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Symmetry-protected topological phases in the SU(N) Heisenberg spin chain:
A Majorana fermion approach
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The nature of symmetry-protected topological phases of Heisenberg spin chains in totally symmetric repre-
sentations of rank N of the SU(N) group is investigated through a Majorana fermion study starting from an
integrable point. The latter approach generalizes the one pioneered by Tsvelik [Phys. Rev. B 42, 10499 (1990)]
to describe the low-energy properties of the Haldane phase of the spin-1 Heisenberg chain from three massive
Majorana fermions. We find, for all N’s, the emergence of a nondegenerate gapped phase with edge states whose
topological protection depends on the parity of N . Whereas for N odd, there is no such protection, the phase with
even N is shown to be topologically protected. We find that the phase belongs to the same topological class as
the phase with edge states living in self-conjugate fully antisymmetric representation of the SU(N ) group.
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I. INTRODUCTION

Majorana fermions, fermions that are their own antipar-
ticles, have become one of the most important fundamental
excitations of condensed-matter physics over the years. A
paradigmatic example is the one-dimensional (1D) Ising
model in a transverse field which admits an exact description
in terms of noninteracting Majorana degrees of freedom [1].
These fermions have a nonlocal character in terms of the
underlying spins since they can be viewed as the bound states
of a local spin flip and a domain-wall topological defect. This
Majorana approach gives a full description of the properties of
the Ising quantum critical point that defines the simplest con-
formal field theory (CFT) with central charge c = 1/2 [1,2].
These fermions experience only fermion number parity con-
servation, a Z2 symmetry. Yet, several copies of such degrees
of freedom allow the investigation of more complicated situa-
tions with a continuous symmetry. One striking example is the
study of the confinement of fractional quantum numbers that
occur in weakly coupled two-leg spin-1/2 Heisenberg ladder.
The low-energy excitations of this system can be mapped
onto noninteracting four massive Majorana fermions [1,3].

The second interest in Majorana fermions lies at the heart
of exotic physics. It stems from the formation of zero-energy
Majorana modes that are localized around specific points
with topological features, such as domain walls, vortices, or
boundaries. The onset of non-Fermi liquid behavior in the
two-channel Kondo problem where a spin-1/2 impurity spin
is located on a metal with two degenerate channel degrees
of freedom has been described within the Toulouse-limit so-
lution of the model as due to the presence of a localized
Majorana fermion [4]. The electronic channels overscreen the
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impurity spin, and a zero-energy Majorana mode located at
the impurity is decoupled from the conduction degrees of
freedom, giving rise to a finite ground-state entropy ln

√
2.

These Majorana zero modes, which are not particles and
not even fermions, have intriguing quantum properties with
non-Abelian anyon statistics, ground-state degeneracy, and
robustness. In this respect, they have promising applications
to topological quantum information processing [5].

The simplest 1D model with Majorana zero modes is the
Kitaev chain which is a 1D lattice version of a spinless p-wave
superconductor [6]. The model has a topologically protected
gapful phase that hosts an unpaired Majorana zero mode at
the two ends of the chain. The Kitaev chain with time-reversal
symmetry belongs to the BDI class of the tenfold classification
of noninteracting topological insulators and superconductors
[7]. This BDI class is characterized by a Z-valued topological
invariant. The Z-valued topological invariant can be incre-
mented by stacking an additional Kitaev chain to the system.
This noninteracting Z classification of BDI class is reduced to
Z8 in the presence of interactions [8–10]. A topological phase
with eight Majorana zero modes at the two ends of the chain is
adiabatically connected by interactions to a gapful featureless
phase without closing the bulk gap.

Majorana fermions and Majorana zero modes may repre-
sent an avenue to describe 1D bosonic interacting symmetry-
protected topological (SPT) phases. The latter denomination
refers to 1D nondegenerate gapped phases of spins or bosons
whose edges states are protected by a given symmetry. These
phases with on-site protecting symmetry group G are known
to be classified by the second cohomology group H2[G,U (1)]
which labels the inequivalent projective representations of the
symmetry at the edge, i.e., the nature of the boundary spin
[9,11,12]. The Haldane phase [13] of the spin-1 Heisenberg
chain is a paradigmatic example of a 1D interacting SPT

2469-9950/2020/102(9)/094410(10) 094410-1 ©2020 American Physical Society

https://orcid.org/0000-0001-6822-2337
https://orcid.org/0000-0003-4589-1719
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.102.094410&domain=pdf&date_stamp=2020-09-08
https://doi.org/10.1103/PhysRevB.42.10499
https://doi.org/10.1103/PhysRevB.102.094410


P. FROMHOLZ AND P. LECHEMINANT PHYSICAL REVIEW B 102, 094410 (2020)

phase with its Haldane gap and the existence of spin-1/2
edge states that can be simply understood from the Affleck-
Kennedy-Lieb-Tasaki (AKLT) approach [14]. Here, in the
presence of an internal rotation G = SO(3) symmetry, there
is a H2[SO(3),U (1)] = Z2 classification. The Haldane phase
is, thus, the only SO(3) SPT phase with its edge states that
transform projectively in the spinorial representation of the
SO(3) group, i.e., the spin-1/2 representation of SU(2) [15].

Several approaches captures the main physical properties
of the Haldane phase. Indeed, the phase can be described
by staking four copies of the Kitaev chain [16,17]. An O(4)
symmetry emerges by construction from which an SO(3)
subgroup acts projectively on the boundary. A second more
conventional approach was pioneered by Tsvelik in Ref. [18].
This approach describes the Haldane phase starting from an
integrable spin-1 model, the Babujian-Takhtajan (BT) model
[19], whose critical properties are governed by three de-
coupled gapless Majorana fermions. A deviation from this
integrable point leads to the formation of a gap. For a semi-
infinite chain, three Majorana zero modes emerge at the edge
[20]. These modes generate the spinorial representation of
SO(3) and, thus, lead to the spin-1/2 edge states of the
Haldane phase [20]. A third alternative approach is the well-
known semiclassical description of the Haldane phase by the
O(3) nonlinear σ model with a θ = 2π theta term [13]. The
precise value of this topological angle leads to the liberation
of spin-1/2 edge states when the chain is opened [21].

In this paper, we investigate the possible Majorana fermion
description of 1D SPT phases protected by a higher contin-
uous symmetry group G. A known example is when G =
SO(2n + 1). Then, H2[SO(2n + 1),U (1)] = Z2 revealing the
SPT phase that generalizes the Haldane phase for n > 1 [22].
Its physical properties can be described by 2n + 1 massive
noninteracting Majorana fermions by exploiting the existence
of an integrable model with SO(2n + 1) symmetry [23,24].
In a semi-infinite geometry, 2n + 1 Majorana zero modes are
located at the boundary and give a ground-state degeneracy
of 2n which is the dimension of the spinorial, i.e., projective,
representation of the SO(2n + 1) group [23,24]. The main
properties of the SO(2n + 1) SPT phase are then reproduced
by means of this Majorana fermion approach.

What happens if we consider richer 1D SPT phases when
the on-site protection symmetry G is the projective unitary
group PSU(N ) � SU(N )/ZN ? Since H2[PSU(N ),U (1)] =
ZN , N − 1 interesting SPT phases are expected that are pro-
tected by the PSU(N ) group or its discrete subgroup ZN × ZN

[25–27]. Microscopic realizations of these phases appear in
the SU(N ) antiferromagnetic Heisenberg spin chain,

H = J
∑

i

N2−1∑
A=1

SA
i SA

i+1, (1)

where the spin operators SA
i on each site i of the chain be-

long to a given irreducible representation of the SU(N ) group
which is described by a Young tableau with nY boxes.

There is now a rather good understanding of the physical
properties of model (1). Some of them and related topics
are reviewed in Ref. [28]. The generalization of the Haldane
conjecture for SU(N ) is described by three different cases
depending on the value of nY with respect to N [29–31].

When nY and N are coprime, both a semiclassical approach
of model (1) in Refs. [30–32] and a CFT analysis [33,34]
have shown that a quantum critical behavior in the SU(N )1

universality class with central charge c = N − 1 emerges. In
contrast, when nY and N have a nontrivial common divisor
different from N , a spectral gap is formed [29,31,34]. The one-
step translation symmetry Ta0 of model (1) is spontaneously
broken resulting in a ground-state degeneracy. The last case,
the most interesting for us, is when nY = 0 mod N and a
Haldane gap phase is expected [29]. For these representations,
the continuous symmetry group of model (1) is the projective
unitary group PSU(N ) and the N − 1 different SPT phases
might be found in the lattice model (1). Their edge states
are labeled by the inequivalent projective representations of
PSU(N ), which are specified by ZN quantum numbers ntop =
nY edge mod N, nY edge being the number of boxes of the Young
tableau corresponding to the representation of the boundary
spins.

Several SPT phases have already been identified in the
PSU(N ) Heisenberg chain (1). The topological class with N
even and ntop = N/2 appears when the spins on each site
belong to the representation with the Young tableau [35–37],

(2)

The edge state belongs to the self-conjugate fully antisym-
metric representation of the SU(N ) group such that nY edge =
N/2. For N = 3 and N = 4, the remaining SPT phases are
the chiral SPT phases (N, N̄), (N̄, N). For instance, (N, N̄)
denotes a nondegenerate fully gapped phase such that the left
(respectively, right) edge state transforms in the fundamen-
tal representation N (respectively, antifundamental N̄) of the
SU(N ) group. These two chiral SPT phases are the two ground
states of the model (1) in the adjoint representation [38–42].
All these PSU(3) and PSU(4) SPT phases have been realized
in lattice systems of ultracold fermions loaded into optical
lattices or in spin-ladder systems [35,36,40,43–45].

In this paper, we consider the general PSU(N ) case by
focusing on the symmetric rank-N tensor representations, de-
scribed by a Young tableau with N boxes and a single line:

Since nY = N , the emergent phase is a good can-
didate for being a SPT phase. When topological, the phase
constitutes the natural generalization of the Haldane phase
for N > 2 within the PSU(N ) series as SO(3) � SU(2)/Z2 �
PSU(2). In the following, we develop an approach for generic
N to describe the possible SPT phase in terms of N2 − 1 mas-
sive Majorana fermions and their associated zero-Majorana
modes for a semi-infinite chain. An even-odd effect is found.
The ground state of model (1) in the symmetric rank-N = 2n
representation is shown to describe a stable SPT phase with
topological index ntop = n which shares the same topological
class as the SPT phase of the PSU(2n) Heisenberg chain in the
representation (2). When N is odd, there is no such protection
and the phase can be adiabatically connected to a trivial gapful
featureless phase without closing the bulk gap.

The remainder of this paper is organized as follows. In
Sec. II, we present our low-energy approach to describe the
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properties of model (1) in the symmetric rank-N representa-
tion starting from an integrable spin model. In Sec. III, we
exploit a conformal embedding onto N2 − 1 gapless Majo-
rana fermions. This embedding leads to the emergence of a
PSU(N ) SPT phase whose boundary spin is described in terms
of N2 − 1 zero-Majorana modes. Finally, Sec. IV summarizes
our findings and the Appendix presents the AKLT construc-
tion of the model for N = 4.

II. LOW-ENERGY APPROACH

In this section, we present our strategy to develop a field-
theory analysis for describing the fully gapped phase of the
PSU(N ) Heisenberg spin chain (1) for symmetric rank-N
tensor representation.

A. Integrable SU(N) spin model

The starting point of the analysis is the existence of an
integrable SU(N ) model with degrees of freedom in sym-
metric rank-k tensor representation, introduced by Andrei and
Johannesson (AJ) [46,47]. The AJ model involves a specific
polynomial P(x) of degree k in terms of the bilinear term
SA

i SA
i+1,

HAJ = J
∑

i

N2−1∑
A=1

P
(
SA

i SA
i+1

)
. (3)

The explicit expression of the polynomial is not important
for this paper and can be found in Ref. [47]. Model (3) is
the SU(N ) generalization of Bethe-ansatz integrable spin-
S = k/2 Heisenberg chain models which display a gapless
behavior described by the SU(2)2S CFT [48,49]. For N = 2
and k = 2, the AJ model reduces to the BT spin-1 model with
Hamiltonian [19],

HBT = J
∑

i

[Si · Si+1 + β(Si · Si+1)2], (4)

with β = −1 and Si is a spin-1 operator at site i.
The main bulk properties of the Haldane phase of the

spin-1 Heisenberg chain have been derived by Tsvelik in
Ref. [18] by introducing a small deviation β = −1 + δ(0 <

δ � 1) from the SU(2)2 critical point of the BT model (4).
Starting from this critical point with central charge c = 3/2,
which can be described in terms of three massless Majorana
fermions, it was shown that the low-energy properties of the
Heisenberg spin-1 chain could be captured by a triplet of non-
interacting massive Majorana fermions. Later, the hallmark
of the Haldane phase, i.e., its spin-1/2 edge state, has been
derived within this field theory analysis [20].

Our aim, here, is to present the generalization of Tsve-
lik’s approach to describe the possible formation of an SPT
phase in the Heisenberg spin-chain model (1) for the specific
symmetric rank-N tensor representation starting from the inte-
grable AJ spin model. It has been shown numerically that the
AJ model displays a quantum critical behavior in the SU(N )k

universality class with central charge c = k(N2 − 1)/(N + k)
[50,51]. In the special k = N case, c = (N2 − 1)/2 which
is the central charge of N2 − 1 gapless Majorana fermions.
The low-energy properties of the AJ model for k = N

are described by the SU(N )N Wess-Zumino-Novikov-Witten
(WZNW) model [1,2] perturbed by a marginal irrelevant
current-current interaction with Hamiltonian density [52,53],

HAJ = πv

N

(
:JA

R JA
R : + :JA

L JA
L :

) + γ JA
R JA

L , (5)

where v is the spin velocity, :O: denotes the normal ordering
of operator O and a summation over repeated SU(N ) indices
A = 1, . . . , N2 − 1 is assumed in the following. In Eq. (5),
JA

R,L are the chiral currents which satisfy the SU(N )N current
algebra,

JA
L (z)JB

L (ω) ∼ NδAB

8π2(z − ω)2
+ i f ABC

2π (z − ω)
JC

L (ω), (6)

with a similar definition for the right current. In Eq. (6), f ABC

denotes the antisymmetric structure constants of the SU(N )
group and z = vτ + ix (τ being the imaginary time). The
marginal irrelevant term with γ < 0 of Eq. (5) accounts for
logarithmic corrections of the SU(N )N quantum criticality
[52,54]. The critical point with γ = 0 is described by the
SU(N )N WZNW model with Euclidean action [55,56],

SWZNW = N

8π

∫
M2

d2x Tr(∂μG†∂μG)

+ iN

12π

∫
M3

d3y εαβγ Tr(G†∂αG G†∂βG G†∂γ G),

(7)

G being an SU(N ) matrix field, the WZNW field, and M3

is a three-dimensional manifold whose boundary is the two-
dimensional Euclidean space: ∂M3 = M2. The critical point
of the AJ model is expected to be fragile on general grounds
due to its fine-tuning [52]. A fully gapped PSU(N ) SPT phase
might emerge in the close vicinity of the integrable AJ point
in close parallel to the N = k = 2 case. A perturbed SU(N )N

CFT would then explain the formation of the spectral gap and
the low-energy properties.

Our next task is to identify the suitable relevant perturba-
tion which accounts for the emergence of a nondegenerate
fully gapped phase for model (1) where the spin operators
belong to symmetric rank-N tensor representation of SU(N ).

B. Departure from the SU(N)N WZNW fixed point

The allowed strongly relevant operators which control the
departure from the SU(N )N quantum critical point should
be invariant under the symmetries of the underlying lattice
model (1). The most important lattice symmetry is the one-
step translation invariance Ta0 which corresponds to a ZN

symmetry in the continuum limit. This correspondence stems
from the underlying U (N ) fermionic Hubbard model of model
(1) or (3) which is at 1/N filling with Fermi momentum kF =
π/Na0, a0 being the lattice spacing [52,53]. The WZNW
primary field G of Eq. (7), transforming in the fundamental
representation of SU(N ), takes the following form under Ta0

[52,53]:

G → ωG, (8)

with ω = e2iπ/N . The spectrum of the SU(N )N CFT is de-
scribed by primary operators which transform in a limited set
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of representations of the SU(N ) group. The highest-weights
 = (λ1λ2 · · · λN−1) of these representations must satisfy the
constraint:

∑N−1
i=1 λi � N, λi being the Dynkin labels. Intro-

ducing li = ∑N−1
j=i λ j as a Young tableau row length, we see

that the Young tableau cannot have more than N columns.
The scaling dimensions of the primary fields are related to the
quadratic Casimir of the underlying representation of SU(N )
[56–58],

� = X + nY (N + 1) − n2
Y /N

2N
, (9)

with nY = ∑N−1
i=1 li = ∑N−1

i=1 iλi which is the number of boxes
in the Young tableau and X = ∑N−1

i=1 li(li − 2i).
The possible allowed primary fields, obtained from fusion

of the fundamental field G, should be invariant under Ta0 .
From Eq. (8), we observe that they transform under repre-
sentations of SU(N ) which are described by a Young tableau
such that nY is a multiple of N . For instance, all primary fields
which transform according to totally antisymmetric represen-
tations of SU(N ), lN (l = 1, . . . , N − 1) cannot appear in
the continuum description of the Heisenberg spin chain model
(1) since they acquire a phase factor e2ilπ/N under Ta0 . The
most relevant operator, which is translational invariant, turns
out to be the primary field in the adjoint representation with
highest weight: (10 · · · 01). The latter can be expressed in
terms of the SU(N )N WZNW field G [56],

�AB
adj ∼ Tr(G†T AGT B), (10)

T A being the SU(N ) generators transforming in N, normalized
such that Tr(T AT B) = δAB/2. According to Eq. (9), the scal-
ing dimension of the adjoint primary SU(N )N field is �adj = 1
for all N � 2. For N = 3, the subleading translation-invariant
primary fields are marginal (� = 2). They transform in the
10 and 10 representations with the Young’s tableaux,

In the SU(4) case, there is a subleading relevant primary
field with scaling dimension 3/2 which transforms in the
self-conjugate 20 representation of SU(4) with

The remaining allowed operators are marginal or irrelevant.
Our numerical analysis for N � 4 shows that only the adjoint
operator and one other primary field �′ are both strongly
relevant and translation invariant. The latter transforms in
the self-conjugate representation of SU(N ) with the Young
tableau of N boxes,

(11)

The primary field �′ has scaling dimension �′ = 2(N −
1)/N < 2 and is, indeed, a relevant contribution but less

relevant than the adjoint field. Such an operator is, in fact,
generated by the fusion of the adjoint field by itself,

�adj × �adj ∼ I + �adj + �′ + · · · , (12)

where the dots describe terms that are marginal or irrelevant
operators.

The leading Hamiltonian density which describes the de-
parture from the AJ model reads, thus, as follows depending
on N ,

HN=2,3 = πv

N

(
:JA

R JA
R : + :JA

L JA
L :

) + gTr �adj, (13a)

HN�4 = πv

N

(
:JA

R JA
R : + :JA

L JA
L :

) + gTr �adj + λ Tr �′,

(13b)

where we have neglected marginal and irrelevant perturba-
tions. The SU(N )k CFT perturbed by the adjoint primary
field has been investigated and a massless flow to SU(N )1

is expected when N and k have no common divisor [33]. In
Eqs. (13), we have k = N , and it is then likely as it will be
shown below that a spectral gap is formed. We, thus, expect
that the physical properties of the PSU(N ) Heisenberg spin
chain (1) in symmetric rank-N tensor representation of SU(N )
are captured by the low-energy theory (13).

C. WZWN model and σ model on a flag manifold

We now switch to a Lagrangian description to study the
infrared properties of the perturbed CFT (13) and to make a
connection to the semiclassical field theory derived recently
for SU(N ) Heisenberg chain (1) in totally symmetric rep-
resentations [30,32,59,60]. In this respect, we consider the
following action first introduced in Ref. [61]:

S = SWZNW +
[N/2]∑
n=1

∫
M2

d2x gnTr[Gn]Tr[(G†)n], (14)

where n = 1 and n = 2 potential terms correspond to the
two relevant operators of Eq. (13) for N > 3 since Eq. (10)
imposes

Tr �adj = Tr G Tr G† − Tr(G†G)/N ∼ Tr G Tr G†, (15)

G being an SU(N ) matrix in the Lagrangian approach,
whereas �′ appears in the fusion G2 ⊗ (G†)2.

Let us first discuss the global symmetries of the action
(14). A first continuous symmetry of model (14) is PSU(N ) =
SU(N )/ZN which acts as G → V GV †, V being an SU(N )
matrix. The center group of SU(N ), V → ωV has no effect
on the action on G so that PSU(N ) is the correct continuous
symmetry group of Eq. (14). On top of this global symmetry,
action (14) is also invariant under the ZN symmetry (8) which
corresponds to the one-step translation symmetry Ta0 as well
as under the Z2 charge conjugation G → G∗.

In the strong-coupling regime gn → +∞, the potential
term of Eq. (14) selects a SU(N ) matrix G such that Tr[Gn] =
0 with n = 1, . . . , [N/2]. As shown in Ref. [61], the latter con-
dition can be extended to n = 1, . . . , N − 1. The eigenvalues
of the G matrix are, thus, proportional to the N th roots of unity
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and the fundamental WZNW SU(N ) G field can be written as

G = U�U †,

� = ω−(N−1)/2

⎛
⎜⎜⎜⎝

ωN−1 0 · · · 0
0 ωN−2 · · · 0
... · · · ω 0
0 · · · 0 1

⎞
⎟⎟⎟⎠, (16)

U being a general U (N ) matrix. We, then, introduce N2

complex scalar fields �i j (i, j = 1, . . . , N ) such that Ui j =
�i j = ( �� j )i. These fields are constrained to be orthonormal
complex vectors: ��∗

i · �� j = δi j to enforce the U (N ) property:
U †U = I . The identification (17) reads, thus, as follows in
terms of the scalar fields:

Gi j =
∑

a

�∗
ja�aa�ia. (17)

A U (1)N redundancy in the description (17) is manifest
since the transformation ��a → eiθa ��a gives the same Gi j for
all θa (a = 1, . . . , N ). Distinct scalar fields take, thus, value
in U (N )/U (1)N ∼ SU(N )/U (1)N−1, i.e., the flag manifold
[59–62].

The original global symmetries of action (14) have a di-
rect interpretation on the complex fields ��i thanks to the
identification (17). The PSU(N ) symmetry acts as �i j →∑

k Vik�k j, V being an SU(N ) matrix. The one-step trans-
lation symmetry Ta0 becomes ��i → ��i+1 with ��N+1 = ��1,
whereas ��i → ��∗

N−i+1 corresponds to the Z2 charge conju-
gation.

The next step of the approach is to replace the identifica-
tion (17) in the action (7) to derive the low-energy effective
field theory for the complex fields ��i. The action, then,
takes the form of a nonlinear σ model on the flag manifold
SU(N )/U (1)N−1 with topological θ terms with a Lagrangian
density [61,62],

L = N

4π

N∑
a=1

(|∂μ ��a|2 − | ��∗
a · ∂μ ��a|2)

+
N∑

a=1

θa

2π
εμν∂μ ��∗

a · ∂ν ��a

+
∑

1�a<b�N

(gabδ
μν + babε

μν )( ��∗
a · ∂μ ��b)( ��∗

b · ∂ν ��a),

(18)

with θa = 2πa(a = 1, . . . , N ), gab = N cos[2π (a − b)/N]/2π

and bab = N sin[2π (a − b)/N]/2π . Model (18) contains N
topological angles θa with topological charges,

qa = i

2π

∫
d2x εμν∂μ ��∗

a · ∂ν ��a, (19)

which are integers. However, the topological charges are
not all independent due to the orthonormalization constraint:
��∗

i · �� j = δi j and satisfy
∑N

a=1 qa = 0 since it can be shown∑N
a=1

��∗
a · ∂μ ��a = 0 [30,62]. It implies that model (18) is left

invariant by shifting all topological angles by a same amount:
θa → θa + θ for all a. There are, thus, (N − 1)-independent
topological angles θa = 2πa (a = 1, . . . , N − 1) in model

(18) in full agreement with the value of the second homotopy
group for the flag manifold �2 [SU(N )/U (1)N−1] = ZN−1.

It has been shown recently that flag σ model (18) with
topological angles θa = 2π pa/N control the infrared proper-
ties of SU(N ) Heisenberg spin chain (1) in symmetric rank-p
tensor representation in the large p limit [30,32]. A gapless
phase in the SU(N )1 universality class has been predicted for
model (18) when p and N are coprime whereas a spectral
gap is formed in other situations [31,61,62]. We, thus, expect
that the perturbed CFT (14) is a massive field theory in the
far-infrared regime since p = N here.

III. MAPPING ONTO MAJORANA FERMIONS

The deviation from the AJ integrable PSU(N ) spin model
described by the Hamiltonian (13) corresponds to a fully
gapped phase as seen from its relationship to the flag σ

model (18) with N − 1 independent topological angles θa =
2πa (a = 1, . . . , N − 1). In this section, we investigate di-
rectly the main physical properties of model (13) by exploiting
a mapping onto Majorana fermions where we show explicitly
its massive behavior.

A. Conformal-embedding approach

The infrared properties of model (13) strongly depend on
the sign of the coupling constant g. When g < 0, the min-
imization of the potential term gTr �adj in Eq. (13) gives
G = e2ikπ/N I = ωkI (k = 1, . . . , N ) to maximize Tr G [see
Eq. (15)]. The one-step translation ZN symmetry (8) is, thus,
spontaneously broken which signals the formation of a gapped
phase with a N-fold degeneracy. When g > 0, the nature of
the ground state of model (13) is not as straightforward. We
show below that an SPT phase can show up in model (13) with
g > 0.

To this end, we exploit a conformal embedding which
enables us to simplify model (13). The SU(N ) group is known
to be a subgroup of Spin(N2 − 1), the fundamental covering
of the SO(N2 − 1) group. The central charge of the SU(N )N

CFT is c = (N2 − 1)/2 which is that of the SO(N2 − 1)1

CFT [2]. This conformal embedding has been known from
a long time [63] and has been fruitful, for instance, to in-
vestigate some 1D strange metals [64]. The SO(N2 − 1)1

CFT spectrum admits several conformal towers defined by the
integrable representations of its affine algebra: the identity,
vector, and spinor representations. If N is odd, N2 − 1 is
even, and there are two inequivalent spinor representations of
dimension 2(N2−3)/2: the spinor and its conjugate representa-
tion. In contrast, when N is even, N2 − 1 is odd, and there
is a single spinor representation of dimension 2(N2−2)/2. The
primary field transforming in the vector representation has
hv = 1/2 as conformal weight. In spinorial representations,
this conformal weight is hs = (N2 − 1)/16.

The character decomposition of such conformal embed-
ding for the Neveu-Schwartz sector of the SO(N2 − 1)1 CFT
is given by [64]

χ
SO(N2−1)1
1 = χ

SU (N )N
(0···0) + χ

SU (N )N
(20···10) + χ

SU (N )N
(01···02) + · · · ,

χSO(N2−1)1
v = χ

SU (N )N
(10···01) + χ

SU (N )N
(110···011) + · · · , (20)
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where χ
SO(N2−1)1
1,v are the SO(N2 − 1)1 character in the iden-

tity and the vectorial representation of the SO(N2 − 1)
group, respectively. In Eq. (21), χ

SU (N )N
(10···01) are SU(N )N char-

acter in the SU(N ) representation labeled by their highest
weights, here, (10 · · · 01), for instance, (the adjoint represen-
tation). The SU(N ) representations with highest weights  =
(λ1λ2 · · · λN−1) appearing in the decomposition (20) satisfy
the N-equality condition [64],

N−1∑
i=1

iλi = 0 mod N, (21)

which means that the number of boxes nY of the Young tableau
of the SU(N ) representation is a multiple of N . Physically,
it signals that the SU(N )N fields that occur in the character
decomposition (20) should be invariant under the one-step
translation symmetry (8). In particular, the fields involved in
the perturbed CFT (13) and (14) are expressed only in terms
of operators in the identity and vector conformal towers of
SO(N2 − 1)1 CFT.

The SU(N )N adjoint primary field has scaling dimen-
sion �adj = 1. It corresponds to the SO(N2 − 1)1 primary
field in the vectorial representation according to Eq. (20). In
this respect, we introduce N2 − 1 left-right-moving Majorana
fermions ξA

R,L normalized such that

ξA
L (z)ξB

L (0) ∼ δAB

2πz
. (22)

A, B = 1, . . . , N2 − 1 with a similar definition for the right-
moving Majorana fermions. The adjoint SU(N )N primary
field (10) has a simple free-field representation in terms of
these fermions,

�AB
adj ∼ −iξA

R ξB
L . (23)

Model (13) can then be refermionized

H = − iv

2

N2−1∑
A=1

(
ξA

R ∂xξ
A
R − ξA

L ∂xξ
A
L

) − im
N2−1∑
A=1

ξA
R ξA

L , (24)

where we have neglected subleading marginal four-fermion
contributions.

Model (24) describes decoupled N2 − 1 Majorana
fermions with mass m ∼ g. For all signs of g, the field
theory is, thus, massive. For m > 0, a nondegenerate fully
gapped phase emerges. This Majorana mapping constitutes
the generalization of the Majorana approach of Ref. [18] to
investigate the Haldane phase of the spin-1 Heisenberg chain
starting from the SU(2)2 critical point of the BT model [19].

B. Edge states and SPT phases

We now investigate the possible stabilization of a PSU(N )
SPT phase when m > 0 by studying its edge excitations. To
this end, model (24) is considered in a semi-infinite line with
an open-boundary condition on x = 0,

H = 1

2

∫ ∞

0
dx

N2−1∑
A=1

�A(x)T (−ivσ3∂x + mσ2)�A(x), (25)

where σi’s are the usual Pauli matrices and

�A(x) =
(

ξA
R (x)

ξA
L (x)

)
. (26)

In our convention, the Majorana fermions are subject to the
following boundary condition on x = 0:

ξA
R (0) = ξA

L (0) (27)

for all A = 1, . . . , N2 − 1. The Hamiltonian (25) is exactly
solvable being quadratic in terms of the fermions and the
resulting eigenvectors read as follows [20]:(

ξA
R (x)

ξA
L (x)

)
= 1√

2L

∑
k>0

[
ξA

k

(
cos(kx + θk ) + i sin(kx)
cos(kx + θk ) − i sin(kx)

)
+H.c.

]

+
√

m

v

(
1
1

)
e−mx/vθ (m)ηA, (28)

where ξA
k is a fermion annihilation operator with wave-number

k = πn/L, L being the large size of the line and θ is the
Heaviside step function. In Eq. (28), θk is given by

cos θk = vk

εk
, sin θk = m

εk
, (29)

εk = √
v2k2 + m2 being the energy dispersion. The last term

of Eq. (28) is a zero-energy eigenvector of the Hamiltonian
(25) and, thus, the solution of both equations

v ∂xξ
A
R + mξA

L = 0 and v ∂xξ
A
L + mξA

R = 0. (30)

According to the boundary condition (27), this system gives
a normalized solution if only if m > 0: ξA

R (x) = ξA
L (x) =√

m/ve−mx/vηA with the normalization {ηA, ηB} = δAB. It sig-
nals the existence of N2 − 1 exponentially Majorana localized
states inside the gap (midgap states) for a positive mass m.

When m > 0, N2 − 1 Majorana zero-modes ηA, thus,
emerge at the boundary of a semi-infinite chain and these edge
states might give rise to some interesting 1D SPT phase. In
the N = 2 case, these three local Majorana modes form the
generators �AB = iηAηB in the spinorial representation of the
rotation group SO(3). They describe the spin-1/2 edge exci-
tation of the Haldane phase [20]. For general N , not all these
Majorana SPT phases, found in a continuum description, are
actually protected by interactions. In particular, as recalled in
the Introduction, it has been shown in Refs. [8–10] that time-
reversal 1D Majorana topological phases are characterized by
a Z8 classification in the presence of interactions. It means
that time-reversal gapful phases with k-boundary Majorana
modes modulo eight turns are equivalent [9,10]. When N is
odd, we have N2 − 1 = 0 mod 8, and the topological phases,
described by Eq. (24) with m > 0 are, thus, not stable with
interactions and adiabatically connected to a featureless non-
degenerate gapful phase by adding four-fermion interactions.
In contrast, model (24) with even N have an odd number of
robust Majorana zero modes and should describe a PSU(N )
SPT phase.

The N2 − 1 Majorana zero-modes ηA also fix the projective
representation of the SU(N ) group at the edge. This repre-
sentation transcribes the physics of the PSU(N ) Heisenberg
antiferromagnetic chain (1) in the symmetric rank-N tensor
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representation. In this respect, let us introduce the following
operator:

SA = − i

2
f ABCηBηC . (31)

It is straightforward to show that the operator (31) satisfies
the SU(N ) algebra: [SA,SB] = i f ABCSC . The value of the
corresponding quadratic Casimir operator suffices, here, to
identify the SU(N ) irreducible representation of SA. A direct
calculation gives

N2−1∑
A=1

SASA = N (N2 − 1)

8
, (32)

where we have used the following identities for the structure
constants of the SU(N ) group:

f ABC f ADE = 2

N
(δBDδCE − δBEδCD)

+ dABDdACE − dABE dACD,

dABCdABC = (N2 − 1)(N2 − 4)

N
, (33)

dABC being the symmetric structure constants of the SU(N )
group. For N = 2, Eq. (31) is the three-Majorana representa-
tion of a spin-1/2 operator described in Ref. [65]. In the N = 3
case, the operator (31) corresponds to an SU(3) spin which
belongs to the adjoint representation with quadratic Casimir
C2(adj) = 3. For N = 4, the quadratic Casimir (32) is 15/2
corresponding to the self-conjugate SU(4) representation 64
such that

(34)

For general N , the edge state belongs to the SU(N )
representation with highest-weight (1 · · · 1) of dimension
2N (N−1)/2. The corresponding Young’s tableau has a number
of boxes,

nY edge =
N−1∑
i=1

iλi =
N−1∑
i=1

i = N (N − 1)

2
, (35)

and a quadratic Casimir given by Eq. (32).
Now, we can make contact with the cohomology classi-

fication of the PSU(N ) ∼ SU(N )/ZN SPT phases [25]. As
recalled in the Introduction, there are N − 1 topologically
distinct SPT phases. The inequivalent projective representa-
tions of PSU(N ) are labeled by a Young tableau where the
number of boxes nY edge is defined modulo N . The low-energy
Majorana approach (24) to PSU(N ) Heisenberg spin chain (1)
in symmetric rank-N tensor representation predicts a nonde-
generate fully gapped phase with edge states characterized by
nY edge = N (N − 1)/2. When N is odd, nY edge = 0 mod N so
that the phase is not an SPT phase. This observation agrees
with our previous discussion related to the Z8 classification of
interacting time-reversal phases of Majorana SPT phases. It
also agrees for N = 3 with the recent numerical investigation
of the Heisenberg model (1) in the three-box symmetric repre-
sentation [66]. A nondegenerate phase with a very small gap

� � 0, 02J has been reported whereas a critical behavior was
more likely in previous numerical studies [29,67]. The edge
states were also found to belong to the adjoint representation
of SU(3) as expected from the underlying AKLT construction
[68–70]. The Majorana field-theory approach for N = 3, thus,
reproduces these numerical and AKLT results. Since nY edge =
3, these edge states are not protected. The underlying phase is
not a SPT phase in close parallel to the spin-2 Haldane phase
which is not topologically protected [15]. In contrast, when N
is even, the low-energy Majorana approach (24) leads to SPT
phases with topologically protected edge state which belong
to the class: ntop = N/2 mod N as seen from Eq. (35). The
resulting PSU(N ) SPT phase belongs, thus, to the same topo-
logical class as the SPT phase of the Heisenberg spin chain
where the spin transforms in the self-conjugate representation
(2). The latter SPT phase has edge states transforming in the
self-conjugate antisymmetric representation [35–37],

In the simplest N = 4 case, the Appendix provides the AKLT
model for the Heisenberg spin chain (1) in the four-box fully
symmetric representation inspired by the AKLT construction
of Ref. [70]. The edge states of the AKLT SPT phase are
shown to belong to the SU(4) representation with the Young
tableau (34) with a dimension of 64 like in the Majorana-
fermion approach. For general N , the same construction
also exists for spins in the N-box symmetric representation
with edge states belonging to the SU(N ) representation with
highest-weight (1, 1, . . . 1). The phase of the model obtained
is also expected to be topological only in the N even case, such
as in the Majorana approach.

The nonlinear σ model (18) on the flag manifold
SU(N )/U (1)N−1 with topological terms θa = 2πa (a =
1, . . . , N − 1) in an open geometry should also reveal the
nature of the edge state of the underlying SPT phase. In the
simplest case N = 2, the σ model is the CP1 model with
a θ = 2π term, and it has been shown that spin-1/2 edge
states emerge in an open geometry as it should be to describe
the Haldane phase of the spin-1 Heisenberg chain [21]. For
general N , we expect that the σ model on the flag manifold
with θa = 2πa has edge states whose representation under
SU(N ) is encoded by the values of its topological angles. We
conjecture that the length of the ath row of the Young tableau
of the representation of the edge state is la = θN−a/2π =
N − a with a = 1, . . . , N − 1 so that the highest weight of
the SU(N ) representation is edge = (1 · · · 1) as found within
the Majorana approach.

IV. CONCLUDING REMARKS

In this paper, we have presented a Majorana fermion ap-
proach to investigate the possible formation of a PSU(N ) SPT
phase as the ground state of the Heisenberg spin chain (1)
in the N-box fully symmetric representation. By exploiting
the existence of the AJ integrable spin model with SU(N )N

quantum critical behavior, we describe the fully gapped phase
of model (1) by means of N2 − 1 noninteracting massive
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Majorana fermions. This approach is the generalization of the
one for N = 2, proposed in Ref. [18], which accounts for the
Haldane phase of the spin-1 Heisenberg chain in terms of three
massive Majorana fermions.

Our paper enables the determination of the underlying SPT
phase of model (1) through its edge states encoded in N2 − 1
Majorana zero modes. When N is odd, we find that the non-
degenerate phase gapful phase is not topologically protected
and, thus, equivalent to a featureless phase. In contrast, the
SPT phase with even N is protected by the PSU(N ) symmetry
and belongs to the same topological class as the PSU(2n)
SPT phase with the edge state in the self-conjugate fully
antisymmetric representation. After the spin-1 Haldane phase,
the simplest SPT phase of the Heisenberg spin chain (1) in the
fully symmetric representation is obtained for N = 4. Both
the edge states of this phase and the edge states in the 6
representation of the SU(4) group belong to the same topolog-
ical class. A numerical investigation, using similar tools as in
Refs. [66,71,72], is naturally called for to confirm this predic-
tion, obtained within a low-energy description. The SPT phase
for N = 4 can also be explored in a four-leg SU(4) spin lad-
der where the spins belong to the fundamental representation
of SU(4). For a sufficiently strong ferromagnetic interchain
coupling, the SPT phase is expected to emerge. This ladder
system can be realized by considering, for instance, ytterbium
atoms in their ground state by keeping only four nuclear
states to realize the SU(4) symmetry [73–79]. The four-ladder
geometry can be obtained, in principle, by selective evapora-
tion of anisotropic collection of 1D tubes made of ytterbium
atoms. However, as for the Haldane phase, the temperature
scale to reach the SPT physics will be difficult to reach in
actual cold atom experiments as well as the realization of a
ferromagnetic interchain coupling between the tubes.

As a perspective, it will be interesting to further generalize
our CFT approach to investigate the degenerate gapped phases
of model (1) for representations with a number of box nY =
pN . We hope to come back to this issue elsewhere.
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APPENDIX: AKLT CONSTRUCTION FOR THE N = 4-BOX
FULLY SYMMETRIC REPRESENTATION

In this Appendix, we present an AKLT construction of the
Heisenberg spin chain (1) in the four-box fully symmetric
representation following the method presented in Ref. [70].
This construction confirms the identification of the edge state
found in the Majorana fermion approach.

The construction of Ref. [70] generalizes the construction
of the AKLT chain for N = 2. Let P be the representation of
the on-site physical SU(N ) spin, and V be a self-conjugate

representation of a virtual SU(N ) spin. The construction con-
sists in dividing � physical spin transforming in P⊗� into
two virtual spins from V (and � − 1 singlets) projected into
P⊗�. The resulting chain is gapped with a unique ground
state for periodic boundary conditions, and with degenerate
ground states for open-boundary conditions. In both cases, the
bulk of each state displays the same nonmagnetic coupling
of � neighboring spins into singlets. The degeneracy of the
open-boundary chain comes from the edge states with each
edge transforming in the representation V .

The construction of Ref. [70] is possible under two condi-
tions. First, the decomposition into irreducible representation
of the tensorial product of the self-conjugate V with itself
must contain the physical irreducible representation P , pos-
sibly with multiplicity, i.e., P ∈ V ⊗ V . Second, two virtual
spins must be able to form a singlet. This condition is always
verified when V is self-conjugate. Therefore, this construction
is possible for N = 4 with

(A1)

Indeed, P appears in the decomposition of V ⊗ V ,

(A2)

Using the Young tableaux’ respective dimensions, the decom-
position reads

64 ⊗ 64 = 1 ⊕ 3 × 15 ⊕ 2 × 20 ⊕ 35 ⊕ 35

⊕3 × 45 ⊕ 3 × 45 ⊕ 3 × 84 ⊕ 105

⊕4 × 175 ⊕ 2 × 256 ⊕ 2 × 256

⊕280 ⊕ 280 ⊕ 300 ⊕ 729. (A3)

The decomposition of V ⊗ V follows the standard rules
of the tensor product [80]. The dimension DN of the
SU(N ) representation of Young tableau Y with rows of
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{l1, l2, . . . , lN−1, lN = 0} boxes (in descending order) reads as
follows [80]:

DN (Y ) =
∏

1�i< j�N (li − l j + j − i)

(N − 1)!(N − 2)! · · · 1!
. (A4)

In this case, there exists a parent Hamiltonian coupling
only nearest neighbor (� = 2) whose ground states are edge
states transforming in V . Indeed, the decomposition of P ⊗ P
is as follows:

(A5)

Using the dimension, the decomposition reads

35 ⊗ 35 = 105 ⊕ 165 ⊕ 280 ⊕ 315 ⊕ 360. (A6)

The representation 105 and 280 are found in both Eqs. (A2)
and (A5). Thus, the Hamiltonian on two physical spin in P⊗2

that equally favors the two representations 105 and 280 is

h = I − P105 − P280, (A7)

where P105 and P280 are the projectors onto the representation
105 and 280, respectively. There are two ways to interpret the
105 + 280 = 385 ground states of this two-sites Hamiltonian.
The first way sees the two physical spins of 35 align such that
only the superpositions transforming in 105 ⊕ 280 are ground
states of the system. The second way divides each physical
spin into two virtual ones from 64 projected back into 35.
The Hamiltonian (A7) favors energetically the coupling of
two neighboring virtual spins of different sites into a singlet,
leaving free the two virtual spins on the edge of the system.
Because of the initial projection of the Hilbert space on each
site into 35, the Hilbert space of the two free edge states is
restricted to 105 ⊕ 280 only, instead, of all the representations
in Eq. (A2). The AKLT-inspired parent Hamiltonian of the full

open chain reads

HAKLT =
L−1∑
i=1

τi(h), (A8)

with τi the translation operator on site i and L the number of
sites. The 385 ground states of this system can be interpreted
as a chain of 2L virtual spins in 64. Two virtual spins of each
neighboring physical site pair up into a singlet such that only
two virtual spins are left unpaired, one on each edge. Because
of Hilbert space restrictions, the two edge spins together trans-
form in 105 ⊕ 280 only. The latter restriction is incompatible
with a semi-infinite chain such that 64 states can be expected
on the one edge of this geometry.

The quadratic Casimir is enough to obtain an explicit ex-
pression for P105 and P280 and, hence, HAKLT. The quadratic
Casimir of a representation R of highest-weight  is

C2(R) = 1

2

〈
, + 2

∑
i

i

〉
, (A9)

where i are the fundamental weights. When R is an irre-
ducible representation of SU(N ),  = ∑N−1

i=1 λii where λi’s
are the Dynkin labels of the representation. In this case,

〈i, j〉 = min(i, j) − i j

N
. (A10)

For the representation in the decomposition Eq. (A5), we find

C2(105) = 16, C2(165) = 36,

C2(280) = 18, C2(315) = 279/8,

C2(360) = 22.

We call ST the total spin of the system of the two physical
spins. If Ai are the irreducible representation in Eq. (A5) of
P⊗2 such that P⊗2 = ⊕5

i=1 Ai, the expressions of the projec-
tors follow:

PAi = 1

C2(Ai )

∏
j �=i

[
ST

2 − C2(A j )
]
. (A11)

The parent Hamiltonian (A8), thus, involves a polynomial of
degree 8 of the nearest-neighbors spin coupling.
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