
PHYSICAL REVIEW B 102, 094417 (2020)

Optomagnonic Barnett effect

Kouki Nakata 1 and Shintaro Takayoshi2,3

1Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
2Max Planck Institute for the Physics of Complex Systems, Dresden 01187, Germany

3Department of Physics, Konan University, Kobe 658-8501, Japan

(Received 22 February 2020; revised 8 June 2020; accepted 31 August 2020; published 14 September 2020)

Combining the technologies of quantum optics and magnonics, we find that the circularly polarized laser
can dynamically realize the quasiequilibrium magnon Bose-Einstein condensates (BEC). The Zeeman coupling
between the laser and spins generates the optical Barnett field, and its direction is controllable by switching the
laser chirality. We show that the optical Barnett field develops the total magnetization in insulating ferrimagnets
with reversing the local magnetization, which leads to the quasiequilibrium magnon BEC. This laser-induced
magnon BEC transition through optical Barnett effect, dubbed the optomagnonic Barnett effect, provides
an access to coherent magnons in the high-frequency regime of the order of terahertz. We also propose a
realistic experimental setup to observe the optomagnonic Barnett effect using current device and measurement
technologies as well as the laser chirping. The optomagnonic Barnett effect is a key ingredient for the application
to ultrafast spin transport.
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I. INTRODUCTION

For a fast and flexible manipulation of magnetic systems,
inventing methods to handle magnetism is a central task in
the field of spintronics. Since the seminal works in 1915 by
Barnett, Einstein, and de Haas [1–3], the transfer of angular
momentum from mechanical rotations to spin angular mo-
mentum and its reciprocal phenomenon, dubbed the Barnett
effect and the Einstein–de Haas effect, respectively, have been
intensively investigated. Recent progresses are the observa-
tions of the Barnett effect in paramagnets [4] and in nuclear
spin systems [5,6]. Another important advance in the manipu-
lation of magnetism is the utilization of laser-matter coupling
[7–10], and the reversal of magnetization is achieved experi-
mentally by means of the optical method [11–15]. Thus, the
interdisciplinary field between optics and spintronics [16–20]
attracts a broad interest of both experimentalists and theorists.

The well-known phenomenon for the laser-induced magne-
tization is the inverse Faraday effect [14,15,21]. The applied
laser introduces the coupling to the optical polarization and
induces an emergent effective magnetic field. The magnitude
of the effective field is proportional to a square of the laser
field. Another approach to develop the uniform magnetization
is to use the Zeeman coupling between the circularly polar-
ized laser and spin systems [12,13,22,23]. The spin-photon
coupling induces an effective magnetic field in the direction
perpendicular to the laser polarization plane, which gives rise
to the magnetization. Since it is analogous to the generation of
magnetization by mechanical rotations through spin-rotation
coupling, i.e., the Barnett effect [1,2,24–31], the emergence of
magnetization through the spin-photon coupling is dubbed as
the optical Barnett effect [12,13]. The effective magnetic field
induced by laser, an analog of the conventional Barnett field,

is called the optical Barnett field [12,13]. In contrast to the
inverse Faraday effect, the optical Barnett field is independent
of the laser field strength, while it is proportional to the laser
frequency [12,13,22,23].

In this paper, we investigate an application of circularly po-
larized laser to insulating ferrimagnets, following the scheme
to introduce a uniform magnetization by laser in quantum spin
systems [22,23]. We find that the induced optical Barnett field
reverses the local magnetization and develops the uniform
magnetization, which leads to the formation of the quasiequi-
librium magnon Bose-Einstein condensates (BEC). We give
a microscopic description of this magnon BEC transition in
insulating ferrimagnets. We numerically show that the mag-
netization makes a precession with the frequency same as the
laser. Hence, the optical Barnett effect provides an access to
coherent magnons in the high-frequency regime of the order
of terahertz. Since this result arises from the combination
of quantum optics and magnon spintronics (i.e., magnonics),
we refer to this optical Barnett effect especially as the op-
tomagnonic Barnett effect. Thus, the optomagnonic Barnett
effect enables us to control magnons coherently in much faster
timescale than the conventional microwave pumping. We also
propose a realistic experimental setup using ferrimagnetic
insulators and the chirping technique of circularly polarized
laser. Our findings play a role of building blocks for the
application to ultrafast spin transport.

This paper is organized as follows. In Sec. II we quickly
review the mechanism of the optical Barnett effect, and find
the optomagnonic Barnett effect in Sec. III. In Sec. IV, we
discuss the experimental feasibility. Finally, we remark on
several issues in Sec. V and summarize in Sec. VI. Technical
details are described in the Appendices.

2469-9950/2020/102(9)/094417(11) 094417-1 ©2020 American Physical Society

https://orcid.org/0000-0001-9183-1106
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.102.094417&domain=pdf&date_stamp=2020-09-14
https://doi.org/10.1103/PhysRevB.102.094417


KOUKI NAKATA AND SHINTARO TAKAYOSHI PHYSICAL REVIEW B 102, 094417 (2020)

TABLE I. Comparison between the mechanical and optical Bar-
nett effects.

Mechanical Barnett Optical Barnett

Induced by Mechanical rotation Circularly polarized laser
Coupling Spin-rotation Spin-photon
Barnett field ∝Angular velocity ∝Laser frequency

II. OPTICAL BARNETT EFFECT

In this section, we quickly review the mechanism that the
Zeeman coupling between circularly polarized laser and spins
induce an effective magnetic field perpendicular to the laser
polarization plane, which develops the uniform magnetization
[22,23]. We explain the analogy between this phenomenon,
the optical Barnett effect, and the Barnett effect caused
by mechanical rotations. Hereafter, we use the terminology
mechanical Barnett effect (field) to mean the conventional
Barnett effect (field) by the mechanical rotation in order to
distinguish it from the optical one. The comparison between
the optical and mechanical Barnett effects is summarized in
Table I.

Let us consider quantum spin systems described by the
Hamiltonian H0. We take the polarization plane as the xy
plane and the z axis as the direction perpendicular to it. We
assume that H0 has the U(1) symmetry about the z axis for
simplicity. Here we focus on the magnetic insulator with a
large electronic gap, and only consider the Zeeman coupling
between the spins and magnetic component of laser. The time-
periodic Hamiltonian is written as [22,23]

H(t ) = H0 − B0[Sx
tot cos(�t ) + ηSy

tot sin(�t )], (1)

where B0 > 0 and � > 0 are, respectively, the magnetic
field amplitude and the frequency, i.e., photon energy, of
the laser. The sign η = + (−) represents the left (right)
circular polarization, and Sx(y,z)

tot := ∑
j Sx(y,z)

j is the sum-
mation over spin operators on all the spin sites. Through
the Floquet theory or the unitary transformation H(t ) →
eiη�tSz

tot [H(t ) − ih̄∂t ]e−iη�tSz
tot , we derive an effective static

Hamiltonian [22,23] (Appendix A)

Heff = H0 − ηh̄�Sz
tot + O(B0). (2)

Here we consider the case of weak laser field B0 � h̄�,
and the B0Sx

tot term is negligibly small. From Eq. (2), we
see that the circularly polarized laser introduces the effective
coupling −ηh̄�Sz

tot, which plays the same role as the me-
chanical Barnett field [24–31] obtained from the spin-rotation
coupling (Table I). This effective coupling is recast into
the Zeeman-type interaction −ηh̄�Sz

tot = −ηh̄γBSz
tot with the

gyromagnetic ratio γ and we refer to

B := �/γ (3)

as the optical Barnett field [12,13]. This optical Barnett field
develops the total magnetization and plays an essential role in
the optical Barnett effect. The direction of the optical Barnett
field is controllable through the change of the laser chirality,
i.e., circular polarization, η = ± [22,23].

FIG. 1. Schematic picture of the optomagnonic Barnett effect in
the insulating ferrimagnet.

We remark that Eq. (2) holds for a general U(1) symmetric
spin Hamiltonian H0, which indicates that essentially any
kind of magnets, e.g., electron and nuclear spin systems, even
paramagnets, can exhibit the optical Barnett effect. Moreover,
the induced term ηh̄�Sz

tot is independent of material parame-
ters such as g factor, and only depends on the laser parameters.
In that sense, we can say that the optical Barnett effect is
a universal phenomenon. Note that the circular polarization
is the key ingredient of the optical Barnett effect. Since the
linearly polarized laser does not develop magnetization [22],
it neither produces the optical Barnett field.

While we treat the laser as a classical electromagnetic
field in the above, we can explain the same phenomenon
through the spin-photon coupling. Since the photon has
spin ±1 depending on the circular polarization of laser η =
±, the Hamiltonian is given as H = H0 − gs-ph

∑
j (a jS

η
j +

a†
j S

−η
j ) + h̄�

∑
j a†

j a j , where S± := Sx ± iSy, a† and a are
the bosonic creation and annihilation operators of photons,
and gs-ph is the spin-photon coupling constant, which is
proportional to B0. Noting that the total spin angular momen-
tum η

∑
j a†

j a j + Sz
tot is conserved, we substitute

∑
j a†

j a j =
const. − ηSz

tot into the Hamiltonian and obtain H = H0 −
ηh̄�Sz

tot − gs-ph
∑

j (a jS
η
j + a†

j S
−η
j ). In the case of B0 � h̄�,

this Hamiltonian coincides with Eq. (2). Thus, the spin angu-
lar momentum of photon is transferred to the magnet in the
optical Barnett effect, and we can understand it analogously
with the mechanical Barnett effect (Table I).

III. OPTOMAGNONIC BARNETT EFFECT

In this paper we discuss the formation of the quasiequi-
librium magnon BEC provoked by the optical Barnett effect,
which we call the optomagnonic Barnett effect. As a platform,
we consider the laser application to insulating ferrimagnets
(Fig. 1),

H0 = J
∑

〈i∈A, j∈B〉
SA,i · SB, j

− DA

∑
i∈A

(
Sz

A,i

)2 − DB

∑
j∈B

(
Sz

B, j

)2
, (4)

where SA(B),i( j) = (Sx
A(B),i( j), Sy

A(B),i( j), Sz
A(B),i( j) ) represents

the spin at the ith [( j)th] site on the sublattice A (B) having
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the spin quantum number SA(B), J > 0 is the exchange inter-
action between the nearest-neighbor spins 〈i ∈ A, j ∈ B〉, and
DA(B) > 0 is the easy-axis single-ion anisotropy for the sub-
lattice A (B) that ensures a magnetic order in the z direction.
In the systems with anisotropy, we can realize the dynami-
cal magnetization curve by modulating the laser frequency
� slowly enough [23], which is the experimental technique
called chirping [35,36].

We remark that in antiferromagnets (SA = SB) with easy-
axis anisotropy, the spin-flop transition happens in the
low-field regime associated with the Néel magnetic order
when the static external field is increased [37]. The spin-flop
transition is of the first order and the change of the state is
drastic. In the case of laser application, the dynamical state
cannot follow this sudden change, and the optical Barnett ef-
fect does not take place. In ferrimagnets (SA �= SB), however,
the spin-flop transition is absent [38], and that is why we
consider ferrimagnets in this paper.

A. Classical theory

First, we analyze the optical Barnett effect in the classical
case. Since the effective Hamiltonian (2), where H0 is Eq. (4),
has the U(1) symmetry, we assume that the spins reside in
the xz plane, SA,i = (mx

A, 0, mz
A) and SB, j = (mx

B, 0, mz
B). The

classical energy normalized by the number of spins is given as

ε = z0J

2
SA · SB − DA

2

(
Sz

A

)2 − DB

2

(
Sz

B

)2 − η
h̄�

2

(
Sz

A + Sz
B

)
,

(5)

where z0 is the coordination number. We numerically obtain
the classical spin configuration that minimizes the energy
[Eq. (5)], and show the result in Fig. 2. Here we consider
the cubic lattice with z0 = 6. The magnetization curve in-
duced by the optical Barnett field, i.e., mz

tot := mz
A + mz

B as
a function of the normalized frequency �̃ := h̄�/(z0J ), is
shown in Fig. 2(a). When the frequency �̃ is small, the spin
configuration is unchanged and aligned along the z direction
due to the anisotropy. Above the lower critical frequency �̃c1,
the total magnetization along the z axis starts to grow. In
this optical Barnett effect, mz

tot increases continuously and
attains full polarization at the upper critical frequency �̃c2.
Figure 2(b) shows the change of mz

A and mz
B with increasing

�. This indicates that the spins on the sublattice B are reversed
from −ηSB to ηSB. The controllability for the direction of
the optical Barnett field by the laser chirality η = ± provides
a handle to design optomagnonic functionalities in various
magnets, e.g., electron and nuclear spin systems, even para-
magnets. From Fig. 2(c), we see that both mx

A and mx
B change

continuously and take nonzero value in �̃c1 < �̃ < �̃c2.
Those results of the optical Barnett effect and the magneti-

zation reversal in the insulating ferrimagnet are summarized
in Fig. 2(d). The explicit form of �̃c1 (c2) is given in
Appendix B.

B. Spin-wave theory

The absence of the first-order transition, i.e., jump of mz
tot,

in the vicinity of �̃c1 and �̃c2 ensures the validity of the
description in terms of the magnon picture. Hence, we move

FIG. 2. The classical spin configuration that minimizes the en-
ergy ε [Eq. (5)]. (a) mz

tot , (b) mz
A(B), and (c) mx

A(B) are shown as
a function of �̃ = h̄�/(z0J ). The direction of the optical Barnett
field depends on the laser chirality η. The parameters are SA = 4,
SB = 5/2, DA/J = 17.5 × 10−3, and DB/J = 1.5 × 10−3 following
the experimental values for Er3Fe5O12 [32–34] (J = 0.2 meV). The
lower and upper critical frequencies are �̃c1 = 1.54 and �̃c2 = 6.49,
respectively. (d) Summary of the optical Barnett effect and the mag-
netization reversal on the sublattice B for both circular polarization
of laser.

to the analysis by the spin-wave theory next, and see that �̃c1

and �̃c2 become the magnon BEC transition points.
We first consider increasing the frequency � from below

�̃c1, where the ground state has an alternating structure of up
and down spins [Figs. 2(b) and 2(d)]. From the spin-wave the-
ory, elementary excitations are two kinds of magnons [32,39]
designated by the index σ = ± having the spin angular mo-
mentum δSz = −ησ1. The Hamiltonian [Eqs. (2) and (4)] can
be recast into the diagonal form due to the U(1) symmetry as

Heff =
∑

σ=±,k

(
h̄ω

[α]
σ,k + �[α]

σ + σ h̄�
)
α

†
σ,kασ,k, (6)

where �[α]
σ + σ h̄� is the magnon gap in laser and h̄ω

[α]
σ,k is the

energy dispersion of the σ magnon annihilated (created) by
the bosonic operator α

(†)
σ,k with [ασ,k, α

†
σ ′,k′ ] = δσ,σ ′δk,k′ . For

the details of the calculation and the explicit forms of �[α]
σ

and ω
[α]
σ,k, see Appendix C. With increasing �, the energy band

of σ = − magnon goes down, while that of σ = + magnon
goes up due to the σ h̄� term. The former touches the zero
energy at

�BEC1 := �
[α]
− /h̄, (7)

and the second-order phase transition happens from the pro-
liferation of magnons. This is the quasiequilibrium magnon
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BEC induced by the optical Barnett field, which we call the
optical magnon BEC. �BEC1 coincides with �c1. This optical
magnon BEC is the macroscopic coherent state with the trans-
verse magnetization associated with the spontaneous U(1)
symmetry breaking,1 and thus the total magnetization along
the z axis grows (Fig. 2). Therefore, this optical Barnett effect
can be observed as the phenomenon induced by the optical
magnon BEC transition, and we refer to this behavior in in-
sulating ferrimagnets especially as the optomagnonic Barnett
effect.

Next we consider decreasing the frequency � from above
�̃c2, where spins are full polarized in the ground state
[Figs. 2(b) and 2(d)]. Again, there are two kinds of magnons
designated by the index σ = ± due to SA �= SB, but in contrast
to the �BEC1 case, both magnons have the same spin angular
momentum δSz = −η1 since spins on both sublattices are po-
larized in the same direction. We can derive the Hamiltonian
in the diagonal form

Heff =
∑

σ=±,k

(
h̄ω

[β]
σ,k + �[β]

σ + h̄�
)
β

†
σ,kβσ,k, (8)

where �[β]
σ + h̄� is the magnon gap in laser and h̄ω

[β]
σ,k is the

energy dispersion of the σ magnon annihilated (created) by
the bosonic operator β

(†)
σ,k with [βσ,k, β

†
σ ′,k′ ] = δσ,σ ′δk,k′ . For

the explicit forms of �[β]
σ (� 0) and ω

[β]
σ,k, see Appendix C.

With decreasing �, the energy band of both σ = ± magnon
goes down due to the h̄� term, and the lower band touches the
zero energy at

�BEC2 := −�
[β]
− /h̄. (9)

In the same way as the �BEC1 case, the second-order
phase transition happens at �BEC2 and magnons form the
quasiequilibrium BEC. �BEC2 coincides with �c2. Thus,
the optomagnonic Barnett effect is induced in the regime
�BEC1 < � < �BEC2.

C. Magnetization dynamics

Finally, to investigate the dynamics of the optomagnonic
Barnett effect, we numerically solve the equation of motion
derived from the time-dependent mean field (TDMF) theory
and calculate the time evolution of sublattice magnetization
(Appendix D). The TDMF theory can well capture the mag-
netization dynamics [40]. The parameters are the same in
Fig. 2, SA = 4, SB = 5/2, z0 = 6, DA/J = 17.5 × 10−3, and
DB/J = 1.5 × 10−3. We use the laser with polarization η = +
represented as B0( cos ϑ (t ), sin ϑ (t ), 0), where the amplitude
is B0/J = 0.2 and the frequency is chirped as ϑ (t ) = �0t +
vt2/2 with the normalized chirping speed h̄2v/J2 = 10−5

and h̄�0/J = 9. The normalized instantaneous frequency is
defined as �̃(t ) := h̄(dϑ (t )/dt )/(z0J ) = (h̄�0 + h̄vt )/(z0J ).
We calculate the dynamics in the time region 0 � tJ/h̄ � 105,

1The total number of magnons in the system is bounded by a hard-
core interaction between magnons [62–64] arising from the higher-
order term in the spin-wave theory. We neglect it for simplicity in
Eqs. (6) and (8). Thereby the magnon BEC is stable in the system
with a finite spin length.

FIG. 3. The magnetization dynamics for the laser chirality η =
+ calculated by the TDMF theory. Time evolution of (a) mz

tot and
(b) xy components of sublattice magnetization are shown. The result
clearly shows the condensation of magnons and the precession of
magnetization around the z axis.

which corresponds to 1.5 � �̃(t ) � 1.66 in the frequency
regime. Figure 3(a) shows the time evolution of mz

tot = mz
A +

mz
B. We can see that mz

tot starts to grow from SA − SB = 3/2
when �̃(t ) exceeds �̃BEC1 = 1.54. In Fig. 3(b), we show the
time evolution for the xy components of sublattice magneti-
zation around �̃(t ) = 1.6 in the time interval of 0 � t̃ � 2,
where t̃ := tJ/h̄ − 6 × 104 is the normalized time. The result
clearly shows that magnetization on both sublattices precesses
around the z axis with the instantaneous frequency, same as
the laser �̃(t ), and the xy components of A and B sublattice
magnetization are in the opposite direction. The period of this
spin precession is O(1) ps.

IV. EXPERIMENTAL FEASIBILITY

We make an estimate for an insulating ferrimagnet
Er3Fe5O12 [32–34], and give the magnetization curve and
the experimental parameter values in Fig. 2 and its caption,
respectively. We find that the magnon BEC transition points
are �BEC1 = 1.85 THz and �BEC2 = 7.8 THz,2 and the optical
Barnett field amounts to B = O(10) T for � = O(1) THz.
Our proposal is within the experimental reach with current
device and measurement technologies, e.g., nuclear magnetic
resonance [5,6,41] for the optical Barnett field, magneto-
optical Kerr effect [42] for the magnetization reversal in the
optical Barnett effect, Brillouin light scattering [43] for the
optical magnon BEC, and terahertz spectroscopy [44,45] for
the spin dynamics of the order of picoseconds. Since magnons
are induced by laser and not by thermal fluctuation in the
present setup, our findings are realizable at low temperature
[46–49] where phonon degrees of freedom cease to work.

We emphasize the importance of modulating the laser
frequency adiabatically [22,23] by the chirping technique
[35,36]. Otherwise, the deviation from the magnetization
curve happens due to a nonadiabatic transition from the
Landau-Zener tunneling [50,51]. To avoid this effect, a large

2Note that the quasiequilibrium magnon BEC reported in Ref. [43]
is experimentally realized by magnon injection through microwave
pumping in the GHz regime.
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magnetic anisotropy and a strong laser field is advantageous
[22]. In addition, the laser chirping suppresses heating effects
drastically.

V. DISCUSSION

First, the laser application without chirping can be
studied by the Floquet theory with inverse frequency ex-
pansion [52–54]. This analysis also supports the generation
of the optical Barnett field in the high-frequency regime
(Appendix E).

Second, we remark that the optical Barnett field through
the chirping is proportional to the laser frequency B ∝ �

[22,23]. Hence, � = O(1) THz amounts to B = O(10) T,
which provides a platform to explore the phenomena at high
magnetic field O(10) T or more in the tabletop setup.

Third, optomagnonic cavities for implementing coherent
photon-magnon coupling have been theoretically studied in
Refs. [55–59].

Last, as an application of the optomagnonic Barnett effect,
it will be intriguing to investigate the magnon Josephson effect
in a junction [60,61]. We leave it for a future study.

VI. CONCLUSION

We applied the optical Barnett effect to insulating ferri-
magnets and showed that quasiequilibrium magnon BEC can
be realized using the spin-wave theory. This optomagnonic
Barnett effect provides an access to coherent magnons in the
frequency regime of the order of terahertz, which is much
faster timescale than the conventional microwave pumping.
Our findings are expected to become a building block for the
application to ultrafast spin transport.
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APPENDIX A: EFFECTIVE STATIC HAMILTONIAN

In this Appendix starting from the time-periodic Hamiltonian

H(t ) = H0 − B0
[
Sx

tot cos(�t ) + ηSy
tot sin(�t )

]
, (A1)

we derive the effective static Hamiltonian (2) in the main text. We apply the time-dependent unitary transform

U := eiη�tSz
tot (A2)

to H(t ) as

H(t ) → U [H(t ) − ih̄∂t ]U
−1 =: Heff . (A3)

Then, we obtain the effective static Hamiltonian as

Heff = H0 − ηh̄�Sz
tot − B0Sx

tot. (A4)

In the case of weak laser field B0 � h̄�, the B0Sx
tot term is negligibly small. Thus, we reach the effective static Hamiltonian (2)

in the main text.

APPENDIX B: CLASSICAL THEORY

In this Appendix, we derive the lower (upper) critical frequency �c1(c2). The classical spin configuration is determined in the
way that the energy

ε = z0J

2
SA · SB − DA

2

(
Sz

A

)2 − DB

2

(
Sz

B

)2 − η
h̄�

2

(
Sz

A + Sz
B

)
(B1)

takes minimum. Since Eq. (B1) has the U(1) symmetry, we assume that SA and SB are in the xz plane. We parametrize the spins
as SA = (SA sin θA, 0, ηSA cos θA) and SB = (−SB sin θB, 0, ηSB cos θB). Then, Eq. (B1) can be rewritten as

ε = z0JSASB

2
cos(θA + θB) − DAS2

A

2
cos2 θA − DBS2

B

2
cos2 θB − h̄�

2
(SA cos θA + SB cos θB). (B2)

From the conditions for the energy minimum ∂ε/∂θA = 0 and ∂ε/∂θB = 0, we obtain

−z0JSB sin(θA + θB) + 2DASA cos θA sin θA + h̄� sin θA =0, (B3)

−z0JSA sin(θA + θB) + 2DBSB cos θB sin θB + h̄� sin θB =0. (B4)

094417-5



KOUKI NAKATA AND SHINTARO TAKAYOSHI PHYSICAL REVIEW B 102, 094417 (2020)

1. Around � = �c1

We consider the frequency just above �c1, where sin θA 
 θA, sin θB 
 π − θB, cos θA 
 1, cos θB 
 −1, θA �= 0, and π −
θB �= 0. Then, Eqs. (B3) and (B4) become

−z0JSB(−θA + π − θB) + 2DASAθA + h̄�c1θA = 0 ⇔ z0JSB(π − θB)/θA = z0JSB + 2DASA + h̄�c1,

−z0JSA(−θA + π − θB) − 2DBSB(π − θB) + h̄�c1(π − θB) = 0 ⇔ z0JSAθA/(π − θB) = z0JSA + 2DBSB − h̄�c1.

Thus,

(h̄�c1 + z0JSB + 2DASA)(h̄�c1 − z0JSA − 2DBSB) = −z2
0J2SASB

⇔ [{h̄�c1 − z0J (SA − SB)/2 + DASA − DBSB} + {z0J (SA + SB)/2 + DASA + DBSB}]
×[{h̄�c1 − z0J (SA − SB)/2 + DASA − DBSB} − {z0J (SA + SB)/2 + DASA + DBSB}] = −z2

0J2SASB

⇔ h̄�c1 = z0J (SA − SB)/2 − DASA + DBSB ±
√

−z2
0J2SASB + [z0J (SA + SB)/2 + DASA + DBSB]2.

From �c1 > 0, we obtain

h̄�c1 = z0J (SA − SB)/2 − DASA + DBSB +
√

−z2
0J2SASB + [z0J (SA + SB)/2 + DASA + DBSB]2. (B5)

2. Around � = �c2

We consider the frequency just below �c2, where sin θA 
 θA, sin θB 
 θB, cos θA 
 1, cos θB 
 1, θA �= 0, and θB �= 0. Then,
Eqs. (B3) and (B4) become

−z0JSB(θA + θB) + 2DASAθA + h̄�c2θA = 0 ⇔ z0JSBθB/θA = −z0JSB + 2DASA + h̄�c2,

−z0JSA(θA + θB) + 2DBSBθB + h̄�c2θB = 0 ⇔ z0JSAθA/θB = −z0JSA + 2DBSB + h̄�c2.

Thus,

(h̄�c2 − z0JSB + 2DASA)(h̄�c2 − z0JSA + 2DBSB) = z2
0J2SASB

⇔ [{h̄�c2 − z0J (SA + SB)/2 + DASA + DBSB} + {z0J (SA − SB)/2 + DASA − DBSB}]
×[{h̄�c2 − z0J (SA + SB)/2 + DASA + DBSB} − {z0J (SA − SB)/2 + DASA − DBSB}] = z2

0J2SASB

⇔ h̄�c2 = z0J (SA + SB)/2 − DASA − DBSB ±
√

z2
0J2SASB + [z0J (SA − SB)/2 + DASA − DBSB]2.

From �c2 > 0, we obtain

h̄�c2 = z0J (SA + SB)/2 − DASA − DBSB +
√

z2
0J2SASB + [z0J (SA − SB)/2 + DASA − DBSB]2. (B6)

APPENDIX C: SPIN-WAVE THEORY

In this Appendix, we derive the magnon BEC transition point �BEC1 (BEC2) and see that it coincides with the lower (upper)
critical frequency �c1 (c2). We consider the system

Heff = J
∑

〈i∈A, j∈B〉
SA,i · SB, j − DA

∑
i∈A

(
Sz

A,i

)2 − DB

∑
j∈B

(
Sz

B, j

)2 − ηh̄�

( ∑
i∈A

Sz
A,i +

∑
j∈B

Sz
B, j

)
. (C1)

The boundary condition is periodic, and the number of sites is N ; N/2 sites for the A and B sublattice.

1. Around � = �BEC1

The ground state is ferrimagnetic SA = (0, 0, ηSA) and SB = (0, 0,−ηSB). We perform the Holstein-Primakoff transforma-
tion

ηSz
A,i = SA − nA,i, Sx

A,i + ηiSy
A,i = √

2SA

(
1 − nA,i

2SA

)1/2

bA,i, Sx
A,i − ηiSy

A,i = √
2SAb†

A,i

(
1 − nA,i

2SA

)1/2

,

ηSz
B, j = −SB + nB, j, Sx

B, j + ηiSy
B, j = √

2SBb†
B, j

(
1 − nB, j

2SB

)1/2

, Sx
B, j − ηiSy

B, j = √
2SB

(
1 − nB, j

2SB

)1/2

bB, j,
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where b†
j and b j are creation and annihilation operators for bosons (magnons), and n(A,B), j ≡ b†

(A,B), jb(A,B), j is the number
operator. We make an expansion and retain up to the second order in terms of b and b†:

ηSz
A,i = SA − nA,i, Sx

A,i + ηiSy
A,i = √

2SAbA,i, Sx
A,i − ηiSy

A,i = √
2SAb†

A,i,

ηSz
B, j = −SB + nB, j, Sx

B, j + ηiSy
B, j = √

2SBb†
B, j, Sx

B, j − ηiSy
B, j = √

2SBbB, j .

Using magnon operators, the Hamiltonian (C1) is rewritten as

Heff = J
√

SASB

∑
〈i∈A, j∈B〉

(bA,ibB, j + H.c.) + z0JSB

∑
i∈A

nA,i + z0JSA

∑
j∈B

nB, j

+ 2DASA

∑
i∈A

nA,i + 2DBSB

∑
j∈B

nB, j + h̄�

(∑
i∈A

nA,i −
∑
j∈B

nB, j

)
, (C2)

where the constant terms are dropped. We consider the cubic lattice and the coordination number is z0 = 6. After the Fourier
transform

bA,k =
√

2

N

∑
i∈A e−ik·ri bA,i, b†

A,k =
√

2

N

∑
i∈A eik·ri b†

A,i, nA,k = b†
A,kbA,k,

bB,k =
√

2

N

∑
i∈B eik·ri bB,i, b†

B,k =
√

2

N

∑
i∈B e−ik·ri b†

B,i, nB,k = b†
B,kbB,k

(ri is the positional vector), we obtain

Heff = J
√

SASB
∑

k 2[cos(kxa0) + cos(kya0) + cos(kza0)](bA,kbB,k + H.c.)

+(z0JSB + 2DASA + h̄�)
∑

k nA,k + (z0JSA + 2DBSB − h̄�)
∑

k nB,k,

where a0 is the lattice constant. We perform the Bogoliubov transformation(
α+,k

α
†
−,k

)
=

(
cosh θk sinh θk

sinh θk cosh θk

)(
bA,k

b†
B,k

)
,

with the angle

tanh 2θk = 2 f (k)

C1 + C2
,

where

f (k) = 2J
√

SASB[cos(kxa0) + cos(kya0) + cos(kza0)],

C1 = z0JSB + 2DASA + h̄�,

C2 = z0JSA + 2DBSB − h̄�.

Then, the Hamiltonian becomes

Heff =
∑

k

(
− f (k) sinh 2θk + C1 − C2

2
+ C1 + C2

2
cosh 2θk

)
α

†
+,kα+,k

+
∑

k

(
− f (k) sinh 2θk − C1 − C2

2
+ C1 + C2

2
cosh 2θk

)
α

†
−,kα−,k

=
∑

k

[
C1 − C2

2
+

√√√√− f (k)2 +
(

C1 + C2

2

)2]
α

†
+,kα+,k +

∑
k

[
− C1 − C2

2
+

√√√√− f (k)2 +
(

C1 + C2

2

)2]
α

†
−,kα−,k,

(C3)

where the constant terms are dropped. We can rewrite the Hamiltonian in the form

Heff =
∑

σ=±,k

(
h̄ω

[α]
σ,k + �[α]

σ + σ h̄�
)
α

†
σ,kασ,k, (C4)

where h̄ω
[α]
σ,k is the energy dispersion and �[α]

σ + σ h̄� is the magnon gap in laser represented as

h̄ω
[α]
±,k =

√
− f (k)2 + [3J (SA + SB) + DASA + DBSB]2 −

√
− f (0)2 + [3J (SA + SB) + DASA + DBSB]2,

�
[α]
± = ∓[3J (SA − SB) − DASA + DBSB] +

√
− f (0)2 + [3J (SA + SB) + DASA + DBSB]2,
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noting that f (k) takes the maximum at k = 0. Therefore, when � is increased from the small value, the magnon created by
α

†
−,k=0 condensates at

h̄�BEC1 = �
[α]
− = 3J (SA − SB) − DASA + DBSB +

√
−36J2SASB + [3J (SA + SB) + DASA + DBSB]2, (C5)

which agrees with h̄�c1 [Eq. (B5)].

2. Around � = �BEC2

The ground state is ferromagnetic SA = (0, 0, ηSA) and SB = (0, 0, ηSB). We perform the Holstein-Primakoff transformation

ηSz
A,i = SA − nA,i, Sx

A,i + ηiSy
A,i =

√
2SA

(
1 − nA,i

2SA

)1/2

bA,i, Sx
A,i − ηiSy

A,i =
√

2SAb†
A,i

(
1 − nA,i

2SA

)1/2

,

ηSz
B, j = SB − nB, j, Sx

B, j + ηiSy
B, j =

√
2SB

(
1 − nB, j

2SB

)1/2

bB, j, Sx
B, j − ηiSy

B, j =
√

2SBb†
B, j

(
1 − nB, j

2SB

)1/2

,

where b†
j and b j are creation and annihilation operators for bosons (magnons), and n(A,B), j ≡ b†

(A,B), jb(A,B), j is the number
operator. We make an expansion and retain up to the second order in terms of b and b†,

ηSz
A,i = SA − nA,i, Sx

A,i + ηiSy
A,i = √

2SAbA,i, Sx
A,i − ηiSy

A,i = √
2SAb†

A,i,

ηSz
B, j = SB − nB, j, Sx

B, j + ηiSy
B, j = √

2SBbB, j, Sx
B, j − ηiSy

B, j = √
2SBb†

B, j .

Using magnon operators, the Hamiltonian (C1) is rewritten as

Heff = J
√

SASB

∑
〈i∈A, j∈B〉

(b†
A,ibB, j + H.c.) − z0JSB

∑
i∈A

nA,i − z0JSA

∑
j∈B

nB, j

+ 2DASA

∑
i∈A

nA,i + 2DBSB

∑
j∈B

nB, j + h̄�

(∑
i∈A

nA,i +
∑
j∈B

nB, j

)
, (C6)

where the constant terms are dropped. We consider the cubic lattice and the coordination number is z0 = 6. After the Fourier
transform

bA,k =
√

2
N

∑
i∈A e−ik·ri bA,i, b†

A,k =
√

2
N

∑
i∈A eik·ri b†

A,i, nA,k = b†
A,kbA,k,

bB,k =
√

2
N

∑
i∈B e−ik·ri bB,i, b†

B,k =
√

2
N

∑
i∈B eik·ri b†

B,i, nB,k = b†
B,kbB,k

(ri is the positional vector), we obtain

Heff = J
√

SASB

∑
k

2[cos(kxa0) + cos(kya0) + cos(kza0)](b†
A,kbB,k + H.c.)

+ (−z0JSB + 2DASA + h̄�)
∑

k

nA,k + (−z0JSA + 2DBSB + h̄�)
∑

k

nB,k,

where a0 is the lattice constant. We perform the transformation(
β+,k

β−,k

)
=

(
cos θk − sin θk

sin θk cos θk

)(
bA,k

bB,k

)
,

with the angle

tan 2θk = − 2 f (k)

C1 − C2
,

where

f (k) = 2J
√

SASB[cos(kxa0) + cos(kya0) + cos(kza0)],

C1 = −z0JSB + 2DASA + h̄�,

C2 = −z0JSA + 2DBSB + h̄�.
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Then, the Hamiltonian becomes

Heff =
∑

k

(
− f (k) sin 2θk + C1 + C2

2
+ C1 − C2

2
cos 2θk

)
β

†
+,kβ+,k

+
∑

k

(
f (k) sin 2θk + C1 + C2

2
− C1 − C2

2
cos 2θk

)
β

†
−,kβ−,k

=
∑

k

[
C1 + C2

2
+

√√√√ f (k)2 +
(

C1 − C2

2

)2]
β

†
+,kβ+,k +

∑
k

[
C1 + C2

2
−

√√√√ f (k)2 +
(

C1 − C2

2

)2]
β

†
−,kβ−,k. (C7)

We can rewrite the Hamiltonian in the form

Heff =
∑

σ=±,k

(
h̄ω

[β]
σ,k + �[β]

σ + h̄�
)
β

†
σ,kβσ,k, (C8)

where h̄ω
[β]
σ,k is the energy dispersion and �[β]

σ + h̄� is the magnon gap in laser represented as

h̄ω
[β]
+,k =

√
f (k)2 + [3J (SA − SB) + DASA − DBSB]2 − |3J (SA − SB) + DASA − DBSB|,

h̄ω
[β]
−,k =

√
f (0)2 + [3J (SA − SB) + DASA − DBSB]2 −

√
f (k)2 + [3J (SA − SB) + DASA − DBSB]2,

�
[β]
+ = −3J (SA + SB) + DASA + DBSB + |3J (SA − SB) + DASA − DBSB|,

�
[β]
− = −3J (SA + SB) + DASA + DBSB −

√
f (0)2 + [3J (SA − SB) + DASA − DBSB]2,

noting that f (k) takes the maximum at k = 0. Therefore, when � is decreased from the large value, the magnons created by
β

†
−,k=0 condensate at

h̄�BEC2 = −�
[β]
− = 3J (SA + SB) − DASA − DBSB +

√
36J2SASB + [3J (SA − SB) + DASA − DBSB]2, (C9)

which agrees with h̄�c2 [Eq. (B6)]. Note that �[β]
σ takes the negative value �[β]

σ � 0.
We remark that in the case of an insulating ferromagnet, the application of the circularly polarized laser increases the magnon

gap and the optical magnon BEC does not occur.

APPENDIX D: TIME-DEPENDENT MEAN FIELD THEORY

In this Appendix, we discuss the time evolution of sublattice magnetization. To this end, we numerically simulate the
dynamics of the system using the time-dependent mean field theory and recasting the equation of motion into the form

dmA

dt
= mA × HMF

A ,
dmB

dt
= mB × HMF

B . (D1)

We treat mA and mB as classical vectors, then Eq. (D1) is nothing but the two-body Landau-Lifshitz-Gilbert equation. Here
we assume the laser-induced phenomena are much faster than magnetization damping, and neglect the Gilbert term. From the
time-dependent Hamiltonian,

H(t ) = J
∑

〈i∈A, j∈B〉
SA,i · SB, j − DA

∑
i∈A

(
Sz

A,i

)2 − DB

∑
j∈B

(
Sz

B, j

)2 − B0
[
Sx

tot cos(�t ) + ηSy
tot sin(�t )

]
, (D2)

we can derive the mean fields as

HMF
A =

⎛
⎝−z0Jmx

B + B0 cos(�t )
−z0Jmy

B + B0 sin(�t )
−z0Jmz

B + 2DAmz
A

⎞
⎠, HMF

B =
⎛
⎝−z0Jmx

A + B0 cos(�t )
−z0Jmy

A + B0 sin(�t )
−z0Jmz

A + 2DBmz
B

⎞
⎠.

APPENDIX E: OPTICAL BARNETT FIELD WITHOUT CHIRPING

In this Appendix, we discuss the laser application without chirping. In order to study the application of circularly polarized
laser without chirping, the framework of the Floquet theory and the inverse frequency expansion can be utilized. This method is
applicable for the high-frequency region. The total Hamiltonian

H(t ) = H0 − B0

2

(
e−i�t Sη

tot + ei�t S−η
tot

)
(E1)
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is temporally periodic and can be written in the form of

H(t ) =
∑
m∈Z

Hmeim�t , (E2)

where

H0 = H0, H±1 = −B0

2
S∓η

tot , H|m|�2 = 0.

In the inverse frequency expansion up to the 1/� order, the Floquet effective Hamiltonian in the high-frequency regime is
provided as

HHF = H0 + 1

h̄�

∞∑
m=1

[Hm, H−m]

m
+ O(�−2) (E3a)

= H0 − ηB2
0

2h̄�
Sz

tot + O(�−2). (E3b)

Thus, the optical Barnett field

BHF = B2
0

2h̄2γ�
(E4)

is proportional to 1/� and B2
0. This analysis indicates that although the induced field is small, the optical Barnett effect still

occurs in the high-frequency region away from the adiabatic regime considered in the main text.
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