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We present a comprehensive first-principles electronic structure study of the magnetoelastic and magne-
tostrictive properties in Co-based Co2XAl (X = V, Ti, Cr, Mn, Fe) full Heusler compounds. In addition to
the commonly used total energy approach, we employ the torque method to calculate the magnetoelastic tensor
elements. We show that the torque-based methods are, in general, computationally more efficient and allow us to
unveil the atomic and orbital contributions to the magnetoelastic constants in an exact manner, as opposed to the
conventional approaches based on second-order perturbation with respect to the spin-orbit coupling. The mag-
netostriction constants are in good agreement with available experimental data. The results reveal that the main
contribution to the magnetostriction constants, λ100 and λ111, arises primarily from the strain-induced modulation
of the 〈dx2−y2 |L̂z|dxy〉 and 〈dz2 |L̂x|dyz〉 spin-orbit coupling matrix elements, respectively, of the Co atoms.
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I. INTRODUCTION

The development of efficient and scalable means to ma-
nipulate the magnetic state has been one of the main
foci of scientific research in the field of condensed-matter
physics and material science in the past century. The use
of magnetoelastic materials employed in multiferroic het-
erostructures offers a promising avenue for efficient, scalable,
and nonvolatile magnetic-based memory devices [1]. Magne-
toelasticity is a phenomenon in which a deformation of the
crystal shape results in a change in magnetic orientation and
vice versa. In addition to applications in multiferroic-based
magnetic memory devices, compounds with a large magne-
toelastic constant are also of great interest in the development
of efficient magnetomechanical actuators [2], magnetic field
sensors, strain-mediated miniaturized multiferroic-based an-
tennas, and other energy converter devices [3–5]. Therefore,
development of a concise and efficient framework to calculate
the magnetoelastic constants and understand their micro-
scopic origin is of paramount importance in the search for
magnetoelastic materials [6–8].

Even though rare-earth 3d metal compounds, such as
Terfenol-D, exhibit the highest magnetostriction values
(1500–2000 ppm) at room temperature, their use in industrial
applications is hindered by the need for high-saturation mag-
netic field (due to their large magnetocrystalline anisotropy),
brittleness, and high material costs [9]. Subsequently, highly
magnetostrictive rare-earth-free Fe-based alloys were devel-
oped, such as Fe1−xGax (galfenol) [10,11] and Fe1−xAlx
(alfenol) [12], which display large strain at moderate field
and excellent ductility. In addition, spinel ferrites (CoFe2O4,
NiFe2O4) with large magnetostriction [7] and high magnetic
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ordering temperatures were recently used in magnetostrictive-
piezoelectric composites to enhance the interfacial magneto-
electric coupling [13].

Another remarkable class of materials is the Heusler
ternary intermetallic compounds that crystallize in the L21

structure and have stoichiometric composition of X2Y Z (space
group Fm3̄m), where X and Y are transition metal ele-
ments and Z is an element from the p block [14,15]. They
show a wide range of remarkable properties such as half-
metallicity [14], high Curie temperatures [16], giant tunnel
magnetoresistance [17,18], magnetic shape memory [19], su-
perconductivity [20], topological Weyl fermions [14,21,22],
and the anomalous Nernst effect [23]. More specifically, the
cobalt-based Heusler compounds such as Co2XAl (X = Ti,
V, Cr, Mn, Fe) offer an interesting playground for spintron-
ics applications since they have high Curie temperatures and
some of them are predicted to be half-metallic ferromagnets
[14,15]. Nevertheless, their magnetoelastic and magnetostric-
tive properties remain unexplored both experimentally and
theoretically.

Here, we provide a general framework in which we em-
ploy different approaches to calculate the magnetoelastic and
magnetostriction tensor elements of Co2XAl (X = V, Ti, Cr,
Mn, Fe) full Heusler compounds from first-principles elec-
tronic structure calculations. The first one is the well-known
approach based on total energy calculations, and the other two
are based on the torque and spin-orbital torque methods. We
show that the torque-based methods are computationally more
efficient and allow for the atomic and orbital decomposition of
the magnetoelastic constants, which can, in turn, elucidate the
underlying atomic mechanisms.

II. THEORETICAL FORMALISM

A. Magnetocrystalline anisotropy

The origin of the magnetocrystalline anisotropy (MCA)
energy is the spin-orbit interaction and can be determined,
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within density-functional theory, from the second-variation
method employing the scalar-relativistic eigenfunctions of the
valence states [24,25]. In first-principles electronic structure
calculations two approaches are often used to calculate the
MCA, namely, the total energy and torque methods.

Total energy approach. The total energy Etot ( �m) is deter-
mined for several magnetic orientations described by the unit
vector �m, which in turn is fitted to lowest order in the magnetic
degrees of freedom, given by

Etot ( �m) = E0
tot +

∑
i j

Ki jmimj . (1)

Here, Ki j are the MCA tensor matrix elements, and mi are the
components of the magnetization orientation unit vector �m.

As an alternative approach, instead of the total energy,
one can employ the so-called force theorem [26], in which
the dependence of the electronic energy on the magnetization
directions can be approximately expressed in terms of the
band energies Eband( �m) (the sum of occupied one-electron
eigenvalues), namely,

Eband( �m) = 1

Nk

∑
n�k

ε �m
n�k f

[
ε �m

n�k − μ( �m)
]
. (2)

Here, f (x) is the Fermi-Dirac distribution function, Nk is
the number of k points, and μ( �m) is the electronic chemical
potential which depends on the magnetization direction.

Torque approach. Wang et al. proposed [27] a torque
method for the theoretical determination of the MCA energy
for systems with uniaxial symmetry that, instead of directly
calculating the total energy difference, involves the expecta-
tion value of the angular derivative of the spin-orbit coupling
(SOC) Hamiltonian at an angle θ = 45◦,

T (θ ) =
occ∑
nk

〈
�SOC

nk

∣∣∂HSOC

∂θ

∣∣�SOC
nk

〉
θ=45◦ . (3)

Here, �SOC
nk is the nth relativistic eigenvector at the k point,

and θ is the angle between the magnetization direction and
the surface normal.

The one-electron Kohn-Sham Hamiltonian can be ex-
pressed as [28,29]

Ĥ = ĤK (�k)1̂2×2 + �̂(�k) �m · �̂σ + Ĥsoc(�k), (4)

where the first, second, and third terms represent the ki-
netic, exchange, and SOC contributions, respectively. In a
nonorthonormal atomic-orbital basis set, the eigenenergies
and eigenstates are calculated from the generalized eigenvalue
problem, Ĥ |n�k〉 = εn�kÔ|n�k〉 = εn�kOn�k|n�k〉, where Ô(�k) is the
overlap matrix. In this case, the torque is given by [28]

�τMCA = − �m × 〈�̂ �̂σ 〉, (5)

where the equilibrium expectation value is calculated from

〈· · · 〉 = 1

Nk

∑
n�k

〈n�k| · · · |n�k〉 f (εn�k − μ0)

On�k
. (6)

Unlike the total energy method, the torque approach involves a
vector for the fitting to the magnetization orientation, and also

it does not require the calculation of a reference energy, mak-
ing it computationally more efficient. Furthermore, the torque
method can be used to calculate the local (site-resolved) con-
tribution to the MCA energy since the exchange splitting �̂ is
often a well-defined local quantity.

In this paper, instead of the aforementioned torque method
we employ a different approach we recently developed [30]
based on the canonical forces, Fθ = �n · �τ = −〈 ∂Ĥ

∂θ
〉 and Fφ =

�ez · �τ = −〈 ∂Ĥ
∂φ

〉, where θ (φ) is the polar (azimuthal) angle,
�n = sin φ�ex − cos φ�ey, and �ez is the unit vector along z. Ap-

plying the unitary operator Û = eiθ �n· �̂σ/2 on the Hamiltonian
to reorient the exchange splitting term along the z axis, we
find

Fq = 2Re

〈
Û

∂Û †

∂q
Ĥsoc

〉
, q = θ, φ. (7)

Using Eq. (7) for q = θ , one can obtain an explicit expression
for the MCA-induced torque,

�τMCA = 〈ξ̂ �̂L × �̂σ 〉, (8)

which we refer to as the “spin-orbital” torque approach
[29,30] as opposed to the original torque method given by
Eq. (5). It should be pointed out that Eq. (8) is exact and no
approximation was involved in its derivation.

Equation (8) can be interpreted as the torque induced by the

anisotropic orbital moment accumulation �̂L on the spin �̂σ of
the valence electrons. Since the SOC strength ξ̂ is diagonal in
the atomic-orbital basis set and a well-defined local quantity,
we can use Eq. (8) to decompose the torque on each atom.
This decomposition allows us, in turn, to elucidate the atomic
origin of the MCA as opposed to the local MCA-induced field
on each atomic spin given by Eq. (5). Therefore, the advantage
of using Eqs. (7) and (8) is that they allow us to unveil the
underlying origin of the MCA. Employing Eq. (8), the atom
and orbital contributions to the total torque can be written as

〈α|�̂τ I
MCA|β〉 =

∑
ss′

ρ
I,αβ

ss′ 〈Iαs|ξ̂ �̂L × �̂σ |Iβs′〉, (9)

where I is the atomic index, α, β (s, s′) are the orbital (spin)
indices, and

ρ
I,αβ

ss′ = 1

Nk

∑
n�k

〈Iβs′|n�k〉 f (εn�k − μ0)

On�k
〈n�k|Iαs〉 (10)

is the density matrix.

B. Magnetoelastic effect

Magnetoelastic coupling is the interaction between the
magnetization and the strain in a magnetic material. In the
presence of strain εi j , the modified primitive lattice vectors �a′

i
are given by (�a′

i − �ai ) · �e j = ∑
k �ai · �ekεk j , where �e j represent

unit vectors in Cartesian coordinates. To lowest order in the
lattice deformation (i.e., small strain) and magnetization ori-
entation, the total energy per equilibrium volume is given by

E ( �m) = E0 + 1

2

∑
i� j,k�l

Ci j
kl εi jεkl +

∑
i j

Ki j ({εkl})mimj, (11)
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where Ci j
kl are the elastic stiffness constants, often repre-

sented by a 6 × 6 matrix. To linear order in strain, the MCA
tensor matrix elements have the form Ki j ({εkl}) = Ki j

0 +∑
k�l Bi j

klεkl , where Bi j
kl denote the magnetoelastic tensor el-

ements.
The magnetostriction effect, first identified in 1842 by

Joule [31], is a property of ferromagnetic materials that causes
them to change their shape when subjected to a magnetic field.
In the absence of an external stress, the strain induced on the
crystal structure due to the reorientation of the magnetization
can be calculated by setting ∂E ( �m)/∂εkl = 0,

εkl = −
∑

kl

hi j
klmimj, (12)

where hi j
kl = ∑

k′�l ′ Sk′l ′
kl Bi j

k′l ′ are the magnetostriction tensor

elements and Si j
kl are the elastic compliance constants. Under

the applied strain εi j , the relative change in the length of the
material δl/l along a direction given by the unit vector �u can
be calculated [32,33] by δl/l = ∑

i j εi juiu j . Using Eq. (12)
for the strain, the relative change in the length due to the
reorientation of the magnetization can be calculated by

δl

l
= −

∑
i jkl

hi j
kl uiu jmkml . (13)

Given that the components of the unit vectors �u and �m
describing the directions of the relative change in the length
and magnetization, respectively, are not independent, the basis
set in Eq. (13) consisting of uiu j and mimj is overcomplete.
One approach to resolve this issue is to switch to the spherical
Harmonics basis set [34], which is more advantageous, espe-
cially when dealing with ensemble averaging. In the following
we use this approach to obtain a general expression for the
polycrystalline magnetostriction constant. Using the second-
order spherical Harmonics, we can rewrite Eq. (13) in the form

δl

l
=

√
4π

5

∑
p

λ(0)
p Y2,p( �m) + 4π

5

∑
pq

λ(2)
pq Y2,p( �m)Y2,q(�u),

(14)

where the isotropic (volumetric) magnetostriction constant
λ(0)

p (p = 1, . . . , 5) and anisotropic magnetostriction con-
stants λ(2)

pq can be expressed (see the Appendix) in terms of

hi j
kl and Y2,p are the real spherical harmonics, given by

Y2,p(�r) =
√

15

4π

(
x2 − y2

2
,

3z2 − 1

2
√

3
, yz, xz, xy

)
. (15)

For a polycrystalline structure the field-induced relative
change in the length has the form δl/l = λsP2( �m · �u), where
P2(x) denotes the Legendre polynomials of order 2. Therefore,
the average magnetostriction constant λs can be calculated by

λs = 5

(4π )2

∫∫
d� �md��u

δl

l
P2( �m · �u) = 1

5

∑
p

λ(2)
pp . (16)

For a cubic crystal structure the magnetostriction constant
matrix λ(2)

pq is diagonal, and the magnetic-field-induced shape

deformation is given by

δl

l
= 4π

5

⎡
⎣λ[100]

∑
p=1,2

Y2,p(�u)Y2,p( �m)

+ λ[111]

∑
p=3,4,5

Y2,p(�u)Y2,p( �m)

⎤
⎦. (17)

In this case, for the polycrystalline magnetostriction constant
we obtain λs = (2λ[100] + 3λ[111])/5 [32].

III. COMPUTATIONAL APPROACHES

We have employed two ab initio electronic structure codes
to determine the magnetoelastic tensor elements. The first is
the plane wave Vienna ab initio Simulation Package (VASP)
[35,36], where we have employed the total energy approach.
The second is the linear combination of atomic orbitals
(LCAO) OPENMX package [37–39], where one can employ
any of the four approaches, namely, the total energy, the band
energy [Eq. (2)], the torque [Eq. (5)], or the spin-orbital torque
[Eq. (8)] approach. Throughout the remainder of the paper
all OPENMX results employ the more computationally efficient
spin-orbital torque approach.

(1) Structural relaxations were carried out using VASP

[35,36] within the generalized gradient approximation as pa-
rameterized by Perdew, Burke, and Ernzerhof [40] (PBE)
when the largest atomic force is smaller than 0.01 eV Å−1.
The pseudopotential and wave functions are treated within the
projector augmented-wave method [41,42]. The plane wave
cutoff energy was set to 500 eV, and an 183 k-point mesh
was used in the Brillouin zone (BZ) sampling. Total energy
calculations were carried out for nine different magnetiza-
tion orientations, �m = [1,0,0], [0,1,0], [0,0,1], [1,1,0], [1,1̄,0],
[1,0,1], [1,0,1̄], [0,1,1], and [0,1,1̄]. The MCA tensor elements
in Eq. (11) were then calculated by

Kzz = 0, (18a)

Kxx = E [1,0,0] − E [0,0,1], (18b)

Kyy = E [0,1,0] − E [0,0,1], (18c)

Kxy = E [1,1,0] − E [1,1̄,0]

2
, (18d)

Kyz = E [0,1,1] − E [0,1,−1]

2
, (18e)

Kxz = E [1,0,1] − E [1,0,−1]

2
. (18f)

(2) Using the lattice parameters determined from VASP

calculations, the tight-binding Hamiltonian Ĥ�k and over-
lap Ô�k matrices were calculated in the LCAO OPENMX

package [37–39]. We adopted the Troullier-Martins-type
norm-conserving pseudopotentials [43] with partial core cor-
rection. We used 243 k points in the first BZ and an energy
cutoff of 350 Ry for numerical integrations in the real-
space grid. For the exchange correlation functional the Local
Spin Density Approximation (LSDA) [44] parameterized by
Perdew and Zunger [45] was used. The MCA tensor elements
Ki j are determined via the spin-orbital torque [Eq. (8)] method
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FIG. 1. (a) L21 crystal structure of full Heusler compounds.
(b) Lattice constants of Co2XAl compounds using the PBE exchange
correlation functional with (red circles) and without (blue circles)
Hubbard U included [46]. The stars show experimental data reported
in [47–62]. (c) Total magnetic moment per formula unit versus X
elements using VASP (blue and red symbols) and OPENMX (green
symbols). The experimental results shown as black stars for X=Ti,
V, Cr, Mn, and Fe have been reported in [47,48], [49–51], [52–57],
[58,59], and [52,60–62], respectively. (d) Elastic constants C11, C12,
and C44 calculated using the PBE (dashed lines) and PBE+U (solid
lines) exchange-correlation functionals in VASP.

for three magnetization directions, �m =[1,0,0], [1,0,1], and
[0,1,1], from the expressions

�τ [100]
MCA = [0, 2Kxz,−2Kxy], (19a)

�τ [101]
MCA = [Kxy + Kyz, Kzz − Kxx,−Kxy − Kyz], (19b)

�τ [011]
MCA = [Kyy − Kzz,−Kxy − Kxz, Kxy + Kxz]. (19c)

The magnetoelastic constant tensor elements Bkl
i j are de-

termined from MCA calculations under 12 strain εi j values
of εxx = ±δε, εyy = ±δε, εzz = ±δε, εxy = ±δε, εyz = ±δε,
εxz = ±δε, where δε = 0.01. The magnetoelastic constant ten-
sor elements are then simply given by

Bi j
kl = Ki j (εkl = δε ) − Ki j (εkl = −δε )

2δε

. (20)

It should be noted that the symmetry of the crystal struc-
ture can significantly reduce the number of independent
configurations (induced strain and magnetization directions)
required to obtain the magnetoelastic tensor elements. In
particular, in cubic systems, only two nonzero independent
magnetoelastic constants exist that are referred to as B1 =
Bxx

xx = Byy
yy = −Bxx

zz = −Byy
zz and B2 = Bxy

xy = Byz
yz = Bzx

zx , con-
stants corresponding to the normal and shear-induced MCAs,
respectively.

IV. RESULTS AND DISCUSSION

The Heusler compounds Co2XAl crystallize in the cubic
L21 structure (space group Fm3̄m) which is shown in the inset
of Fig. 1(a). The Co atoms occupy Wyckoff position 8c (1/4,
1/4, 1/4); the X and Al atoms are located at 4a (0, 0, 0) and
4b (1/2, 1/2, 1/2), respectively. As depicted in Fig. 1(a), this

structure consists of four interpenetrating fcc sublattices, two
of which are equally occupied by X [14,15].

The calculated lattice constants shown in Fig. 1(b) demon-
strate a monotonic decrease with increasing atomic number
of the X element, consistent with their corresponding atomic
radius. We have also carried out PBE+U calculations where
we used the values of U for the d orbitals of Co and the X ele-
ments from Ref. [46]. The effect of U on the lattice constants
[blue dashed curve in Fig. 1(b)] shows a slight increase of the
lattice constant when compared to the case without U . The re-
sults are in good agreement with the experimentally reported
data [47–62], denoted by black stars in Fig. 1(b). Heusler com-
pounds are known for their well-behaved magnetic properties
in terms of their total number of valence electrons. The total
magnetic moment per formula unit is shown in Fig. 1(c) ver-
sus the X element (sorted with respect to its atomic number).
In agreement with the Slater-Pauling curve [63], the magnetic
moment per formula unit is an integer number that depends
linearly on the number of valence electrons per formula unit
Nv , given by Ms = Nv − 24 (Ms = 34 − Nv) for X � Fe
(X � Fe). Surprisingly, the results are relatively insensitive
to the exchange correlation functional (PBE, PBE+U , or
LSDA), and except for Co2CrAl, the ab initio results are in
relatively good agreement with the experimentally reported
findings in Refs. [47–62]. The slight increase of the magnetic
moment in Co2MnAl due to the inclusion of U is in agreement
with previous density functional theory (DFT) calculations
[46]. The origin of the discrepancy in the case of Co2CrAl
is attributed to B2-like disorder and an antiferromagnetic
coupling of Cr with its neighbors, leading to ferrimagnetic
behavior [64].

For cubic crystal structures the elastic energy is given by

Eel = 1
2C11

(
ε2

xx + ε2
yy + ε2

zz

) + 1
2C44

(
ε2

xy + ε2
yz + ε2

xz

)
+ C12(εxxεyy + εyyεzz + εxxεzz ), (21)

where the subscripts in Ci j correspond to the Voigt nota-
tion ([1, 2, 3, 4, 5, 6] ≡ [xx, yy, zz, yz, xz, xy]). In Fig. 1(d)
we present the calculated (using VASP) elastic constants C11,
C12, and C44 versus X elements. The results are in good
agreement with previous first-principles electronic structure
calculations [65]. The solid (dashed) lines in Fig. 1(d) cor-
respond to the DFT calculations without (with) the Hubbard
U term. The inclusion of U results in an overall decrease of
the C11 and C12 elastic constants and a small change in C44.
Elastic stability of a compound requires that all eigenvalues
of the 6 × 6 elastic matrix be positive. For a cubic crystal
structure the eigenvalues are C44, C11 + 2C12, and C11 − C12,
corresponding to shear, bulk, and tetragonal shear moduli,
respectively. The results for the elastic constants presented in
Fig. 1(b) demonstrate that all compounds are stable under any
elastic deformation.

The magnetoelastic energy for a cubic crystal structure is
given by [32]

Eme = B1
(
εxxm2

x + εyym2
y + εzzm

2
z

)
+ B2(εxymxmy + εyzmymz + εxzmxmz ). (22)

Figure 2 shows the magnetocrystalline anisotropy tensor
matrix elements Kxx and Kxy as a function of strains εxx and

094401-4



MAGNETOELASTIC AND MAGNETOSTRICTIVE … PHYSICAL REVIEW B 102, 094401 (2020)

xx (%)-0.1

-0.05

0

0.05

0.1
K

xx
 (m

eV
/f.

u.
)

-2 -1 0 1 2

xy (%)

-0.1

-0.05

0

0.05

0.1

K
xy

 (m
eV

/f.
u.

)

Co2TiAl
Co2VAl
Co2CrAl
Co2MnAl
Co2FeAl

(a)

(b)

FIG. 2. Strain dependence of magnetocrystalline anisotropy co-
efficients Kxx and Kxy calculated from the “spin-orbital” torque
approach under εxx and εxy strains, respectively, for the Co2XAl (X
= Ti, V, Cr, Mn, Fe) family.

εxy, respectively, for the Co2XAl Heusler compounds using
the spin-orbital torque approach with the OPENMX DFT pack-
age. As expected, the strain dependence is linear within the
range of −2% to +2%, suggesting that two strain values, as
implemented in Eq. (20), are sufficient to calculate the magne-
toelastic coefficients accurately. Note that dKxx/dεxx < 0 for
all compounds. On the other hand, the variation of dKxy/dεxy

across the series is nonmonotonic and is discussed in detail
below.

Figure 3(a) displays the magnetoelastic constants B1 and
B2 versus the X element, shown as blue and red symbols,
respectively. The solid (dashed) lines in Fig. 3(a) are the
results of VASP calculations using PBE without (with) the U
term, while the stars are calculated using OPENMX with the
LSDA exchange correlation functional. We find overall good
agreement between the results of the two different ab initio
packages. The effect of U is to reduce both magnetoelastic
constants by a factor of 2.

Figure 3(a) shows that the magnetoelastic constant B1 is
negative for all members of the Co2XAl family independent of
the exchange correlation functionals, and ignoring the effect
of Hubbard U , it ranges from around −20 to 0 MPa, compara-
ble to the corresponding range for the spinel ferrites CoFe2O4

and NiFe2O4 [7]. The magnetoelastic coupling constants B2

range from about −15 to +10 MPa, which are higher by an or-
der of magnitude than the corresponding values for the spinel
ferrites. In Fig. 3(b) we show the magnetostriction constants
λ[100] and λ[111] and the average magnetostriction constant λs,
suitable for polycrystalline systems, versus the X element.
The polycrystalline magnetostriction constant using PBE+U
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FIG. 3. (a) Magnetoelastic constants B1 (blue symbols) and B2

(red symbols) versus X elements in Co2XAl Heusler compounds,
calculated using VASP with the PBE exchange correlation (solid
lines) and PBE+U (dashed lines). We have also included the re-
sults of the calculation using OPENMX with the LSDA exchange
correlation functional (stars). (b) Magnetostriction constants λ[100]

and λ[111] (using VASP with PBE) and the average magnetostriction
for polycrystalline systems λs versus X elements. The dashed line
corresponds to the polycrystalline magnetostriction calculated using
VASP with PBE+U . For comparison we also show the experimental
values (black stars) for Co2MnAl [66] and Co2FeAl [67] at room
temperature.

(dashed green curve) is approximately 50% lower than the
corresponding values without U (solid green curve). Since
the difference between the magnetoelastic constants obtained
from VASP and OPENMX is small, we show in Fig. 3(b) only the
magnetostriction constants calculated from VASP. For compar-
ison we also display the available experimental values of λs

for Co2MnAl [66] and Co2FeAl [67]. Overall, the DFT+U re-
sults are in better agreement with the experimentally reported
room-temperature values. It should be noted that since thermal
spin and phonon fluctuations are not taken into account in the
DFT calculations, one should not expect very good agreement
between the theoretical results and the reported experimental
values at room temperature.

To understand the underlying origin of the magnetoelastic
properties across the series we have used Eq. (9) employed
in the OPENMX DFT package to resolve the total torque into
its atomic and orbital contributions. In Figs. 4(a) and 4(b)
[Figs. 4(c) and 4(d)] we show the orbital and atomic con-
tributions to the magnetoelastic constant Kxx (Kxy) versus
X elements. The MCA constants originate primarily from
the Co and X elements, shown in the left and right panels,
respectively. On the left-hand ordinate in Fig. 4 we display
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FIG. 4. (a) and (c) Co and (b) and (d) X -projected atomic-orbital-
resolved contributions to strain-induced MCA, Kxx/εzz and Kxy/εxy,
shown in the top and bottom panels, respectively. The left-hand
ordinate shows the nonzero matrix elements of the three components
of the orbital angular momentum operators, L̂y, L̂x , and L̂z.

the nonzero matrix elements of the three components of the
orbital angular momentum operators, L̂y, L̂x, and L̂z.

For a cubic crystal structure subject to strain along z, the
nonzero MCA constant, Kxx = Kyy, is given by

Kxx = −�τ [101]
MCA · �ey = 〈

ξ̂ (L̂xσ̂z − L̂zσ̂x )
〉[101]

, (23)

where the first and second terms correspond to the in-
plane (xy-plane) and out-of-plane (z-axis) contributions of
the strain-induced orbital moment accumulation, respectively.
This is consistent with Figs. 4(a) and 4(b), where the mag-
netoelastic constant B1 is dominated by the contribution of
the strain-induced L̂z orbital moment accumulation of the
Co atoms. The 〈dx2−y2 |L̂z|dxy〉 contribution to B1 can be fur-
ther decomposed into the spin-diagonal and spin-off-diagonal
components, where, according to the second-order perturba-
tion approach, the former (latter) yields positive (negative)
contributions to the uniaxial MCA. Under a tensile strain
along z we find a significant reduction of 〈dx2−y2 |L̂z|dxy〉, re-
sulting in a negative sign for B1.

Similarly, using the spin-orbital torque expression and the
strain-induced MCA under biaxial εxy strain, the magnetoe-
lastic constant Kxy is given by the expression

Kxy = − 1
2 �τ [100]

MCA · �ez = − 1
2

〈
ξ̂ (L̂xσ̂y − L̂yσ̂x )

〉[100]
. (24)

In the rotated frame of reference where the magnetization
is along z, Eq. (24) shows that the spin-diagonal (spin-off-
diagonal) matrix elements contribute to the orbital moment
accumulation along y (x). Similar to the Kxx magnetoelastic
constant, the main contribution to Kxy arises from the Co
atoms, where the negative sign of B2 is mainly due to the
〈dz2 |L̂x|dyz〉 orbital momentum matrix element. The sign re-
versal of Kxy for X = Mn is due to the relatively large positive

contribution to the strain-induced orbital moment accumula-
tion along the y axis.

V. CONCLUSION

In summary, we have presented a detailed first-principles
study of the magnetoelastic and magnetostrictive properties
of Co2XAl full Heusler compounds that crystallize in the L21

structure. We described three computational approaches to
calculate the magnetoelastic and magnetostriction tensor ma-
trix elements. The first one is the well-known approach based
on total energy calculations. The other two novel approaches
are based on the torque [28] and spin-orbital torque [30]
approaches, respectively. The latter two are computationally
more efficient and allow the atomic and orbital decomposi-
tions of the magnetoelastic constants which can, in turn, eluci-
date the underlying atomic mechanisms. In addition, a general
approach was presented to determine the average magne-
tostriction constants that is suitable for polycrystalline sys-
tems in terms of the magnetostriction tensor matrix elements.
The results of the different computational approaches, using
both the VASP and OPENMX packages, agree well, and they are
also in good agreement with available experimental data.
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APPENDIX

The isotropic (volumetric) magnetostriction constants λ(0)
p

and anisotropic magnetostriction constants λ(2)
pq can be ex-

pressed in terms of the magnetostriction tensor elements hkl
i j ,

λ
(0)
1 = 1

9

∑
i

(
2hzz

ii − hxx
ii − hyy

ii

)
, (A1a)

λ
(0)
2 = 1

3
√

3

∑
i

(
hxx

ii − hyy
ii

)
, (A1b)

λ
(2)
11 = 1

9

(
4hzz

zz + hxx
xx + hyy

yy + hyy
xx − 2hxx

zz − 2hyy
zz

+ hxx
yy − 2hzz

xx − 2hzz
yy

)
, (A2a)

λ
(2)
22 = 1

3

(
hxx

xx + hyy
yy − hyy

xx − hxx
yy

)
, (A2b)

λ
(2)
12 = 1

3
√

3

(
2hxx

zz − hxx
xx − hxx

yy − 2hyy
zz + hyy

xx + hyy
yy

)
, (A2c)

λ
(2)
21 = 1

3
√

3

(
2hzz

xx − hxx
xx − hyy

xx − 2hzz
yy + hxx

yy + hyy
yy

)
, (A2d)

λ
(2)
1p = 2

3
√

3

(
2hp

zz − hp
xx − hp

yy

)
, p = yz, xz, xy, (A2e)

λ
(2)
2p = 2

3

(
hp

xx − hp
yy

)
, p = yz, xz, xy, (A2f)

λ(2)
pq = 4

3
hq

p, p, q = yz, xz, xy, (A2g)
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where we used the following expressions:∫
d�dz2 (x2) = −

√
4π

45
, (A3a)

∫
d�dz2 (y2) = −

√
4π

45
, (A3b)

∫
d�dz2 (z2) =

√
16π

45
, (A3c)

∫
d�dx2−y2 (x2) =

√
4π

15
, (A3d)

∫
d�dx2−y2 (y2) = −

√
4π

15
, (A3e)

∫
d�dx2−y2 (z2) = 0. (A3f)
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