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Asymmetric melting of a one-third plateau in kagome quantum antiferromagnets
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Asymmetric destruction of the one-third magnetization plateau upon heating is found in the spin- 1
2 kagome

Heisenberg antiferromagnets by using the typical pure quantum state approach. The asymmetry originates from
a density of states of low-lying excited states of Ns spin systems with magnetization (1/3 − 2/Ns ) that is larger
than the density of states of low-lying states with magnetization (1/3 + 2/Ns ). The enhanced specific heat and
entropy that reflect the larger density of states in the lower-field side of the plateau are detectable in candidate
materials of the kagome antiferromagnets. We discuss how the asymmetry originates from the unprecedented
preservation of the ice rule around the plateau.
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I. INTRODUCTION

Interplay between the geometrical frustrations and the
quantum fluctuations often prohibits spontaneous symmetry
breaking and induces quantum spin liquid states in many-
body quantum spins. The spin- 1

2 antiferromagnet on a kagome
lattice is one of the promising candidates of quantum spin
liquids, and intensive theoretical studies have focused on it
[1–11]. Although recent highly accurate simulations show that
the long-range magnetic order is absent in the kagome lattice,
it is still under hot debate what kind of the quantum spin liquid
is realized. (e.g., gapped Z2 spin liquid [1–7] or gapless U (1)
Dirac spin liquid [8–11])

The magnetization process of the kagome Heisenberg
model has attracted much interest because the magnetization
plateaus under magnetic fields show exotic orders [6,12–16].
Recent theoretical calculations have shown that the one-third
magnetization plateau appears in the spin- 1

2 kagome Heisen-
berg model [6,13,16,17]. The detailed exact diagonalization
study, however, claims that the one-third plateau is not a
conventional plateau based on the examination of the critical
exponents of the magnetization process [15,18,19]. It is also
an unresolved issue what kind of magnetic order is realized
in the one-third plateau, because different magnetic orders are
suggested [6,16].

Because the one-third magnetization plateau is characteris-
tic of the candidate materials for the kagome antiferromagnets
[20], it is an important issue to clarify how the finite-
temperature effects stabilize or destabilize the one-third
plateau. Although finite-temperature properties at zero mag-
netic field have been studied by several numerical methods
[21–27], finite-temperature properties under magnetic fields
such as the finite-temperature magnetization are not systemat-
ically examined.

In this paper, we study the thermodynamics of the anti-
ferromagnetic Heisenberg model on a kagome lattice under
magnetic fields by using the thermal pure quantum (TPQ)

state method [28] that enables us to calculate thermody-
namics of the quantum many-body systems, including the
kagome antiferromagnets [26,27], in an unbiased way. We
note that similar methods were proposed in the pioneering
works [29–31]. We focus on the finite-temperature effects
around the one-third magnetization plateau.

As a result, we have found that the peculiar asymmetric
collapse of the one-third plateau occurs at finite temperatures.
This asymmetric collapse can be explained by the large degen-
eracy existing just below the plateau. We will discuss how the
asymmetric degeneracy can be explained by the preservation
of the ice rule. In the one-third plateau, we have shown that the√

3 × √
3 magnetic order is realized in the ground state but

several apparent disordered states compete with the
√

3 × √
3

order, which is consistent with previous studies [16,32,33].
Reflecting the anomalous degeneracies, the entropy remains
large even at the plateau down to the lowest temperatures.
We have also found that the enhancement of the entropy and
the specific heat just below the plateau appears, which can be
detected experimentally.

This paper is organized as follows: In Sec. II, we intro-
duce the antiferromagnetic Heisenberg model on a kagome
lattice and explain the details of the TPQ method. In Sec. III,
we show the results of the finite-temperature effects on the
one-third magnetization plateau. In Sec. IV, we analyze the
low-energy excited states around the one-third magnetization
plateau by using the locally optimal block conjugate gradi-
ent (LOBCG) method. In Sec. V, we show results of the
magnetic-field dependence of the thermodynamic properties
such as the entropy and the specific heat. Section VI is devoted
to the summary and discussions.

II. MODEL AND METHODS

We study the antiferromagnetic Heisenberg model on the
kagome lattice defined as

H = J
∑
〈i, j〉

�Si · �S j − h
∑

i

Sz
i , (1)
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where �Si is a spin operator of the localized spin 1
2 at the ith

site and h denotes the magnetic field. The antiferromagnetic
interactions J > 0 only exist between the nearest-neighbor
sites 〈i, j〉 on the kagome lattice. The magnetization m is
defined as m = 1

SNs

∑
i〈Sz

i 〉, where Ns is the number of the sites

and we take S = 1
2 . In this definition, saturation magnetization

is given by ms = 1. In the present paper, we mainly analyze
27- and 36-site clusters for the kagome lattice with a periodic
boundary condition. For comparison, we perform the calcu-
lations for the triangular lattice (27-site clusters), which also
has the one-third plateau under magnetic fields.

In this paper, we use the TPQ state to analyze the finite-
temperature properties. In the TPQ method, we iteratively
generate the kth TPQ state as

|ψk〉 ≡ (l − Ĥ/Ns)|ψk−1〉
|(l − Ĥ/Ns)|ψk−1〉|

, (2)

where |ψ0〉 is an initial random wave function and l is a
constant that is larger than the maximum eigenvalue of H/Ns

[28]. In this study, we typically take l/J = 3. From the kth
TPQ state, we can calculate thermodynamic properties such as
temperature, internal energy, and the spin correlations [28,34].
To examine properties of the ground state and low-energy
excited states, we also apply the LOBCG method [35].

Here, we mention the limitation of the TPQ method. Al-
though the TPQ method gives the unbiased and essentially
exact results for given finite system sizes, the errors of the
TPQ method, which are defined by the standard deviations of
the statistical distribution of the initial random vectors |ψ0〉,
are bounded by the residual entropy [26,28]. If the residual en-
tropy is large, the errors of the TPQ method become smaller,
i.e., the initial vector dependence of the physical quantities
becomes small. Thus, in the previous works [26,27,36–38],
the TPQ method is used for examining the finite-temperature
properties of the quantum spin liquid where the large remain-
ing entropy is expected. As shown in Appendix A, for small
system size, we confirm that the TPQ method well reproduces
the result obtained by full diagonalization (see Fig. 5). We
note that the average values of the physical quantities become
exact in the limit of a large number of samplings when we
independently evaluate the averages of the distribution func-
tion and the physical quantities, as done in the canonical TPQ
method [26].

In the following calculations, we evaluate the error bars of
the TPQ calculations by choosing several independent initial
vectors. As we show later in the relevant temperature region
(T � 0.05), the errors of the TPQ calculations are small. We
can safely discuss the finite-temperature effects on the 1/3
plateau in the kagome lattice.

III. FINITE-TEMPERATURE EFFECTS ON THE
ONE-THIRD MAGNETIZATION PLATEAU

In Figs. 1(a) and 1(b), we show the finite-temperature
magnetization process of the Heisenberg model on a kagome
lattice and a triangular lattice. To see the finite-temper-
ature effects on the one-third plateaus, we show the width of
the one-third plateaus at zero temperature as arrows for both
lattices.
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FIG. 1. Finite-temperature magnetization process of the spin- 1
2

antiferromagnetic Heisenberg model (a) on the kagome lattice and
(b) the triangular lattice. The magnetization at T = 0 is also shown
by a solid line. In the left insets, the lattice structures for a 36-site
kagome lattice and a 27-site triangular lattice are shown. The one-
third plateau region (m = 1/3 within error bars) at T/J = 0.05 is
shown by the shaded region. The arrow shows the region where the
one-third plateau appears at zero temperature for Ns = 36 (kagome
lattice) and Ns = 27 (triangular lattice). In the right insets, we show
|m − 1/3| around the plateaus for both lattices.

At high temperature (T/J = 0.2), the magnetization
changes smoothly as a function of the magnetic field for both
lattices. By lowering the temperature, a plateau-like structure
appears around h/J = 1.2 in the kagome lattice and h/J =
1.8 in the triangular lattice (see the right insets in Fig. 1).
We, however, find that the width of the plateau in the kagome
lattice is largely different from that of the zero-temperature
limit even at the lowest temperature (T/J = 0.05), while the
width of the plateau in the triangular lattice seems to smoothly
converge to the zero-temperature limit. The asymmetric be-
havior in the kagome lattice indicates that the low-energy
excitations above and below the one-third plateau are differ-
ent, i.e., the density of states for the lower-field side is larger
than the density of states for the higher-field side. We will
confirm that the asymmetric structure exists in the low-energy
excited states. We note that error bars around the 1/3 plateau
in the kagome lattice are large, which may originate from the
peculiar degeneracy in the 1/3 plateau, as we discuss later.

In Fig. 2(a), we show that the temperature dependence of
the magnetization in the kagome lattice for several different
magnetic fields. Dashed vertical lines show the temperatures
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FIG. 2. (a) Temperature dependence of the magnetization in the
kagome lattice (36-site clusters) for several different magnetic fields.
Around h/J = 1.2, magnetization saturates to 1/3. Slightly above
the one-third plateau, we also find the signature of another apparent
plateau around h/J = 1.6. However, we conclude that this plateau
is induced by the finite-size effects, as we discuss in the main text.
(b) Temperature dependence of the magnetization around the 1/3
plateau. For h/J = 1.1, 1.2, and 1.3, the magnetizations converge
to 1/3 at low temperatures. (c) Size dependence of the magnetization
at T/J = 0.05 for different magnetic fields. We take Ns = 24, 27,
30, and 36 clusters. In the insets, the shapes of the used clusters are
shown. The size-dependent error bars around the 1/3 plateau may
originate from the peculiar degeneracy in the 1/3 plateau.

where we plot the magnetization process in Fig. 1(a). When
the temperature is decreased, the magnetization converges to
m = 1/3 around h/J = 1.2, which indicates the formation of

the plateau at the finite temperature. As shown in Fig. 2(b),
we confirm that the magnetization converges to m = 1/3 at
low temperatures around h/J = 1.2.

As mentioned above, around h/J = 0.9, the plateau
appears at zero temperature, while it vanishes at finite tem-
peratures (T/J = 0.05). As shown in Fig. 2(c), because we
find that finite-size effects are small at h/J = 0.9, it is plau-
sible that the fragility of the magnetization plateau at a
low-magnetic-field side is an intrinsic phenomenon.

In addition to the one-third plateau around h/J = 1.2, we
find that an apparent magnetization plateau (m = 14/36) ex-
ists slightly above the one-third plateau, i.e., around h/J =
1.6, as shown in Figs. 2(a) and 2(c). Because the system-size
dependence of the apparent plateau is large, as shown in
Fig. 2(c), the additional plateau seems to be an artifact of
the finite-size effects and may vanish in the thermodynamic
limit. The apparent magnetization originates from the “ramp”
structure observed in zero-temperature calculations, where
the magnetization smoothly converges to the plateau above
the one-third plateau [15]. In finite-size systems, this ramp
structure induces the apparent plateau due to the discreteness
of the magnetization.

IV. LOW-ENERGY EXCITATIONS AROUND THE
ONE-THIRD PLATEAU

Here, we examine the low-energy excitations around the
plateau by using the LOBCG method [35]. In the inset of
Fig. 3(a), we show the lowest 128 eigenvalues for the 27-
site cluster and the lowest 16 eigenenergies for the 36-site
cluster around the plateau. Irrespective of the system sizes,
we find a large density of states exists just below the plateau,
i.e., m = 7/27 (m = 10/36) for the 27-site (36-site) clusters.
We define the density of states as the number of eigenstates
per unit energy J . As we show, we confirm that the slope
of the magnetization curve (susceptibility) is proportional to
the density of states, i.e., ∂m

∂h ∝ (density of states). For the
27-site clusters, all 128 eigenenergies exist within 0.2J of the
ground states. In sharp contrast with this, the density of states
is small just above the plateau [m = 11/27 (27 sites) and
m = 14/36 (36 sites)]. We note that the large density of states
is consistent with the anomalous steep magnetization process
just below the plateau, which is pointed out in the previous
studies [15,18,19]. This can be rephrased as the difference of
the degeneracy inducing the ramp structure in the magnetiza-
tion process [15], i.e., the large degeneracy below the plateau
induces the steep change in the magnetization and the small
degeneracy above the plateau induces the small slope in the
magnetization process.

To see how the asymmetric low-energy excitations af-
fect the finite-temperature magnetization process, we plot
the magnetic-field dependence of the low-energy spectrum
Ẽ (m, h) = E (m) − h(m − 1/3) in Fig. 3(a). Because the de-
generacy between different m sectors, i.e., m = 1/3 and m =
7/27, exists around the lower endpoint of the plateau, h/J ∼
0.8, the different magnetizations can be easily mixed by finite-
temperature effects. We also point out that m = 5/27 can
largely affect the lower bound of the plateau, as shown in
Fig. 3(a). This is the reason why the plateau is destroyed
around h/J � 0.9 even at the lowest temperature T/J = 0.05.
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(b)

(a)

FIG. 3. (a) Low-energy spectrum around the one-third magneti-
zation plateau for the 27-site cluster. We plot Ẽ (m, h) = E (m) − h ×
(m − 1/3) for m = 7/27, 9/27 = 1/3, 11/27. Dotted lines show
the position of the crossing points of the lowest energies. The ar-
row indicates the width of the plateau at zero temperature. In the
inset, we show the lowest 128 eigenenergies for 27-site clusters
(m = 5/27, 7/27, 9/27, 11/27) and the lowest 16 eigenenergies for
36-site clusters (m = 10/36, 12/36, 14/36). The eigenenergies are
measured from the ground-state energy EGS. (b) Spin structure fac-
tors in the extended Brillouin zone for the 36-site cluster at m = 1/3
for the ground state (left panel) and the third excited state (right
panel), where q̃α = qα × 3

π
(α = x, y). In the ground state, there are

sharp peaks at �q = (±4π/3, 0), (±2π/3, ±2π/
√

3), which cor-
respond to the

√
3 × √

3 order. In contrast with that, we find no
significant peaks in the spin structure factor in the third excited state
whose energy difference is given by Ethird − EGS ∼ 0.04J .

In contrast with that, around the higher endpoint of the plateau
(h/J ∼ 1.2), the degeneracy is weak and the magnetization
plateau is robust against finite-temperature effects.

In Fig. 3(b), we show the spin structure factors Sz(�q),
which is defined as

Sz(�q) = 1

Ns

∑
i, j

ei �q(�ri−�r j )
(
Sz

i − 〈
Sz

i

〉)(
Sz

j − 〈
Sz

j

〉)
, (3)

where ri denotes the position of the lattice point in the two
dimensions. We find that spin structure factors have sharp
peaks at �q = (±4π/3, 0), (±2π/3, ±2π/

√
3) in the ground

state. This indicates that the
√

3 × √
3 spin structures are re-

alized in the ground state. We also find that the several excited
states that do not show any signature of magnetically ordered
states compete with the

√
3 × √

3 orders [see right panel in
Fig. 3(b)]. One of the candidates of the apparent disordered
state is the nematic state. Further detailed analysis of the
nature of the disordered state is left for future studies. This
result indicates that degeneracy still exists even in the plateau

(a)

(c)

(b)

FIG. 4. (a) Temperature dependence of the specific heat for sev-
eral different magnetic fields. (b) Magnetic-field dependence of the
entropy S for several different temperatures. The region where the
one-third plateau appears at T/J = 0.05 is represented by the shaded
region. In the inset, we show the probability of the ice rule Pice for
128 eigenstates in 27-site clusters. Pice is defined in Appendix B.
(c) Magnetic-field dependence of the specific heat C/T for several
different temperatures. At T/t = 0.05, we find that C/T has peaks
at both the sides of the one-third plateau. We note that the finite-size
effects are small around the one-third plateau for both S and C/T .
Solid curves are guides for the eyes.

region [16,33]. As we show later, this degeneracy induces the
large remaining entropy at low temperature.

V. MAGNETIC-FIELD DEPENDENCE OF ENTROPY AND
SPECIFIC HEAT

In Fig. 4(a), we show the temperature dependence of the
specific heat C, which is defined as

C = 〈H2〉 − 〈H〉2

NsT 2
. (4)
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FIG. 5. Temperature dependence of the energy obtained by the
TPQ method (blue circles) and the full diagonalization (red curve).
For the TPQ calculations, we perform five independent runs and
regard its standard deviation as error bars. In the inset, we show the
geometry used in the calculation.

At h = 0, we obtain the same temperature dependence of
the specific heat as in the previous studies [26,27]. We find
that the shoulder structure at h/J = 0 below T/J ≈ 0.2,
which roughly corresponds to the singlet-triplet excitation gap
[9,39], immediately vanishes upon applying the magnetic field
(h/J = 0.2). Thus, as shown in Fig. 4(b), the entropy at finite
temperatures (T/J � 0.1), which is defined as

S(T ) = 1 − 1

ln 2

∫ ∞

T

C

T
dT , (5)

increases when the magnetic fields are applied. In the plateau
region, the entropy is relatively low but the entropy is not fully
released down to the lowest temperature T/J = 0.05. This
result is consistent with the fact that the degeneracy still exists
in the plateau.

We show the magnetic-field dependence of the specific-
heat coefficient C/T in Fig. 4(c). Just below the one-third
plateau, we find the enhancement of C/T , which is consistent
with the degeneracy existing in the low-energy excited state.
This large enhancement of C/T is the characteristic feature of
the plateau in the kagome lattice and is expected to be detected
in experiments. We note that the behavior of the specific heat
around the saturation field (peaks and dip around h/J = 3)
is consistent with that of the hard hexagon model [14], which
well describes the low-energy degrees of freedom of the quan-
tum kagome Heisenberg model around the saturation field.

Here, we clarify the origin of the asymmetric plateau melt-
ing and the difference in the density of states for m = 1/3 −
2/Ns and m = 1/3 + 2/Ns in the kagome-lattice Heisenberg
model. The asymmetry originates from the ice-rule configu-
ration of spins around the one-third plateau. As shown in the
inset of Fig. 4(b), the ground-state and low-lying excited-state
wave functions show a large probability of adhering to the ice

rule at m = 1/3 for the kagome lattice while the probability
is relatively low for the triangular lattice. Therefore, we can
assume that the spin configurations for m ≈ 1/3 are gener-
ated by keeping the ice-rule constraint as much as possible.
Under the constraint, there are Ns/3 (2Ns/3) flippable spins to
increment (decrement) the total Sz from the one-third plateau
by 1. This asymmetry is the origin of the asymmetric plateau
melting. The degeneracy lifting by the kinetic energy of a
defect (flipped spin) in the ice manifold for m = 1/3 + 2/Ns

may explain the smaller entropy for m > 1/3 than that for the
m = 1/3 state. We note that the preservation of the ice-rule
is consistent with the fact that the one-third plateau at the
Heisenberg point has a large overlap with its Ising limit [33].

VI. SUMMARY AND DISCUSSIONS

In summary, we analyze the thermodynamic properties
of the spin- 1

2 antiferromagnetic Heisenberg model on the
kagome lattice by using the TPQ method. We show that the
one-third magnetization plateau in the kagome lattice is asym-
metrically destroyed at finite temperatures.

By using the LOBCG method, we show that a large degen-
eracy exists just below the plateau. The degeneracy induces
the asymmetric behavior and the enhancement of both the
entropy and the specific heat. We also identify that the origin
of the degeneracy is the unexpected robustness of the ice-
rule configurations at the plateau. Our detailed and unbiased
analyses on the thermodynamics of the ideal quantum kagome
antiferromagnets under magnetic fields offer a firm basis for
characterizing the experimental candidates of the kagome an-
tiferromagnets [20,40–44].

Recently, it was shown that we can treat up to 50-site
systems by reducing the Hilbert dimensions by using the
symmetries inherent in systems [45]. By taking such a large
system size, we can obtain a more definitive conclusion on
the anomalous thermodynamic properties on the 1/3 plateau.
We note that it is also a challenging problem to study the
temperature dependence of the static and dynamical spin-
correlation function based on the TPQ method [46]. Further
investigations along this direction are intriguing but are left
for future studies.

Note added. Recently, we became aware of independent
numerical work [47] that treats the finite-temperature proper-
ties of the kagome-lattice Heisenberg model but focuses on a
different aspect. We also became aware that similar asymmet-
ric melting was independently reported in Ref. [48].
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APPENDIX A: COMPARISON WITH FULL
DIAGONALIZATION

Here, we examine the accuracy of the TPQ method by
comparing with the result obtained by the full diagonalization.
In Fig. 5, for an 18-site kagome lattice with total Sz = 0
(dimension of the Hilbert space is 48 620), we show the tem-
perature dependence of the energy obtain by the TPQ method
and the full diagonalization. From this result, we confirm that
the TPQ method well reproduces exact results.

APPENDIX B: DEFINITIONS OF ICE RULE

In this Appendix, we show the definitions of the ice rule.
We defined the local measure of the ice rule on one upper
triangular defined as

n� = 1
3

{(
Sz

�(1) − 1
2

)(
Sz

�(2) − 1
2

)(
Sz

�(3) + 1
2

)
(B1)

+ (
Sz

�(1) − 1
2

)(
Sz

�(2) + 1
2

)(
Sz

�(3) − 1
2

)
(B2)

+ (
Sz

�(1) + 1
2

)(
Sz

�(2) − 1
2

)(
Sz

�(3) − 1
2

)}
(B3)

= Sz
�(1)S

z
�(2)S

z
�(3)

− 1
6

(
Sz

�(1)S
z
�(2) + Sz

�(2)S
z
�(3) + Sz

�(3)S
z
�(1)

)
− 1

12

(
Sz

�(1) + Sz
�(2) + Sz

�(3)

)
+ 1

8 , (B4)

where Sz
�(i) is the z component of the spin operator Sz at the

ith site of the upper triangle. We note how to index the three
sites on the triangular does not affect because these sites are
equivalent.

By using this n�, we calculate Pice as follows:

� =
∑
�

n�, (B5)

Pice = 1

Nnorm

∑
i

|ai|2〈i|�|i〉, (B6)

where ai is a coefficient of the ith real-space configuration
|i〉, � is number of upward triangles that satisfy the ice rule,
and Nnorm is defined for Pice becomes one when the ice rule
is completely satisfied. We note that Pice ∼ 0.4707 (Ns = 27)
for a random configuration of spins irrespective of the lattice
geometry.
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