with the S → ∞ limit of the expression
in (57). Figure 1 shows the prediction of the present approach
with that of Ref. [25], together with exact numerical results for
S = 150. The inclusion of the finite-size corrections clearly

leads to much better agreement with the exact results, which is
one of the main merits of the bosonization approach advocated
in the present work.

For the components of the magnetization

m(t ) = Tr(Sρ(t ))/S (58)

we find

mx(t ) = θe−γ t/2 cos(ωbt ) (59a)

my(t ) = −θe−γ t/2−φb sin(ωbt ) (59b)

mz(t ) = 1 − θ2

2
e−γ t−φb[cosh φb + cos(2ωbt ) sinh φb]

− 1

S

(
sinh2(φb/2) + cosh φb

eω/TS (t ) − 1

)
. (59c)

As expected, the rotation operator entering in (55) gen-
erates damped oscillations in the three spin components.
Time-dependent expectation values of the other observables
(besides the above treated magnetization components) can be
derived along similar lines.

G. Diagonalization for arbitrary dissipation strength γ

The perturbative approach of Sec. III D relies on the re-
quirement that the system-bath coupling is weak. However,
even when the weak-coupling condition γ � ωb is violated,
an analytic treatment of the bosonic Lindblad equation is
still possible by the method of third quantization [32]. This
approach allows for the exact diagonalization of bosonic Lind-
bladians in which the Hamiltonian and jump operators are,
respectively, quadratic and linear in the boson creation and
annihilation operators. When applied to the bosonized Lind-
blad operator L = U + D given by (38)–(40), the primary
outputs of the third quantization procedure are encoded in the
so-called rapidities

β± = 1

4

(
mzγ ± i

√
4ω2

b − m2
z γ

2
)

(60)

and a complex symmetric matrix Z with elements

Z11 = Z22 = mzγ (mzγ − 2ωbi)

32T ωb
, (61a)

Z12 = m2
z γ

2 + 2(4T − ωb)2

32T ωb
. (61b)

The physical content of these quantities is as follows. The
eigenvalues of the Lindblad operator are given in terms of
the rapidities by −2(β+n+ + β−n−) where n± ∈ Z. A Taylor
expansion in γ confirms that this result is consistent with the
eigenvalues found in (45) in the weak-coupling limit. The
entries of Z determine the stationary state expectation values,

〈b†b〉 = Z12, 〈bb〉 = Z11, (62)

and other expectation values follow via Wick’s theorem. Set-
ting γ = 0 in these expressions recovers the thermal state
(48). Increasing γ results in deviations from these thermal
values. This does not come as a surprise, as a large value of γ

invalidates the Born-Markov approximation upon which the
derivation of the Lindblad equation is based [25] and hence
severs the connection to the microscopic model. However, the
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stationary state does not exhibit any nonanalytic behavior or
instabilities with increasing γ , which appears surprising in
light of the fact that the generator HS + Hγ of the unitary evo-
lution becomes an unstable inverted oscillator when mzγ >

2ωb. The spectrum of L undergoes an interesting qualitative
change at mzγ > 2ωb, where all eigenvalues become real, as
can be seen from Eq. (60). This eliminates the oscillatory
behavior from the dynamics generated by L, leading to an
overdamped decay. The simple dependence of the Lindblad
dynamics on γ , devoid of nonanalyticities and instabilities,
can be understood as a consequence of cancellations of γ -
dependent terms in the unitary part Hγ of L and in the
dissipator.

It would be interesting to consider a class of Lindblad
equations for the LMG model in which the coupling enters
only in the dissipator. In this case it is conceivable that strong
coupling modifies the model’s phase structure and impacts
on the stability of the stationary state, similar to the findings
of Ref. [33] in a closed-system setting modeled by quadratic
system and bath Hamiltonians.

IV. PARITY SYMMETRY OF HS AND L

Parity symmetry breaking is essential for the understanding
of the phase transition occurring in the LMG model in the
thermodynamic limit for � > 1. In this section we discuss
the role of parity symmetry in the Hamiltonian as well as the
Lindbladian. The breaking of this symmetry strongly affects
the equilibration dynamics of the LMG model, and a thor-
ough understanding is helpful for clarifying the status of the
analytic results in Secs. III D and III E. We consider integer
values of S for simplicity.

The LMG Hamiltonian (1) commutes with the parity oper-
ator

P = exp(iπSz ), (63)

and therefore the eigenstates of HS can be chosen to have
well-defined parity. Since P†SxP = −Sx, such states necessar-
ily have zero Sx expectation values.

The spectrum of the LMG Hamiltonian has previously
been analyzed using a variety of approaches. However, ana-
lytic results are typically restricted to the large-S limit [31,34]
or low energies [28], and many studies also consider only
one of the two parity sectors. Our interest lies with large but
finite S and in how the spectra of the odd and even parity
sectors compare. To this end, numerical results provide the
most direct insight and form the basis of the discussion below.
For example, Fig. 1 of Ref. [17] and Fig. 1(b) of Ref. [35]
provide clear depictions of the LMG model’s spectrum in both
phases.

In the symmetric phase the spectrum of HS is nondegener-
ate, and therefore all eigenstates have well-defined parity by
default. In the symmetry-broken phase the low-lying eigen-
states occur in pairs with opposite parity and closely spaced
eigenvalues, which become degenerate in the thermodynamic
limit. This permits the construction of eigenstates that lack
well-defined parity and have nonzero Sx expectation values.
At large but finite S the ground and first excited states have
even and odd parity, respectively, and are separated by an
energy gap 
E which is exponentially small in S. From this

quasidegenerate pair it is possible to form linear combinations
which are initially localized around one of the semiclassical
(symmetry-broken) ground states. Under the unitary dynam-
ics generated by HS this leads to back-and-forth tunneling
between these ground states, with a frequency of ω = 
E .
This scenario is familiar from the one-dimensional double-
well potential. Here we can picture the dynamics as taking
place on the Bloch sphere, with energy minima at the point(s)
corresponding to the ground state magnetization m in (9); see
Fig. 1 of Ref. [19] for an illustration.

The numerical results reported in Sec. V A will demon-
strate that essentially the same scenario plays out on the level
of the Lindbladian. Here we summarize the main points. We
define the action of the parity operator P on ρ by AdP ρ =
P†ρP, and the space K of state operators then splits into the
direct sum of two subspaces K+ and K−. Elements of K+
obey AdP ρ = ρ and therefore preserve the parity of states
they act on, while elements of K− satisfy AdP ρ = −ρ and
flip the parity of states. Since P†HSP = HS , P†Hγ P = Hγ

and P†LP = −L we see from (8) that AdP commutes with the
Lindbladian L, and so each eigenoperator of L can be chosen
to lie in either K+ or K−. In particular, the Lindblad evolution
will not mix these two subspaces. In fact, if the stationary state
is unique then it must be an element of K+, as the elements
of K− are traceless. For any ρ ∈ K+ we have Tr(Sxρ) = 0,
and such a stationary state therefore respects the symmetry
present in HS . This agrees with what was found analytically
for the symmetric phase of the LMG Hamiltonian.

In the symmetry-broken phase the quasidegenerate pairing
of odd and even parity HS eigenstates results in a similar pair-
ing of L eigenoperators from K+ and K−. Appropriate linear
combinations of these pairs then produce state operators with
support around one of the two semiclassical ground states. At
finite S this degeneracy is not exact and tunneling between
these ground states still occurs, eventually leading back to the
unique stationary state in K+. However, in the large-S limit
tunneling is completely suppressed, and the stationary state in
K+ becomes degenerate with a state from K−. This allows for
the construction of thermal states with support around one of
the two semiclassical ground states. The results obtained by
applying the bosonization procedure in the symmetry-broken
phase therefore describe the fixed point of this local thermal-
ization process and are applicable either in the limit of large
S or, for finite S, on timescales far smaller than the tunneling
time.

V. NUMERICAL RESULTS

The approximate analytic results of Sec. III are obtained by
truncating the Holstein-Primakoff (HP) transformation (12)
at suitable orders in the small parameter 1/S, and the ap-
proximation is therefore valid only for sufficiently large spin
quantum numbers S. A second restriction on the validity of the
approximation is related to shape of the semiclassical poten-
tial that is approximated, which in turn is determined by the
LMG Hamiltonian (1). The HP approximation replaces that
original Hamiltonian by a harmonic oscillator Hamiltonian
(23). The more the semiclassical potential associated with the
original Hamiltonian differs from a parabola, the less accurate
is the HP approximation. In the symmetry-broken phase, the
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FIG. 2. Spectrum of the Lindbladian (8) in a region of the left
complex plane, computed for parameter values γ = 0.2 and T = 4.
The left and right subfigures show results for the symmetric (� < 1)
and symmetry-broken (� > 1) phases, respectively. Here λ± are
numerical results for S = 3000 for the eigenvalues corresponding to
the K± subspaces of K, while λ
,n are the predictions of equation
(45), which is based on a Holstein-Primakoff approximation and
assumes small coupling γ .

semiclassical potential of the LMG model has a double-well
structure and, while each of the wells separately can be ap-
proximated by a parabola, the overall shape of the potential
cannot, and the HP approximation is unable to capture any
tunneling between the wells. The aim of the present section
is to provide numerical results for the original spin Lindblad
equation (8) that allow us to assess the range of validity of
the HP approximation in the various parameter regimes of the
model.

A. Spectrum of L
The numerical data shown and discussed in this subsec-

tion mainly serve the purpose of justifying the claims about
the properties of the eigenvalue spectrum of the Lindblad
superoperator L made in Sec. IV, in particular regarding the
formation of near-degenerate pairs of eigenvalues. Figure 2
shows a subset of the eigenvalues of the Lindbladian in a
region of the left complex plane. The numerical calculations
were performed by restricting the Hilbert space to the sub-
space spanned by the lowest 101 eigenstates of HS . In the left
panel of Fig. 2, which shows data for the symmetric phase,
we observe very good agreement of the numerical data based
on the Lindbladian (8) with the HP predictions of equation
(45). In particular, there is a clear separation between the
eigenvalues originating from K+ and K−. In the right panel of
Fig. 2, corresponding to the symmetry-broken phase, a rather
different scenario is observed, with eigenvalues arranged into
nearly degenerate pairs from K+ and K−. While the eigenval-
ues themselves still follow the trend predicted by Eq. (45), it

FIG. 3. The eigenvalue λ+,1 of L with the largest nonzero real
part in the K+ subspace of K, shown as a function of � and for
parameter values S = 500, γ = 0.005, and T = 4. Also shown are
the real and imaginary parts of λ−,0, the eigenstate from the K−
subspace with the largest real part. Note that λ−,0 becomes nearly
degenerate with λ+,0 = 0 at large �.

should be understood that the eigenstates given by (46) now
correspond to particular linear combinations of these pairs.

For a quantitative analysis of the formation of eigenvalue
pairs, we order the eigenvalues from the K+ and K− sec-
tors such that Re(λ±,0) > Re(λ±,1) > Re(λ±,2) > · · · , with
λ+,0 = 0 corresponding to the stationary state. (The eigenval-
ues of L occur in complex conjugate pairs. Here we disregard
those with negative imaginary parts.) The equilibration rate at
long times is set by the smaller of | Re(λ+,1)| and | Re(λ−,0)|.
Figure 3 shows λ+,1 ∈ R together with the real and imag-
inary parts of λ−,0 as functions of � [36]. Note that due
to finite size effects λ+,1 and λ−,0 match the analytic pre-
dictions λ0,1 and λ1,0 of (45) only for small �. However,
here our goal is not to benchmark the analytic results, but
to highlight the generic trends observed when crossing into
the symmetry-broken phase. In particular, we see that there
is a point, just beyond � = 1, where λ−,0 becomes real and
rapidly approaches λ+,0 = 0 with increasing �. This results
in a very slow decay of the corresponding eigenoperator and
allows for the construction of a quasistationary state localized
around one of the classical ground states.

Figure 4 shows the diagonal entries of ρ+,0 and ρ−,0 in
the Sx basis, plotted as functions of the corresponding Sx

eigenvalue. With the parameter � chosen well inside the
symmetry-broken phase, we see the expected parity symmetry
in ρ+,0, with peaks around the two values of mx = sin θ0

associated with the semiclassical ground states. In contrast,
ρ−,0 is not a physical state operator, but it can be normalized
so as to ensure that the combination ρ+,0 ± ρ−,0 is a phys-
ical state. The latter will have support around only one of
the semiclassical ground states. It is this locally thermalized,
symmetry-broken state that the bosonized large-S calculations
yield as a stationary state in (47).

B. Dynamics

The near-degenerate eigenvalue pairs discussed in
Sec. V A, and the resulting double-peak structure illustrated
in Fig. 4, give rise to tunneling dynamics between negative-m
and positive-m states, corresponding to the two wells of
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FIG. 4. Diagonal entries of the stationary state ρ+,0 (top) and
nearly degenerate ρ−,0 (center) eigenstate of L in the Sx basis as
functions of the eigenvalue of Sx for S = 40 and � = 2.6. The sum
ρ+,0 + ρ−,0 (bottom) corresponds to a state operator with support
around the classical ground state with positive mx magnetization.

the semiclassical potential. As mentioned at the beginning
of Sec. V, this tunneling dynamics is not captured by the
Holstein-Primakoff approximation of Sec. III, and the present
section is devoted to numerically analyzing the tunneling
on the basis of the original Lindblad equation (8), which in
turn will provide insights into the time scales after which the
bosonization results of Sec. III are bound to fail.

Our choice of initial state is a simplified version of that
considered in Eqs. (52)–(54) of Sec. III F. Rather than consid-
ering the rotated ground state of HS , we set

ρ(0) = |ψ〉〈ψ| (64)

with

|ψ〉 = Ry(θ )|S, S〉, (65)

where |S, S〉 is the Sz eigenstate satisfying

Sz|S, S〉 = S|S, S〉. (66)

The initial spin orientation is therefore in the m(0) =
(cos θ, 0, sin θ ) direction. Choosing θ = θ0 as in Eq. (10) will
align m(0) with the ground state magnetization (9), which
amounts to localizing the initial state in the corresponding
minimum of the semiclassical potential. In the following we
study the dynamics and the pertinent timescales for three
exemplary cases, corresponding to the symmetric phase, the
weakly symmetry-broken phase, and the strongly symmetry-
broken phase.

Figure 5 (top) shows the dynamics for a parameter value
� = 0.5 in the symmetric phase and for an initial state (64)–
(66) rotated out of the z direction by θ = π/5. The time
dependence of the components of 〈S〉 = Tr(ρS) shows evo-
lution on two distinct timescales, namely a slow relaxation
to the corresponding equilibrium values, superimposed by
fast oscillatory behavior. The initial misalignment between
m0 and the equilibrium magnetization m = (0, 0, 1) results in
oscillations with a frequency close to ωb ≈ 0.7, decaying at a
rate set by Re(λ−,0) ≈ −0.042.

FIG. 5. Exact numeric results for the dynamics of 〈S〉, obtained
by solving the original Lindblad equation (8) with S = 60. The
choices of initial states are described in the text. Top: Parameter
values γ = 0.05 and T = 4, with � = 0.5 in the symmetric phase.
Center: As in the top panel, but for � = 1.4, which is slightly inside
the symmetry-broken phase. Bottom: For parameter values γ = 0.64
and T = 5, with � = 3.2, a point deep inside the symmetry-broken
phase. The dashed and solid lines correspond to different choices of
initial state, as explained in the text.

Dynamics in the symmetry-broken phase is shown in Fig. 5
(center), for which we chose � = 1.4 and an initial spin
orientation rotated by an angle θ − θ0 = π/20 away from the
positive mx semiclassical ground state magnetization. Qual-
itatively 〈Sy〉 and 〈Sz〉 behave similar to the top panel of
Fig. 5, with the difference that 〈Sx〉 approaches its equilib-
rium value 0 on a much longer timescale. The reason for
this slow decay is that tunneling between the two classical
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ground states is required for the system to equilibrate, and the
timescale associated with this tunneling is set by the inverse
gap of the Lindbladian spectrum, 1/ Re(λ−,0) ≈ 33. For the
parameter values used in here, the Hamiltonian energy gap

E between the ground state and the first excited state of HS

is several orders of magnitude smaller than the Lindbladian
gap Re(λ−,0). This implies that tunneling due to the unitary
dynamics generated by HS occurs on a significantly longer
timescale than what is observed here and that the decay of
〈Sx〉 is therefore dominated by the dissipative part D (6) in the
Lindbladian.

Dynamics further inside the symmetry-broken phase at
� = 3.2 is shown in Fig. 5 (bottom). The solid lines corre-
spond to data for an initial spin orientation aligned with m; the
dashed lines are for an initial deviation from m by an angle
θ − θ0 = π/10. As expected, the former case leads to less
pronounced oscillations than the latter. In both cases, all three
spin components appear to approach constant values which
are independent of the specific initial state. This is an illus-
tration of the local thermalization process occurring around
one of the symmetry-broken semiclassical ground states, and
this local thermalization is well described by the results of
Secs. III D and III E. While the Sy and Sz components have
indeed reached their equilibrium values, the Sx component is
still undergoing a very slow exponential decay to zero, which
is only apparent over long time scales. Note the nonlinear
scale on the horizontal axis. The inset on the bottom plot in
Fig. 5 shows 〈Sx〉 over a shorter time interval. The change in
slope seen at around t ≈ 50 indicates the crossover from fast
local thermalization to the slow approach to the true thermal
stationary state, a process that cannot be captured by the
bosonization methods of Sec. III.

VI. CONCLUSIONS

On the methodological side, the main result of the
present paper is an approximate analytical method, based
on bosonization and vectorization techniques. The method
is presented for the case of a Markovian dissipative Lipkin-
Meshkov-Glick model but is more generally applicable to
Lindbladians of large-S spin models. This method approxi-
mately maps the spin Lindblad master equation (4)–(8) onto
a bosonic Lindblad master equation defined by (8) with (13),
(19), and (20). This equation, which is quadratic in the bosonic
operators, can then be tackled either by exact or by approxi-
mate asymptotic methods. An exact solution of the quadratic
Lindbladian is reported in Sec. III G for arbitrary dissipation
strength γ by employing the method of third quantization. A
simpler, more manageable closed-form solution obtained by
perturbation theory in the weak-dissipation limit is reported
in Sec. III D.

The simplicity of these results relies on the approxima-
tion made when truncating the Taylor series expansion of
the bosonization (Holstein-Primakoff) mapping (12) at lead-
ing order in 1/S. The validity and accuracy of the method
therefore depends firstly on the spin quantum number S be-
ing large, but also, more subtly, on the range of validity of
the Taylor expansion, which is crucially affected by whether
or not the underlying semiclassical potential of the system
Hamiltonian HS is well approximated by a parabola. In a

dynamical context, it furthermore becomes relevant whether
the system’s initial state lies within the range of validity of
the quadratic approximation and whether the state evolves
within that range at later times. While this is in general a
difficult question to answer, the numerical results of Sec. V
provide at least guidelines for assessing that region of va-
lidity. Compared to other large-S analytic techniques for the
dissipative LMG model, like those put forward in Ref. [25],
the methods developed in the present paper have the desir-
able feature of including leading-order finite-size corrections.
This not only leads to more accurate results for large, finite
systems as they are potentially relevant for experimental real-
izations of the LMG model, but also circumvents some of the
pathologies of the strict infinite-S system that were discussed
in Ref. [26].

Beyond method development, our work provides insights
into the physics of thermalization in open quantum systems.
A quantum system coupled to a bath of temperature T is in
general not guaranteed to evolve towards a Gibbs canonical
equilibrium state [37,38]. When deriving a Markovian master
equation describing such a system, in many cases a secular
approximation is performed, which has the merit of guarantee-
ing complete positivity of the quantum dynamical semigroup
but also essentially enforces a Gibbs canonical equilibrium
state as the stationary state of the master equation. To retain
the possibility of more diverse equilibrium properties, we
investigated the master equation specified in Eqs. (2)–(8) that
has been derived without a secular approximation, but on
which complete positivity has been enforced by an alternative
method (see Appendices A and B of Ref. [25] for details). The
study of the equilibrium state and the equilibration dynam-
ics of that master equation is therefore a nontrivial problem
that may contribute to the understanding of equilibration in
open quantum systems. By applying the bosonization and
vectorization techniques developed in Sec. III, we found that
the equilibrium state (48) of the dissipative LMG model has
the functional form of a Gibbs thermal state proportional to
exp(−HS/Tss ) but with a stationary temperature Tss (49) that
in general differs from the “imposed” bath temperature T .
When studying the dynamical approach of the equilibrium
state we observed that the time-evolved density operator ρ(t )
(55)–(56c) equilibrates by passing through a continuum of
thermal states on which damped oscillations are superim-
posed. This is reminiscent of quasiadiabatic evolution but
differs from conventional adiabatic dynamics in that the time
evolution is not driven by a slowly varying parameter.

Extensions of the present work should aim to address the
restrictive nature of the initial Holstein-Primakoff mapping
from the spin to bosonic degrees of freedom. The essentially
local nature of this approximation rules out any description
of the tunneling effects which are integral to the equilibration
process in the symmetry broken phase. It would be interesting
to seek generalizations of this mapping, possibly involving
more than one species of boson, which could capture the
nonlocal dynamics resulting from the double-well shape of
the classical potential energy. If such a mapping resulted in
a quadratic bosonized Lindblad equation then the methods
presented here, and that of the third quantization approach
[32], would provide a versatile toolkit for further analysis.
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APPENDIX: su(1, 1) TRANSFORMATIONS

Some of the calculations in the Holstein-Primakoff
bosonized version of the dissipative LMG model are most
conveniently performed by exploiting the two-mode repre-
sentation of an underlying su(1, 1) algebraic structure. The
details of these calculations are reported in the following
appendices.

1. Diagonalization

Here we outline the construction of the similarity transfor-
mation T used in Sec. III D to bring the projected perturbative
term

L′

 = mz/2 − (B2

+ + B2
−) 1

2 [b†
1b1 + b†

2b2 + 1]

+ B2
+b†

1b†
2 + B2

−b1b2 (A1)

into a diagonal form. Note that L′

 can be expressed as

L′

 = mz/2 − (B2

+ + B2
−)K0 + B2

+K+ + B2
−K−, (A2)

where

K0 = 1
2 [b†

1b1 + b†
2b2 + 1], (A3a)

K− = b1b2, (A3b)

K+ = b†
1b†

2. (A3c)

These operators obey the su(1, 1) commutation relations

[K0, K±] = ±K±, [K−, K+] = 2K0. (A4)

We construct the desired transformation T in two steps. First
we apply the similarity transformation

T1 = e− ln(B−/B+ )K0 , (A5)

which leaves K0 unchanged but rescales K± as

T −1
1 K±T1 =

(
B−
B+

)±1

K±. (A6)

This, and subsequent, identities can be verified using Baker-
Campbell-Hausdorff-type formulas, or more easily by using
the 2 × 2 representation of su(1, 1) in terms of Pauli matrices
as K± = ∓σ± and K0 = 1

2σz. This check is sufficient, since
identities which rely only on the algebraic properties of these
operators can be verified using any faithful representation.
Applying T1 to L′


 gives the Hermitian pairing problem

T −1
1 L′


T1 = mz/2 − (B2
+ + B2

−)K0 + B+B−(K+ + K−).
(A7)

This operator can be diagonalized by the unitary transforma-
tion

T2 = exp(iψK2), (A8)

where K2 = −i(K+ − K−)/2 and

tanh ψ = 2B+B−
B2+ + B2−

. (A9)

This leads to the final form

T −1
2 T −1

1 L′

T1T2 = −mz

2
(b†

1b1 + b†
2b2), (A10)

where (29) was used. Finally, we combine the two transfor-
mations into T = T1T2.

2. Factorization

Here we summarize the steps which produce the simplified
form of the vectorized stationary state T |0, 0〉 = T1T2|0, 0〉
given in Eq. (47). The transformation (A8) can be factorized
as [39]

T2 = etanh(ψ/2)K+eln[sech2(ψ/2)]K0 e− tanh(ψ/2)K−, (A11)

where

tanh

(
ψ

2

)
= B+

B−
, sech2

(
ψ

2

)
= 1 − B2

+
B2−

. (A12)

Since K−|0, 0〉 = 0 and K0|0, 0〉 = 1
2 |0, 0〉, we read off that

|ρ0,0〉 = T1T2|0, 0〉 ∝ T1e(B+/B− )K+|0, 0〉. (A13)

Using (A6) leads to the final form

|ρ0,0〉 ∝ e(B+/B− )2K+|0, 0〉. (A14)

3. Evolving the state operator

In this section we report the calculation of the time-evolved
density operator given by Eqs. (55)–(56c). The pure initial
state is characterized by the vector |ψ〉 in Eq. (53), which,
upon application of the HP mapping (12) to lowest order in
1/S and the Bogoliubov transformation in (21), can be written
as

|ψ〉 = eθ
√

S/2(a†−a)|0〉b = eθ ′(b†−b)|0〉b (A15)

with |0〉b the b-boson vacuum and θ ′ = θ
√

S/2 exp(−φb/2).
Upon vectorizing ρ(0) we obtain

|ρ(0)〉 = eθ ′(b†
1−b2+b†

2−b1 )|0, 0〉b. (A16)

To evolve |ρ(0)〉 in time we apply the operator exp(tL
) =
exp(tL0) exp(tγL′


) with L0 and L′

 given in Eqs. (41) and

(42). We do so in three steps. First we apply exp(tγL′

) and

use the fact that

etγL′

 (b†

i − b j )e
−tγL′


 = e−mzγ t/2(b†
i − b j ), (A17)

where (i, j) is (1,2) or (2,1). This produces

etγL′

 |ρ(0)〉 = eθ ′′(b†

1−b2+b†
2−b1 )etγL′


 |0, 0〉b, (A18)

where θ ′′ = θ ′ exp(−mzγ t/2). Next we simplify
exp(tγL′


)|0, 0〉b by using the factorization

etγL′

 = eγ mzt/2eA+K+e2 ln(A0 )K0 eA−K− (A19)

with

A+ = B+
(

B2
− + mz

emzγ t − 1

)−1
, (A20)

A0 = e−mzγ t/2(1 − A+), (A21)
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where Eq. (29) has been used. This allows us to write

etγL′

 |0, 0〉b = (1 − A+)eA+K+|0, 0〉b, (A22)

which is then inserted into (A18). What remains is to apply
exp(tL0) to the expression in (A18). Since L0 contains only
b-boson number operators, this is straightforward. The final

expression for |ρ(t )〉 = exp(tL
)|ρ(0)〉 is

|ρ(t )〉 = (1 − A+) exp{θ ′′[e−iωbt (b†
1 − b2) − H.c.]}

× exp (A+K+)|0, 0〉b. (A23)

Following the same steps as in Sec. III E to return from the
vectorized form to the operator description yields ρ(t ) as
given in Eq. (55).
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