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Dynamic structure factor of Heisenberg bilayer dimer phases in the presence
of quenched disorder and frustration
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We investigate the influence of quenched disorder on the dynamic structure factor of Heisenberg bilayers on
the square, triangular, and kagome lattice in the quantum paramagnetic phase. Perturbative continuous unitary
transformations and white graphs are employed to calculate the one-triplon contribution up to high orders in
perturbation about the dimer limit for bimodal and continuous disorder. For the square lattice we find that the
lifetime of the gap mode is increased by stronger quantum correlations, while stronger disorder effects are
observed for the triangular lattice due to geometric frustration. For intradimer disorder, in-band energy gaps
are observed for both lattices which can be understood in terms of a level repulsion on dimers with low and
high intradimer exchange that are close in energy at the momentum where the in-band gap opens. For the
highly frustrated kagome lattice disorder even decreases the gap energy. In addition, the localization length
of the low-energy flat band is increased up to order 7 in perturbation theory. The interplay of quenched disorder,
geometric frustration, and strong correlations leads therefore to rich structures in the dynamical structure factor
of two-dimensional quantum magnets.
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I. INTRODUCTION

Disorder is an inevitable ingredient of any condensed mat-
ter, but most of the times perfect translational symmetry is
still a very good approximation. However, there are situations
where this approximation breaks down, and effects of dis-
order play a dominant role so that the physical behavior of
clean systems can be fundamentally altered. Effects can range
from the famous disorder-driven metal-insulator transition of
excitations in electronic systems [1] to the appearance of new
phases of matter, like cluster spin glasses [2] or random singlet
phases [3] in strongly correlated systems. Furthermore, if the
Harris criterion ν d > 2 [4] with spatial dimension d and ν the
correlation length exponent is violated, the critical properties
of physical systems can be governed by the behavior in rare
regions of the system [5].

The effect of quenched disorder on low-lying excitations is
of particular interest. On the one hand, experimentally, these
can be probed by various measurement techniques, such as,
for example, inelastic neutron scattering [6–8]. On the other
hand, theoretically, to predict the effect of disorder on the
shape of eigenfunctions is challenging. In this respect the in-
terplay of strong correlations and disorder as well as the effect
on quasiparticles is of particular interest. Clearly, to gain such
an understanding is crucial for interpreting experiments in
disordered quantum materials with strong correlations.

Quantum magnetism is a great playground to examine
strongly correlated quantum matter. For quantum magnets
with quenched disorder, ground-state properties were exam-
ined by various methods [9–12], whereas the investigation of
the low-lying excitations and their eigenstates is still in its
infancy. For coupled-dimer magnets like the square lattice

Heisenberg bilayer, the well-known bond-operator method
has been generalized to describe the dynamic structure factor
(DSF) of both singlet and magnetically ordered phases on the
mean-field level [13]. For the antiferromagnetic Heisenberg
spin-1/2 ladder, a quasi-one-dimensional building block of
a Heisenberg bilayer, high-order series expansions using the
method of perturbative continuous unitary transformations
(pCUTs) and white graphs allow us to evaluate the DSF be-
yond the mean-field level in a wide window of coupling ratios
[14]. In particular, the effect of quenched disorder on elemen-
tary triplon excitations [15] but also two-triplon continua and
bound states has been determined.

Here, we advance from these calculations for the quasi-
one-dimensional Heisenberg ladder [14] and calculate the
one-triplon properties of the DSF for two-dimensional
Heisenberg bilayers within the gapped quantum paramagnetic
dimer phase. A primary focus is laid on the interplay of
quenched disorder and geometric frustration, which we study
by comparing the unfrustrated square lattice Heisenberg bi-
layer with the frustrated cases on the triangular and kagome
lattice. Furthermore, the kagome bilayer has a more complex
triplon band structure originating from the three-dimer unit
cell, and we investigate the influence of quenched disorder on
such triplon bands.

The article is organized as follows. In Sec. II we introduce
the model and the observables we focus on. In Sec. III we
explain the methods that we use to do the calculations. Fi-
nally, in Sec. IV the results for the one-triplon contribution
to the disorder-averaged DSF are given and we conclude in
Sec. V. In Appendix A the densities of states for the sorts
of disorder considered in the main body of the paper are
given. In Appendix B results for the inverse participation ratio
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(IPR) and the finite-size scaling of the DSF are discussed.
Additional figures for the symmetric and antisymmetric DSF
not contained in the main text are depicted in Appendix C.

II. MODEL AND OBSERVABLES

The Hamiltonian of the disordered Heisenberg bilayer for
a fixed-disorder configuration {J} is given by

H({J}) =
∑

ν

J⊥
ν Sν,1 · Sν,2 +

∑

〈ν,ν ′〉

2∑

n=1

J‖
ν,n Sν,n · Sν ′,n , (1)

where Sν,n with n ∈ {1, 2} represents spin-1/2 operators on
the upper (n = 1) and lower (n = 2) site of dimer ν. The first
sum therefore runs over all intradimer couplings J⊥

ν while the
second term includes all interdimer interactions J‖

ν,n. The dis-
order configuration {J} is given by the set of antiferromagnetic
couplings J⊥

ν and J‖
ν,n and depends on the type of quenched

disorder. Here our main focus is on bimodal disorder, i.e., the
intra- and interdimer exchanges can take either the value Jκ

1
with probability p or Jκ

2 with probability 1 − p for κ ∈ {⊥, ‖}.
However, our technical treatment is more general and al-
lows us to consider any stationary quenched dimer disorder
distribution. Specifically, we will compare bimodal disorder
with Gaussian, box, and bimodal Gaussian disorder. Gaussian
disorder is given by a Gaussian distribution with mean μ

given as the mean value of intra- and interdimer couplings
and standard deviation σ given by the standard deviation of
the intra- and interdimer couplings. For box disorder the cou-
plings are drawn uniformly from a box with lower intradimer
(interdimer) bound J⊥

1 (J‖
1 ) and upper intradimer (interdimer)

bound J⊥
2 (J‖

2 ). The bimodal Gaussian distribution is made up
of two Gaussian distributions. With a probability p the inter-
or intradimer coupling is either chosen of one or the other of
these two distributions.

Clean Heisenberg bilayers with J⊥
ν ≡ J⊥ and J‖

ν,n ≡ J‖
have a quantum paramagnetic singlet ground state and gapped
triplon excitations for values of J‖/J⊥ small enough. This
disordered phase is adiabatically connected to the isolated
dimer limit J‖ = 0. In this limit the ground state is a product
state of singlets |s〉 = (|↑ ↓〉 − |↓ ↑〉)/

√
2, and excitations are

local triplets |t+1〉 = |↑ ↑〉, |t+0〉 = (|↑ ↓〉 + |↓ ↑〉)/
√

2, and
|t−1〉 = |↓ ↓〉.

We then can reformulate the disordered Heisenberg bilayer
(1) exactly in terms of triplet creation and annihilation opera-
tors t (†)

ν,α with t†
ν,α|s〉 ≡ |tα〉 and α ∈ {±1, 0} on rung ν. Setting

the average rung exchange J̄⊥ ≡ (J⊥
1 + J⊥

2 )/2 ≡ 1 and intro-
ducing the deviations �J̄⊥

± from it allows one to express (1)
as

H({J}) = E0 + Q +
2∑

n=−2

T̂n({J}), (2)

where E0 = −3/4 (Nd + ∑
ν �J⊥

ν /J̄⊥), with Nd

the number of dimers, the counting operator Q = ∑
ν,α n̂ν,α

with n̂ν,α = t†
ν,αtν,α , and the T̂n with [T̂n,Q] = nT̂n changing

the triplet number by n. The T̂n values depend explicitly on
�J̄⊥

± as well as J‖
1,2 and therefore on the disorder configuration

{J}. Here T̂±2 correspond to pair creation and annihilation
processes, T̂0 contains triplet hopping as well as quartic
triplet-triplet interactions, and T̂±1 represents decay processes
of one triplet into two or vice versa. Note that T̂±1 = 0 holds
for the clean case where the Heisenberg bilayers possess an
exact reflection symmetry about the centerline, giving rise to
a conserved parity quantum number ±1.

The central quantity for inelastic neutron scattering on
disordered Heisenberg bilayers is the disorder-averaged DSF,

S±(k, ω) ≡ lim
Ndc→∞

1

Ndc
S±(k, ω, {J}), (3)

with momentum k, frequency ω, number of disorder configu-
rations Ndc, and

S±(k, ω, {J}) ≡ − 1

π
Im〈0|O†

±
1

ω − H + i0+O±|0〉, (4)

where O± (k) ≡ ∑
ν eikνO±(ν)/

√
Nd with

O±(ν) ≡ (Sz
ν,1 ± Sz

ν,2)/2. The index ± reduces to the
parity quantum number for the clean Heisenberg bilayers.

Although all Heisenberg bilayers realize a singlet dimer
phase for sufficiently small J‖/J⊥ and amount of disorder,
the physical properties of Heisenberg bilayers depend strongly
on the specific lattice under consideration. This concerns
the ground-state properties but also the properties of excited
states. Here we investigate the disordered Heisenberg bilayer
(1) on the square, triangular, and kagome lattice as illustrated
in Fig. 1.

A. Ground-state properties

In the absence of disorder, the Heisenberg bilayer on the
unfrustrated hypercubic lattice including the square lattice
displays for d > 1 a second-order phase transition between
the gapped dimer singlet phase for J‖/J⊥ small enough and
a gapless Néel phase [16,17] if the two hypercubic lattices
are coupled sufficiently weak. The gapless modes are Gold-
stone bosons originating from the spontaneous breaking of
the SU(2) symmetry. For the square lattice Heisenberg bilayer
the quantum critical point is located at J‖/J⊥ ≈ 0.3969 [18].
In the presence of dimer dilution, several quantum Monte
Carlo simulations come to the conclusion that this model
gains new critical exponents which fulfill the Harris criterion
[19–21]. Only recently it was found that for a model with
a quantum phase transition between similar phases as those
of the square lattice Heisenberg bilayer the gapless Gold-
stone modes remain delocalized in the presence of disorder
[22]. This raises the question of how the gap mode in the
disordered square lattice Heisenberg bilayer behaves when
approaching the quantum critical point from the disordered
phase.

In contrast to the square lattice Heisenberg bilayer, the
triangular and kagome Heisenberg bilayers are geometrically
frustrated. In the case of the clean triangular Heisenberg
bilayer, high-order series expansions indicate that the univer-
sality class of the phase transition at J‖/J⊥ ≈ 1.2 changes
from O(3) Heisenberg for the unfrustrated square lattice bi-
layer to the chiral universality class [23] known from quantum
Monte Carlo simulations of Heisenberg antiferromagnets on
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FIG. 1. Illustration of the Heisenberg bilayer on the (a) square,
(b) triangular, and (c) kagome lattice. Blue-shaded boxes illustrate
the unit cell in each case.

stacked triangular lattices [24]. In contrast, for the kagome
Heisenberg bilayer, the situation is unclear already in the
clean case. Even in the limit of vanishing interdimer coupling
J⊥ = 0 and although there is consensus concerning the ab-
sence of magnetic long-range order, the ground state is either
believed to be a gapped topologically ordered or a gapless al-
gebraic quantum spin liquid [25–27]. The fate of this quantum
spin liquid for finite J⊥ and the quantum phase transition to
the dimer singlet phase for large J⊥ is not yet understood to
the best of our knowledge.

B. Triplon excitations of the dimer singlet phase

The elementary excitations of dimer singlet phases are
triplon excitations [15], i.e., dressed triplet excitations with
total spin 1 and finite energy gap � which reduce to local
triplets centered on dimers ν for vanishing interdimer interac-
tions J‖

ν,n = 0. In the absence of disorder one has

� = min
k̃,a

[ωa(k̃)], (5)

where ωa(k̃) denotes the one-triplon band a as a function
of wave vector k̃. Note that for the kagome lattice k̃ differs
from the momentum k used in the DSF due to the three-dimer

unit cell. The Heisenberg bilayer on the square and triangular
lattice has a single-dimer unit cell and therefore only a single
band with a = 1. In contrast, the unit cell for the kagome
Heisenberg bilayer contains three dimers, resulting in three
one-triplon bands ωa(k̃) with a ∈ {1, 2, 3}. For second-order
phase transitions between dimer singlet phases and magneti-
cally ordered phases, like for the clean Heisenberg bilayer on
the square and triangular lattice, the one-triplon gap � van-
ishes with critical exponent zν of the underlying universality
class and at a wave vector k̃ associated with the magnet-
ically ordered state, i.e., k̃ = (π, π ) [k̃ = (±2π/,∓2π/3)]
for the square (triangular) Heisenberg bilayer. In contrast, the
one-triplon gap � is not expected to close for the highly
frustrated Heisenberg bilayer on the kagome lattice due to
the absence of magnetic order. In fact, this model hosts an
almost flat lowest energy one-triplon band, which is a con-
sequence of the frustration. In general and already for the
triangular Heisenberg bilayer, geometric frustration results in
negative interferences and a reduced kinetic energy of triplon
excitations.

It is another aim of this work to examine the interplay
between geometric frustration and quenched disorder on the
physical properties of these triplon excitations. For the latter
a special focus is laid on the effect of disorder on the (almost)
flat one-triplon band of the kagome Heisenberg bilayer. To
study all these questions, we calculate the one-triplon con-
tribution to the disorder-averaged DSF with the method of
pCUTs [28,29] employing white graphs [14,30].

III. METHODS

Technically, we apply the method of pCUTs with the help
of white graphs along the same lines as done for the disor-
dered quasi one-dimensional Heisenberg ladder in Ref. [14].
In order to be self-contained we nevertheless summarize the
most important steps in the following.

A. pCUT

Here we perform pCUTs to obtain effective one-triplon
Hamiltonians and the associated one-triplon contribution to
the DSF for the Heisenberg bilayer in the dimer singlet phase
and in the presence of quenched disorder.

The major target of a pCUT is to unitarily transform (2),
order by order in J‖

ν,n and �J̄⊥
± , to an effective Hamilto-

nian Heff , which conserves the number of triplons so that
[Heff ,Q] = 0 holds. As a consequence, the complicated quan-
tum many-body system is mapped to an effective few-body
problem which is easier to solve. A pCUT application has
a model-independent step which expresses Heff in a sum of
operator product sequences of the T̂n operators with exactly
known rational coefficients. The most efficient way of per-
forming the second model-dependent step, which amounts
to a normal ordering of Heff , is a full-graph decomposition
using the linked-cluster theorem (see also next section). To
model the disorder, every bond has an individual perturbation
parameter assigned to it. This idea is essential, since the pCUT
calculation is only done once and then can be used for any
realization of disorder {J} [14,30].
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The effective one-triplon Hamiltonian H1qp
eff and the one-

triplon contribution to the effective observable O1qp
±,eff can be

written as

H1qp
eff =

∑

μ,δ

∑

κ,κ ′

∑

α

aκ,κ ′
μ,δ

(t†
μ+δ,κ ′,αtμ,κ,α + H.c.), (6)

O1qp
±,eff (μ, κ ) =

∑

δ

∑

κ ′

∑

α

wκ,κ ′
μ,δ

(t†
μ+δ,κ ′,α + H.c.), (7)

where ν = (μ, κ ) so that μ denotes the unit cell and κ the
supersite (dimer) within μ. Further, aκ,κ ′

μ,δ
and wκ,κ ′

μ,δ
represent

the one-triplon hopping amplitudes and the amplitudes for the
transformed observable in the one-triplon basis, respectively.
Using the pCUT method, we calculated these coefficients up
to order 8 in perturbation for the square and kagome lattice,
while we reached order 7 for the triangular lattice.

The effective one-triplon problem is then diagonalized
for finite Heisenberg bilayers with Nd ≈ 10 000 dimers, and
the DSF for a fixed-disorder configuration is obtained using
bins of width 2J̄⊥/1000. Averaging over Ndc = 100 disorder
configurations results in the averaged DSF (3). From an exper-
imental viewpoint, all relevant aspects of the DSF discussed
below are converged because a finite broadening decreases
the finite-size effects. A more detailed analysis of finite-size
effects are given in Appendix B.

B. Graph decomposition

One important advantage of a pCUT is that it obeys the
linked-cluster theorem [29]. Hence it is sufficient to do the
pCUT calculations on finite graphs and embed the graph
contributions afterwards on the lattice. We calculated all em-
beddings of all relevant graphs of a given order on the lattice
with the boost graph library [31]. Then, knowing the disorder
of one realization on the lattice, we determined the one-triplon
effective Hamiltonian using these embeddings.

Since a single triplon is centered on a dimer, it is natural to
consider a dimer as the elementary building block which we
call a supersite. The Heisenberg bilayer is then reduced to a
single layer of supersites, and we perform the graph expansion
in terms of these supersites.

It is instructive to illustrate the procedure with the most
simple graphs, which are the point graph containing only
one supersite (dimer) and the graph with two supersites
and one edge. For the first graph there is only one embed-
ding per supersite, and hence for the whole lattice there are
Nd embeddings. The point graph only contributes for in-
tradimer disorder and only in first-order perturbation theory.
Depending on the specific disorder configuration {J}, the local
contribution of this graph to the one-triplon hopping ampli-
tude aκ,κ

μ,δ=0 at supersite (μ, κ ) is either J⊥
1 − J̄⊥ or J⊥

2 − J̄⊥
for bimodal disorder. For the next larger graph with two su-
persites and one edge there are two embeddings per supersite
and hence there are 2Nd (3Nd) embeddings for the square
and kagome (triangular) lattice. Locally, the contribution of
that graph depends on the interdimer exchanges between two
neighboring supersites ν and ν′ and on the intradimer disorder
at these supersites. This graph represents therefore the (lead-
ing) first-order contribution for interdimer disorder, which is
given by J‖

1 /2, (J‖
1 + J‖

2 )/4, and J‖
2 /2 for bimodal disorder.

In general, for a given order k in perturbation theory, graphs
with at most k edges can contribute due to the linked-cluster
theorem. The number of these graphs in a given order de-
pends on the lattice under consideration. The number of local
embeddings depends exponentially on the number of edges
of the graphs and hence scales exponentially with the order
k of the perturbation theory. This makes the computational
cost strongly dependent on the lattice geometry and on the
order k of the perturbative expansion. On the one hand, for
the triangular lattice almost all graphs with eight edges match
on the lattice, while on the other hand the number of those
graphs on the kagome lattice is significantly smaller. Also, the
high coordination number of the triangular lattice leads to a
much larger number of embeddings compared to the square or
kagome lattice. Because of that, calculations on the triangular
lattice were performed only up to order 7, and on the other
two lattices they were done up to order 8.

IV. DYNAMIC STRUCTURE FACTOR

For the standard Anderson model all states are localized,
and only in three dimensions can a localization-delocalization
transition occur [32]. These models can be mapped to our
model in first-order perturbation theory. A crucial difference
beyond first order is therefore that in the Heisenberg bilayers
the disorder acts at the distance of the correlation length
approximately given by the perturbative order. Furthermore,
the disorder in the different matrix elements is correlated and
this correlation depends on the geometry and the quantum
fluctuations. Intradimer disorder in first order resembles the
Anderson model, while interdimer disorder in first order leads
to random nearest-neighbor one-triplon hopping amplitudes.
Such models are also sometimes referred to as Anderson mod-
els but show larger localization lengths for similar disorder
strengths than the usual Anderson models with on-site dis-
order [32], although almost all eigenstates are still localized
for such models, except the ones in the band center [32,33].
Differences between intra- and interdimer disorder in one
dimension were already discussed in detail for antiferromag-
netic Heisenberg spin ladders in Ref. [14].

Another characteristic of the disorder is the probability dis-
tribution of the exchange couplings. Most of the times we will
investigate bimodal disorder, since it is relevant for the mod-
eling of various disordered quantum materials synthesized by
intentional doping. However, to find out how sensitive the
DSF is to the moments of the probability distribution we
will also compare with continuous distributions that either
agree up to the first two or four moments with the bimodal
distribution.

To really compare experimental results with the theoretical
calculations of the DSF on Heisenberg bilayers, it is essen-
tial to incorporate higher-order perturbative effects as we do
here. It is thus another aim of the calculations to show that
it is possible to give quantitative calculations for the DSF of
disordered quantum magnets.

A. Intradimer disorder

For intradimer disorder the reflection symmetry at the cen-
terline of the dimers is not broken and hence the observable

094427-4



DYNAMIC STRUCTURE FACTOR OF HEISENBERG … PHYSICAL REVIEW B 102, 094427 (2020)

S+(k, ω) is zero. In all Heisenberg bilayers the first-order
effect of intradimer disorder is a random on-site hopping
term aκ,κ

μ,δ=0, i.e., a disordered chemical potential, in a nearest-
neighbor one-triplon hopping Hamiltonian. For intradimer
disorder in one dimension we found very characteristic struc-
tures in the DSF that had their origin in the fragmentation of
the ladder into finite ladder segments [14]. This fragmentation
could be understood by the fact that there is no percolation in
one dimension. For the two-dimensional Heisenberg bilayers
with intradimer disorder this is different. On all of the three
lattices we study in this work there is a threshold pc for site
percolation. To understand the connection between percola-
tion and intradimer disorder better it is instructive to go to
the limit of bimodal intradimer disorder with an extremely
small nearest-neighbor one-triplon hopping amplitude, i.e.,
sufficiently small J‖

ν,n. In this limit the eigenstates are solely
with all their weight on dimers with intradimer exchange
either J⊥

1 or J⊥
2 . Hence, if p is the probability for the value

J⊥
1 and p < pc, the eigenstates cannot be extended since there

is no percolating cluster. Furthermore, there is no smooth
density of states (DOS) in these energy regions since the prob-
ability for a finite contributing cluster decays exponentially
with size (see Appendix A for the definition of the DOS). If
one increases the one-triplon hopping amplitudes, this picture
is obviously not correct anymore. However, it still serves as
a good approximation if the hopping is small compared to
J⊥

1 − J⊥
2 . Because percolation properties are dependent on the

specific lattice, it will be interesting to see if we can explain
differences in the DSF on the different lattices within the just
described limit.

1. Square lattice

The disorder setup considered for the square lattice is
an interdimer coupling of J‖ = 0.2 and two different in-
tradimer exchanges J⊥

1 = 0.8 and J⊥
2 = 1.2 and Nd = 10 000

and Ndc = 100. The value J⊥
1 was chosen with probabili-

ties p = 0.1, 0.3, 0.5, 0.7, 0.9. In Fig. 2 the DSF is shown
for p = 0.1, 0.5, 0.9. For p = 0.3, 0.7 the plots are given in
Appendix C in Fig. 18.

The highest intensities are found at the gap momentum
k = (π, π ) for p = 0.9. This has two reasons. First, the
effective ratio between interdimer and intradimer couplings
J‖/[p J⊥

1 + (1 − p) J⊥
2 ] is close to 0.2/0.8 = 1/4 and highest

in comparison to p = 0.1, 0.5. Since the static structure factor
at k = (π, π ) increases upon approaching the critical point,
larger coupling ratios lead to larger intensities. The other
reason is that the effect of disorder depends on the ratio of the
standard deviation of the intradimer disorder and the effective
coupling ratio. Consequently, also the effect of disorder is
weakest for p = 0.9, leading to longer lifetimes that result in
higher intensities.

The description in terms of bands with a finite life-
time breaks down at certain momenta that depend on p.
At these momenta we see the remarkable presence of small
in-band energy gaps. We see these in-band gaps close to
the momenta k = (0, π ) for p = 0.5, while for p = 0.3
the momentum is closer to k = (π, π ) and for p = 0.7
it is further away. For p = 0.9 it is hard to observe be-
cause of the small disorder, and for p = 0.1 it opens in

FIG. 2. The DSF S−(k, ω) is shown for bimodal intradimer dis-
order for the square lattice with J‖ = 0.2 and �J⊥ = ±0.2 for
p = 0.1 in (a), p = 0.5 in (b), and p = 0.9 in (c). The maximum
intensity of 80 in (a), 35 in (b), and 250 in (c) was truncated at 45 in
(a), at 20 in (b), and at 100 in (c) to make more details visible in the
plots.

the surrounding of k = (π, π ). The mechanism responsible
for this effect shall be described briefly in the following
discussion.

On the one hand, for zero intradimer disorder the eigen-
states are momentum states. Inducing a small disorder leads to
a finite lifetime of the momentum states, but a description in
terms of them is still possible. On the other hand, for infinite
intradimer disorder corresponding to hopping amplitudes of
zero the eigenstates are purely local and the system has a
density of p with the first intradimer exchange J⊥

1 as eigen-
value and 1 − p with the second intradimer exchange J⊥

2 as
eigenvalue. Increasing the coupling ratio in that situation leads
in first order to a hopping between the blocks of dimer states
with J⊥

1 or J⊥
2 . When one increases the hopping further, a

small density of J⊥
1 states mixes into the J⊥

2 eigenstates and
vice versa. The disorder we are dealing with here is in between
those two limiting regimes. Analyzing the eigenstates |m〉
shows that below the in-band gap the density n(ω) of J⊥

1 sites
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FIG. 3. For the bimodal intradimer disorder in the square lattice
and for the probabilities p = 0.3, 0.5, 0.7 the overlap n of the eigen-
functions with dimer states of value J⊥

1 = 0.8 is shown as a function
of ω. Up to the transition energy region the overlap is larger than
0.8 for p = 0.3, 0.5, 0.7. In contrast, for larger ω the overlap with
J⊥

1 = 0.8 dimer states is smaller than 0.2.

in the eigenstates

n(ω)·DOS(ω) =
∑

m

δ(ωm − ω) 〈m| P(J⊥
1 ) |m〉 , (8)

where P(J⊥
1 ) projects on dimer states with intradimer cou-

pling J⊥
1 , is almost 80% and that of J⊥

1 sites 20%, and vice
versa above the in-band gap, as can be seen in Fig. 3. Though
apparent when looking at the DSF, using momentum with a
finite broadening as descriptor seems not too bad in regions
not close to the in-band gaps. The regions with the lower
intradimer exchange predominantly occupy the momenta with
lowest energy, and vice versa for the regions with the larger
intradimer exchange. The in-band gap results from a repulsion
of states on dimers with low and high intradimer exchanges
that are close in energy at the momentum where the in-band
gap opens.

Next we address the issue of percolation. For zero inter-
dimer coupling one has a DOS p with energy 0.8 and a DOS
1 − p with energy 1.2. If the interdimer coupling is small
compared to J⊥

2 − J⊥
1 , the states remain separated in regions

of the lattice with J⊥
ν = J⊥

1 or J⊥
ν = J⊥

2 , respectively. For such
a situation the DOS in the regions with p < ppc ≈ 0.59 [34],
where ppc is the bond percolation threshold of the lattice,
consisting of states that can only interact with a finite part
of the lattice, and hence the DOS for p < ppc should not
show smooth behavior. As one increases the interdimer cou-
pling the probability for hopping processes over more sites
increases and one expects a possible percolation of the states
for p < ppc. For the behavior of the DOS (see Fig. 11 in
Appendix C) and also of the DSF in the momentum region
around the momentum k = (π, π ) in the p = 0.1 case and for
the momentum region around k = (0, 0) in the p = 0.9 case
(hardly visible) one finds roughly a peaked shape. This is in
accordance with the percolation picture.

2. Triangular lattice

In the triangular lattice the disorder setup is an inter-
dimer coupling of J‖ = 0.15 and two different intradimer
exchanges J⊥

1 = 0.85 and J⊥
2 = 1.15 and Nd = 9801 and

FIG. 4. The DSF S−(k, ω) is shown for bimodal intradimer dis-
order in the triangular lattice with J‖ = 0.15 and �J⊥ = ±0.15 for
p = 0.1 in (a), p = 0.5 in (b), and p = 0.9 in (c). The maximum
intensity of 90 in (a) and 200 in (c) was truncated at 70 in (a) and at
150 in (c) to make more details visible in the plots.

Ndc = 100. The probabilities chosen for J⊥
1 = 0.85 are again

p = 0.1, 0.3, 0.5, 0.7, 0.9. In Fig. 4 the DSF is displayed for
p = 0.1, 0.5, 0.9, while the cases p = 0.3, 0.7 are shown in
Appendix C in Fig. 18. The calculations were only done up to
order 7 because of the high coordination number of the trian-
gular lattice and the resulting large number of embeddings.

Similar to the square lattice, we see that a small in-band
gap opens and the energy of this in-band gap as well as the
dominant momenta depends on the probability p. The mecha-
nism responsible for that is the same as in the square lattice.

On the one hand, the site percolation threshold for the tri-
angular lattice of ppc = 0.5 is smaller compared to the square
and kagome lattice. On the other hand, frustration leads to
a suppression of kinetic terms. Furthermore, the interdimer
coupling used for the triangular lattice is slightly smaller than
the one used for the square lattice due to convergence issues of
the perturbative expansion. Comparing the DSF for p = 0.5 in
the square and triangular lattice, we find stronger localization
effects in the triangular lattice and claim that these are mainly

094427-6



DYNAMIC STRUCTURE FACTOR OF HEISENBERG … PHYSICAL REVIEW B 102, 094427 (2020)

FIG. 5. The DSF S−(k, ω) is shown for bimodal intradimer dis-
order in the kagome lattice with J‖ = 0.2 and �J⊥ = ±0.2 for
p = 0.1 in (a), p = 0.5 in (b), and p = 0.9 in (c). The maximum
intensity of 250 in (a) and 250 in (c) was truncated at 90 in (a) and at
70 in (c) to make more details visible in the plots.

due to the suppression of kinetic terms by frustration. Also, for
p = 0.1 the states below the gap are flatter and hence more
localized than in the square lattice. Hence even though the
states in these regions have more neighbors than in the square
lattice, the effect of suppression of kinetic terms is stronger
and the states are more localized.

For the DOS (see Fig. 11 in Appendix C) one finds sim-
ilar effects as in the square lattice in the non-percolating
regions. However, it is not possible to relate these effects in
a quantitative way to the percolation threshold of the lattice,
since the percolation picture is only valid exactly in the limit
J‖/J⊥ → 0.

3. Kagome lattice

We chose an interdimer coupling of J‖ = 0.2 and
two intradimer exchanges J⊥

1 = 0.8 and J⊥
2 = 1.2 and

Nd = 9747 and Ndc = 100. In Fig. 5 the DSF is shown for

p = 0.1, 0.5, 0.9, while the cases p = 0.3, 0.7 are given in
Ap‘pendix C in Fig. 19.

Without disorder the lowest band of the kagome lattice is
completely flat up to order 7 in perturbation theory, similar
to the one-particle spin-flip excitation in the transverse-field
Ising model [35]. The states of that band can be chosen as
completely localized states on the hexagons of the kagome
lattice. In the cases p = 0.1, 0.9 there remains a strong in-
tensity in the flat band coming from hexagons with solely
J⊥ = J⊥

2,1 couplings. This is not surprising, since 0.96 ≈ 0.5,
and hence there are still approximately 0.5Nd/3 states with
the energy of the flat band of the pure cases. For p = 0.1
below and for p = 0.9 above this band one sees further con-
tributions of other very localized states. These are linked to
other intradimer coupling configurations on a hexagon or are
very localized states evolving out of the dispersive bands. For
the kagome lattice, the site percolation threshold is ppc ≈ 0.65
[36]. Even without disorder the DOS of the flat band shows
just one peak up to order 7 in perturbation theory because
the band is completely flat. With disorder the DOS in the
flat-band region is not smooth and shows peaks belonging
to the hexagon states of different disorder configurations (see
Fig. 11 in Appendix C). For p = 0.1 we see a more peaked
structure for energies smaller than 1, while for p = 0.9 we
see it for energies larger than 1. These energies come from
the dispersive bands and hence show a similar behavior in the
context of percolation, as seen for the other two lattices.

The effects of disorder on the dispersive bands are similar
to those on the other lattices for p = 0.1, 0.9 and lead to a
small broadening, and the lower energetic dispersive band
splits depending on the momentum. However, for p = 0.5
things change drastically and the DSF shows a wild appear-
ance. One cannot distinguish clearly anymore between the
three bands, since parts evolving out of the three bands of
the clean cases contribute to the DSF at the same momenta
and energies. This is reflected in the small value of the inverse
participation ratio (IPR) in Fig. 13 in Appendix C. We claim
that stronger interactions between the flat and dispersive bands
for p = 0.5 are responsible for this behavior.

The overall gap gets decreased compared to the pure cases
p = 0 and p = 1. The reason for that is the larger localization
length of the flat-band states in the presence of disorder up
to order 7 in perturbation. This is different in higher orders
where the local hexagon modes are not eigenstates anymore.

This will be different in higher orders where the local
hexagon modes are not eigenstates anymore, as it is well
known for the order thirteen series expansion of the corre-
sponding excitation within the polarized phase in the clean
transverse-field Ising model on the kagome lattice [35].

4. Continuous disorder

Continuous distributions without bimodal character cannot
reproduce the DSF we find for bimodal intradimer disorder.
This is not surprising, since the bimodal intradimer disorder
has a huge effect on the local energy distribution. For bet-
ter comparisons a bimodal Gaussian distribution was chosen.
This distribution was obtained by choosing with probability
p = 0.5 a value of a Gaussian distribution with mean J⊥

1
and width �, and with probability 1 − p = 0.5 a value of
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(a)

(b)

(c)

FIG. 6. The DSF S−(k, ω) is shown for bimodal intradimer
disorder in the square lattice with J‖ = 0.2 and �J⊥ = ±0.2 for
p = 0.5 in blue and in red for a bimodal Gaussian distribution with
agreement in the first four moments with the bimodal distribution. In
(a) k = (0, 0), in (b) k = (0, π ), and in (c) k = (π, π ).

a Gaussian distribution with mean J⊥
2 and width �. This

width was chosen such that the second and fourth moment
of this distribution and the bimodal distribution coincide.
For the continuous disorder we again took Nd = 10 000 and
Ndc = 100, but the observable was only calculated up to order
7.

In Fig. 6 the DSF of the intradimer disorder on the square
lattice for p = 0.5 is compared with this bimodal Gaussian
distribution. One sees that the agreement is decent. If one
chooses just a distribution that agrees with the bimodal one up
to the first two moments, such an agreement generally cannot
be obtained. It is quite interesting to note that the continuous
distribution only agrees up to the first four moments with the
bimodal distribution. The question arises of how important
moments higher than four are for the DSF in the case of
intradimer disorder. At least for the bimodal Gaussian distri-

bution deviations were not that big, although moments higher
than four deviate from the bimodal intradimer disorder that
we compared with.

B. Interdimer disorder

A limiting case of interdimer disorder is that J‖
1 − J‖

2 is
small compared to the average one-triplon hopping amplitude
J̄‖. Then one can treat J‖

ν − J̄‖ as a perturbation that will
give rise to a finite lifetime of momentum states. Obviously,
the quantum correlations of the Heisenberg bilayer on the
corresponding lattice influence this perturbation. Thus, the
lifetime and the shape of the DSF in momentum space is not
only dependent on the strength or the form of the disorder but
also on the strong correlations on the lattice. These effects can
enhance the effect of disorder and decrease the lifetime of the
momentum modes or can stabilize these modes by increasing
the lifetime.

The symmetric DSF S+(k, ω) has finite weight for inter-
dimer disorder. However, in contrast to S−(k, ω) this weight
is very small for two reasons. First, the weight is only non-
vanishing for different interdimer couplings J‖ on the upper
and lower part of the bilayer. The probability for that to
occur is 2p(1 − p). Second, even for the parts of the lattice
ν where the former holds the weight of O+(ν) is very small,
because it is zero up to the first order of perturbation the-
ory. That the probability for O+(ν) to have a contribution is
2p(1 − p) � 1/2 and to have a contribution with construc-
tive phase is p(1 − p) � 1/4 implies that O+(k) does not,
up to order 3 in perturbation theory, create a momentum
eigenstate |k〉 carrying a finite spectral weight of the observ-
able. This originates from the absence of infinite connected
phase-matching clusters induced by the observable, because
no bond percolation can occur on any of the three lattices for
ppc < 1/4.

This is the reason why S+(k, ω) can be seen as a lo-
cal measurement and why its form is similar to the DOS.
Nevertheless, especially for high coupling ratios, an inelastic
neutron-scattering measurement of S+(k, ω) might be possi-
ble for energies in the one-triplon regime.

1. Square lattice

The interdimer disorder we looked at for the square lat-
tice is bimodal, with two different interdimer exchanges of
J‖

1 = 0.3 and J‖
2 = 0.1 and Nd = 10 000 and Ndc =

100. S−(k, ω) was calculated for the probabilities p =
0.1, 0.3, 0.5, 0.7, 0.9, and it is shown in Fig. 7. In Appendix C
the symmetric structure factor S+(k, ω) is depicted in Figs. 20
and 21. We stress that the intensities in S+(k, ω) are always
very small compared to S−(k, ω).

Interestingly, the lifetimes are highest at the gap
momentum k = (π, π ). In first-order perturbation theory
k = (π, π ) can be mapped to k = (0, 0) and vice versa.
Differences in the lifetime at these two momenta are hence
caused by higher-order perturbations [14]. One can thus say
that the quantum correlations lead to a stabilization of the
lifetime of the mode at k = (π, π ). Interdimer disorder leads
to a momentum-dependent disorder potential in k space [14].
Apart from the details of this scattering, the more states
close in energy can be scattered to, the lower one expects the
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(a)

(b)

(c)

(d)

FIG. 7. The DSF S−(k, ω) is shown for bimodal interdimer dis-
order in the square lattice with J⊥ = 1, J‖

1 = 0.1, and J‖
2 = 0.3

for p = 0.5 in (a) and for p = 0.1, 0.3, 0.5, 0.7, 0.9 and momenta
k = (0, 0) in (b), k = (0, π ) in (c), and k = (π, π ) in (d).

lifetime to be. This is an important reason why one finds the
low lifetimes at k = (0, π ) and higher ones at the band edges.
The high DOS at these energies in Fig. 12 is in accordance
with this reasoning. This also explains why the lifetimes are
much higher at the band edges compared to the results for the
spin ladder in one dimension [14].

(a)

(b)

(c)

(d)

FIG. 8. The DSF S−(k, ω) is shown for bimodal interdimer dis-
order in the triangular lattice with J⊥ = 1, J‖

1 = 1/15, and J‖
2 = 1/5

for p = 0.5 in (a) and for p = 0.1, 0.3, 0.5, 0.7, 0.9 and momentas
k = (0, 0) in (b), k = (2π/3, 2π/3) in (c), and k = (2π/3, 4π/3)
in (d).

2. Triangular lattice

For the triangular lattice we considered bimodal in-
terdimer disorder with J‖

1 = 1/15 and J‖
1 = 1/5 and

Nd = 9801 and Ndc = 100. We calculated the DSF for
p = 0.1, 0.3, 0.5, 0.7, 0.9. It is depicted in Fig. 8. In Ap-
pendix C the symmetric structure factor S+(k, ω) is shown
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FIG. 9. The DSF S−(k, ω) is shown for bimodal interdimer dis-
order in the kagome lattice with J⊥ = 1, J‖

1 = 0.1, and J‖
2 = 0.3 for

p = 0.1 in (a), p = 0.5 in (b), and p = 0.9 in (c).

in Figs. 20 and 21. As in the square lattice the intensities in
S+(k, ω) are very small compared to S−(k, ω).

In contrast to the interdimer disorder results for the square
lattice, here the couplings are chosen further away from
the critical point because of the enhancement of the dis-
ordered phase by frustration and convergence issues of the
perturbative expansion. The lifetime at the gap momentum
k = (4π/3, 2π/3) is lower than in the square lattice. As in
the intradimer disorder, we identify frustration and its effect
on kinetic terms as the main reason for that. Even in first-order
perturbation theory there is no symmetry between the spectral
shape at k = (0, 0) and at the gap momentum, which can be
traced back to the triangular lattice not being bipartite. We
see that the lifetimes at the gap momentum are shorter than
at k = (0, 0) for all p, which is a significant difference to the
situation on the square lattice.

3. Kagome lattice

In the kagome lattice we considered a bimodal interdimer
disorder of J‖

1 = 0.1 and J‖
1 = 0.3 and Nd = 9747 and Ndc =

100. We calculated the DSF for p = 0.1, 0.3, 0.5, 0.7, 0.9,

(a)

(b)

(c)

FIG. 10. The DSF S−(k, ω) is shown for bimodal interdimer
disorder in the square lattice with J⊥ = 1, J‖

1 = 0.1, and J‖
1 = 0.3

for p = 0.5 in blue. In red it is shown for a Gaussian distribution
and in yellow for a box distribution, with agreement in the first
two moments with the bimodal distribution. In (a) k = (0, 0), in
(b) k = (0, π ), and in (c) k = (π, π ).

and it is shown for p = 0.1, 0.5, 0.9 in Fig. 9. In Appendix
C it is also depicted for p = 0.3, 0.7 in Fig. 19. The sym-
metric structure factor S+(k, ω) is depicted in Fig. 20 in
Appendix C. Also, for the kagome lattice the intensities in
S+(k, ω) are very small compared to S−(k, ω).

In contrast to the generic behavior that is also found for
the square and the triangular lattice, in the kagome lattice
the minimum energy in the presence of disorder is lower
than the bounds given by all exchanges equalling J‖

1 = 0.1 or
J‖

1 = 0.3. The crucial difference of the kagome lattice geom-
etry is that its energetically lowest band is almost flat without
disorder. The eigenstates in that flat band are localized on the
hexagons of the kagome lattice up to order 7 in perturbation
theory. This is possible because of destructive interference on
the neighboring links to other hexagons. Interdimer disorder
now breaks this destructive interference, and the eigenstates
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get a larger localization length than in the clean case. These
longer-ranged correlated eigenstates can reach lower energies,
as was already seen for intradimer disorder in the kagome lat-
tice. As a side note, this raises the question of whether disorder
can lead to new critical behavior of otherwise noncritical flat
modes.

The effect of disorder on the two dispersive bands is
weaker than the one on the flat band. This is related to the
fact that without disorder the states in the dispersive bands are
extended two-dimensional momentum states, whereas in the
flat band these are to a good approximation localized states
in position space. Interestingly, already a small amount of
disorder such as p = 0.1, 0.9 has huge effects on the flat band.
This might be of special interest for experiments in which it is
not possible to reach larger p.

The kagome lattice has three bands in the clean case. Dis-
order leads to interactions between the states in these three
bands. The dispersive bands can potentially interact with the
almost flat band at low energies. We see that with disorder one
cannot find a gap anymore between the lowest band and the
one in the middle. This raises the question of how strong the
states originating from the dispersive and the flat band interact
and if the dispersive bands can become flatter or the flat band
more dispersive.

4. Continuous disorder

In Fig. 10 the bimodal interdimer disorder on the square
lattice with p = 0.5 was compared with Gaussian and box
disorder that coincides in the first two moments with the bi-
modal disorder. For the continuous disorder also Nd = 10 000
and Ndc = 100 were considered, but the observable was cal-
culated only up to order 7. One can see that the agreement
is excellent. We conclude that for interdimer disorder on the
square lattice, agreement in the first two moments of the
disorder is almost sufficient for a quantitative agreement. This
is in strong contrast to the situation in one dimension, where
one can see significant differences between different kinds
of interdimer disorder that agree only up to the first two
moments.

V. CONCLUSIONS

The pCUT method together with a white-graph expansion
is an efficient tool to investigate the fate of quasiparticles
under quenched disorder in two dimensions. We showed this
by calculating the one-triplon DSF of disordered Heisenberg
bilayers on the square, triangular, and kagome lattice in the
quantum paramagnetic phase. We found that disorder leads
to a decrease of the minimum energy in the kagome lattice.
Related to that, one finds larger localization lengths in the flat
band as long as local hexagon modes are still exact eigen-
states. Frustration in the triangular lattice had the effect of
stronger localization. In the square lattice stronger quantum
correlations stabilized the mode at k = (π, π ). For interdimer
disorder, agreement up to the second moment of the disorder
distribution is almost sufficient for a quantitative agreement
in the DSF. This is different for intradimer disorder where the
bimodal character of the disorder plays a crucial role.

Quantitative calculations for the DSF in the presence of
disorder are typically hard to obtain. We therefore believe

(a)

(b)

(c)

FIG. 11. The DOS is shown for bimodal intradimer disorder,
p = 0.1, 0.3, 0.5, 0.7, 0.9 and the corresponding disorder configura-
tions of the main body of the paper in (a) for the square, in (b) for the
triangular, and in (c) for the kagome lattice.

that our approach will be of relevance for direct compar-
isons with experiments such as inelastic neutron scattering
on disordered two-dimensional quantum magnets in the
future. Indeed, several experimental compounds, such as,
for example, BaCuSi2O6, exist which are known to real-
ize a square-lattice bilayer Heisenberg model [37–39]. At
the same time, the intentional doping to control disorder
in quantum magnets and the measurement of the dynami-
cal structure factor has been achieved experimentally in the
anisotropic spin-one compound NiCl2−2xBr2x · 4SC(NH2)2

with x = 0.06 [6]. Moreover, our approach can be easily ex-
tended to calculate dynamical correlation functions relevant
for inelastic light spectroscopy like Raman scattering.
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(a)

(b)

(c)

FIG. 12. The DOS is shown for bimodal interdimer disorder,
p = 0.1, 0.3, 0.5, 0.7, 0.9, and the corresponding disorder configu-
rations of the main body of the paper in (a) for the square, in (b) for
the triangular, and in (c) for the kagome lattice.

APPENDIX A: DENSITY OF STATES

The non-normalized density of states is defined as

DOSnn(ω) =
∑

n,r

δ(ω − ωn), (A1)

where n runs over the energies of one sample and r over the
number of samples. With this the density of states (DOS) is
defined as

DOS(ω) = 1∫
dω DOSnn(ω)

DOSnn(ω). (A2)

In Fig. 11 it is shown for the intradimer disorder and in
Fig. 12 for the interdimer disorder of the main body of the
paper. As already mentioned in the main body of the paper,
one can see roughly peaked structures for intradimer disorder
in the energy regions of the intradimer value that is taken
with a small enough probability compared to the percolation
threshold of the lattice. In the kagome lattice one furthermore

(a)

(b)

(c)

FIG. 13. The IPR is shown for bimodal intradimer disorder,
p = 0.1, 0.3, 0.5, 0.7, 0.9, and the corresponding disorder configu-
rations of the main body of the paper in (a) for the square, in (b) for
the triangular, and in (c) for the kagome lattice.

finds peaks in the DOS that belong to the states originating
from the flat band.

One also finds these peaks for interdimer disorder. Apart
from this and in contrast to intradimer disorder, the DOS is
smooth for interdimer disorder.

APPENDIX B: INVERSE PARTICIPATION RATIO AND
FINITE-SIZE SCALING

The inverse participation ratio (IPR)

IPR = 1/
∑

ν

|〈n|ν〉|4, (B1)

with |ν〉 denoting position states, is a simple and intuitive
measure for the localization length of a normalized eigenfunc-
tion |n〉. Suppose |n〉 is a plane-wave eigenstate of a periodic
one-dimensional chain with one atom in the unit cell. Then
the IPR will be Nd . For all other extended states the IPR will
be smaller but always remain ∝Nd . For a perfectly localized
eigenstate with |n〉 = |ν〉 the value of the IPR is 1. An expo-
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(a)

(b)

(c)

FIG. 14. The IPR is shown for bimodal interdimer disorder,
p = 0.1, 0.3, 0.5, 0.7, 0.9, and the corresponding disorder configu-
rations of the main body of the paper in (a) for the square, in (b) for
the triangular, and in (c) for the kagome lattice.

nentially localized state has a finite IPR for sufficiently large
system sizes.

In Fig. 13 the IPR is shown for the intradimer disorder
and in Fig. 14 for the interdimer disorder of the main body
of the paper. To analyze the scaling behavior, two differ-
ent system sizes were compared. In the square lattice these
were Nd = 10 000 and Nd = 2500, in the triangular lat-
tice Nd = 9801 and Nd = 2601, and in the kagome lattice
Nd = 9747 and Nd = 2700.

For intradimer disorder the IPR shows smaller values in the
nonpercolating regions and for p = 0.5 in the region with the
smaller effective ratio between inter- and intradimer coupling.
In the other regions the IPR still shows scaling of extended
stats. The reason for that is that the localization length in these
regions is not yet small enough compared to the system size.
The IPR for the highest and smallest energies always has a
comparatively low value, because the energy eigenstates of
these energies have a lot of weight on either consecutive J⊥

1 or
J⊥

2 dimers. This means for larger and larger systems the IPR
should actually start to rise again for the extremal energies.

(a)

(b)

(c)

FIG. 15. The DSF S−(k, ω) and its finite-size scaling behavior
is shown for bimodal intradimer disorder, p = 0.1, 0.3, 0.5, 0.7, 0.9,
and the corresponding disorder configurations of the main body of
the paper in (a) for the square, in (b) for the triangular lattice, and
in (c) for the kagome lattice. The momentum k is the gap momen-
tum in the corresponding lattices, i.e., k = (π, π ) for the square,
k = (2π/3, 4π/3) for the triangular, and k = (2π/3, 4π/3) for the
kagome lattice.

Because our system size is too small to cover this, we only see
minima of the IPR at these energies yet. In the kagome lattice
it is remarkable how small the IPR is for p = 0.5 compared
with the other values of p. In the energy regions of the flat
band also much smaller values of the IPR are seen compared
to those of the dispersive bands.

For interdimer disorder in the square and triangular lattice
the IPR shows scaling of extended states except for the ex-
tremal energies. The reason for that is again that the system
size is not yet large enough compared to the localization
lengths. In the kagome lattice the situation is similar, except
for the low-energy regions linked to the flat band. Towards this
region we see that the difference in the IPR of the smaller and
larger system gets smaller and smaller.

For the same system sizes as for the IPR, S−(k, ω) was
compared for intradimer disorder in Fig. 15 and for interdimer
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(a)

(b)

(c)

FIG. 16. The DSF S−(k, ω) and its finite-size scaling behavior
is shown for bimodal interdimer disorder, p = 0.1, 0.3, 0.5, 0.7, 0.9,
and the corresponding disorder configurations of the main body of
the paper in (a) for the square, in (b) for the triangular lattice, and
in (c) for the kagome lattice. The momentum k is the gap momen-
tum in the corresponding lattices, i.e., k = (π, π ) for the square,
k = (2π/3, 4π/3) for the triangular, and k = (2π/3, 4π/3) for the
kagome lattice.

disorder in Fig. 16. S+(k, ω) was compared in Fig. 17. One
sees that even though for many energies the IPR indicated
that the localization length is larger than the system size, the
agreement of the DSF is still quite good.

(a)

(b)

(c)

FIG. 17. The DSF S+(k, ω) and its finite-size scaling behavior
is shown for bimodal interdimer disorder, p = 0.1, 0.3, 0.5, 0.7, 0.9,
and the corresponding disorder configurations of the main body of
the paper in (a) for the square, in (b) for the triangular lattice, and
in (c) for the kagome lattice. The momentum k is the gap momen-
tum in the corresponding lattices, i.e., k = (π, π ) for the square,
k = (2π/3, 4π/3) for the triangular, and k = (2π/3, 4π/3) for the
kagome lattice.

APPENDIX C: DSF

This last Appendix contains further results for the sym-
metric and antisymmetric DSF which are not contained in the
main body of the article. See Figs. 18–21.
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FIG. 18. (a), (b) The DSF S−(k, ω) is shown for bimodal in-
tradimer disorder in the square lattice. The disorder is identical to
that in the main body of the paper. In (a) p = 0.3 and in (b) p = 0.7.
(c), (d) The DSF S−(k, ω) is shown for bimodal intradimer disorder
in the triangular lattice. The disorder is identical to that in the main
body of the paper. In (c) p = 0.3 and in (d) p = 0.7.

FIG. 19. (a), (b) The DSF S−(k, ω) is shown for bimodal in-
tradimer disorder in the kagome lattice. The disorder is identical to
that in the main body of the paper. In (a) p = 0.3 and in (b) p = 0.7.
(c), (d) The DSF S−(k, ω) is shown for bimodal interdimer disorder
in the kagome lattice. The disorder is identical to that in the main
body of the paper. In (c) p = 0.3 and in (d) p = 0.7.
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FIG. 20. The DSF S+(k, ω) is shown for bimodal interdimer
disorder, p = 0.5, and the corresponding disorder configurations of
the main body of the paper in (a) for the square, in (b) for the
triangular, and in (c) for the kagome lattice.

(a)

(b)

(c)

FIG. 21. The DSF S+(k, ω) is shown for bimodal interdimer
disorder, p = 0.1, 0.3, 0.5, 0.7, 0.9, and the corresponding disorder
configurations of the main body of the paper in (a) for the square,
in (b) for the triangular lattice, and in (c) for the kagome lattice. The
momentum k is the gap momentum in the corresponding lattices, i.e.,
k = (π, π ) for the square, k = (2π/3, 4π/3) for the triangular, and
k = (2π/3, 4π/3) for the kagome lattice.
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