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Phonon hydrodynamics in crystalline GeTe at low temperature
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A first-principles density functional method along with the direct solution of linearized Boltzmann transport
equations are employed to systematically analyze the low-temperature thermal transport in crystalline GeTe.
The extensive thermal transport simulations, ranging from room temperature to cryogenic temperatures, reveal
the emergence of a phonon hydrodynamic regime in GeTe at low temperature. The reduction of grain boundary
scattering is found to play a crucial role along with the divergent trend of umklapp and normal scattering at low
temperatures in accommodating the hydrodynamic regime. Average scattering rates for normal, umklapp, and
other resistive processes are distinguished for a wide range (4–300 K) of temperatures and used for identifying
various phonon transport regimes. Therefore, the variations of lattice thermal conductivity, phonon propagation
length, and thermal diffusivity with temperature, related to these transport regimes (ballistic, hydrodynamic,
and kinetic), have been thoroughly investigated. The modewise decomposition of lattice thermal conductivity
and the distinction of thermal diffusivity according to different scattering processes reveal rich information on
the dominant phonon modes and phonon scattering processes in GeTe at low temperature. Further, the kinetic-
collective model is used to elucidate the hydrodynamic behavior of phonon scattering through the relative study
of collective and kinetic contributions to the thermal transport properties. In this context, the Knudsen number
is estimated through the characteristic nonlocal length and the grain size, which further quantifies the consistent
hydrodynamic behavior of phonon thermal transport for GeTe. Finally, phonon-vacancy scattering for GeTe is
realized, and vacancies are found strongly to influence the hydrodynamic window while incorporating the other
resistive scattering mechanisms.
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I. INTRODUCTION

Low-temperature phonon-based heat conduction of mate-
rials offers some interesting phenomena with its intriguing
physics implications, which have drawn sizable attention very
recently in the field of phonon heat transport [1–5]. One such
phenomenon is phonon hydrodynamics, which deals with the
collective motion of phonons as a medium of heat conduc-
tion and bears conceptual similarities with the hydrodynamic
fluid flow, contrary to the usual single-mode relaxation-time
approximation, where the energy and lifetime of each in-
dependent phonon gas particles are considered [1,3,6–9].
The collective flow of phonons is caused by the strong
presence of normal scattering (N) events, which allow the
phonons to conserve their momentum before being dissi-
pated by weak resistive (R = umklapp, phonon-boundary, or
phonon-isotope scattering) scattering events [1–3,6,8]. As a
result, under certain conditions, phonons manifest characteris-
tic length and time scales over which temperature fluctuations
propagate as damped waves [2,10] and feature exotic phe-
nomena like Poiseuille’s flow and the occurrence of second
sound [3,9,11–13]. The idea of identifying the phonon hydro-
dynamic regime using the average scattering rate of normal
and other momentum-destroying resistive scattering processes
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was first proposed by Guyer and Krumhansl through their
seminal theoretical work [13,14]. From a different perspec-
tive, hydrodynamic effects have also been understood from
their deviation from Fourier’s law behavior of phonon ther-
mal transport [15,16]. Recently, phonon collective excitations
have been treated differently by defining them as relaxons, an
elementary carrier of heat that is defined as the eigenvectors
of the scattering matrix [17].

Until now, only a handful of materials, mostly two-
dimensional (2D) materials, have been found to exhibit
phonon hydrodynamics both theoretically and experimen-
tally [1,16,18–20]. First-principles simulations by Cepellotti
and co-workers [3] suggested that the hydrodynamic effects
can be observed even at room temperature for graphene,
boron nitride, and other 2D materials. Further, the existence
of second sound had also been realized through lattice dy-
namics calculations for a single-walled carbon nanotube [21].
Recently, Huberman et al. [22] experimentally observed sec-
ond sound in graphite above 100 K, validating the earlier
theoretical first-principles study by Ding et al. [12]. Very
recently, the relation between the thickness and thermal con-
ductivity, and therefore the link between these two factors
with phonon hydrodynamics, was studied for graphite [23].
A faster than T 3 scaling of the lattice thermal conduc-
tivity has also been identified as an observation to detect
phonon hydrodynamics in recent studies comprised of both
experimental and theoretical methods on bulk black phospho-
rus [9] and SrTiO3 [24,25]. Low-frequency light-scattering
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and time-domain light-scattering techniques were also em-
ployed to study collective phonon excitation in KTaO3,
and the corresponding hydrodynamic behavior was observed
below 30 K [5]. The presence of second sound was exper-
imentally observed at low temperatures in isotopically pure
solid helium (0.6–1 K) [26], NaF (∼15 K) [27], and Bi
(∼3 K) [28]. Recently, theoretical calculations performed by
Markov et al. [2] confirmed the experimental realization of
hydrodynamic Poiseuille phonon flow in bismuth (Bi) at cryo-
genic temperature.

Germanium telluride (GeTe) is a versatile material with its
diverse range of applicability [29,30]. Due to its notably high
contrast in electrical resistance and a stable amorphous phase
with a higher crystallization temperature, it has emerged as
one of the most significant candidates within phase change
materials [31,32]. GeTe has been implemented with a super-
lattice configuration as GeTe-Sb2Te3, which has been broadly
used for its application in optical as well as PCM storage
devices [30,33]. It is also an efficient thermoelectric material
and is used for applications in waste heat recovery, low-scale
refrigeration, energy generation, etc. [29]. Most of the work
on the thermal conductivity of crystalline GeTe has been
carried out at room temperature [29,30,34,35], at high tem-
peratures [29], and within a range from room temperature to
high temperature [36,37] mostly due to its engineering appli-
cations. However, at low temperature, very few investigations
have been done to understand the heat transfer mechanism.
Several decades ago, Lewis et al. [38] experimentally mea-
sured the thermal conductivity of GeTe in the temperature
interval of 2.5–110 K. Recently, the lattice thermal conduc-
tivity of arc-melted Ge-deficient GeTe was experimentally
measured [39] in the temperature range of 10–800 K. How-
ever, no physical insight was provided to understand the
illusive role of phonon scattering at low temperatures. In
a recent study, Torres et al. [4] showed a strong phonon
hydrodynamic behavior in low lattice thermal conductivity
(κL) materials such as metal dichalcogenides. Therefore, we
ask the following question: Can GeTe, a chalcogenide-based
material, which shows even lower lattice thermal conductivity
(κL) compared to metal dichalcogenides, exhibit appreciable
phonon hydrodynamics at low temperatures? Also, featuring
a considerable hydrodynamic effect in a material demands
simultaneous weak and strong umklapp and normal scattering,
respectively, at low temperature. However, inadequate normal
scattering events influence the phonon transport to become
ballistic [6]. Having understood the distinct role of different
scattering mechanisms as well as various phonon modes in
the thermal transport of GeTe at temperatures ranging from
room temperature to 503 K in our recent study [37], we tend
to understand the hierarchy of phonon scattering mechanisms
and their implications at low temperature.

Therefore, in this current paper, we explore the low-
temperature thermal transport of crystalline GeTe, ranging
from 4 to 300 K, using the first-principles density functional
method coupled with the solution of the linearized Boltzmann
transport equation (LBTE) via a direct noniterative method.
To compare and investigate the regime of failure of a phonon
gas model and an individual phonon scattering description
at low temperature, the relaxation-time approximation (RTA)
is also studied. After defining average scattering rates in the

investigated temperature range, a systematic study of mode-
decomposed lattice thermal conductivity is carried out. Two
different grain sizes have been considered to understand the
role of phonon-boundary scattering. Ballistic, hydrodynamic,
and kinetic transport regimes are identified. The variation
of second sound propagation length with temperature has
been discussed and compared with the phonon average mean
free path. Thermal diffusivity and its contribution from dif-
ferent scattering events have been estimated. To get further
insight and consistency, the kinetic-collective model (KCM)
is employed and the relative contribution of collective and
kinetic thermal transport has been understood from lattice
thermal conductivity and Knudsen number estimation. Fi-
nally, phonon-vacancy scattering for GeTe is studied, which
was found to affect the hydrodynamic regime of GeTe. This
thorough and systematic in-depth theoretical investigations
and its findings are crucial to understand the illusive nature
and hierarchy of different phonon scattering events for chalco-
genide low-κL materials.

II. COMPUTATIONAL DETAILS

The structural parameters of crystalline GeTe (space
group R3m) are optimized via first-principles density func-
tional calculations, and the corresponding parameter details
are presented in our earlier work [37]. The phonon life-
time and consequently the lattice thermal conductivity κL

are obtained by solving the linearized phonon Boltzmann
transport equation (LBTE) using both the direct method in-
troduced by Chaput et al. [40] as well as the single-mode
relaxation-time approximation (RTA) or the RTA employing
the PHONO3PY [41] software package. Initially, the supercell
approach with finite displacement of 0.03 Å is applied to
calculate the harmonic (second-order) and the anharmonic
(third-order) force constants, given by

�αβ (lκ, l ′κ ′) = ∂2�

∂uα (lκ )∂uβ (l ′κ ′)
(1)

and

�αβγ (lκ, l ′κ ′, l ′′κ ′′) = ∂3�

∂uα (lκ )∂uβ (l ′κ ′)∂uγ (l ′′κ ′′)
, (2)

respectively. First-principles calculations using QUANTUM-
ESPRESSO [42] are implemented to calculate the forces acting
on atoms in supercells. Using the finite-difference method,
harmonic force constants are approximated as [41]

�αβ (lκ, l ′κ ′) � −Fβ[l ′κ ′; u(lκ )]

uα (lκ )
, (3)

where F[l ′κ ′; u(lκ)] is the atomic force computed at r(l ′ κ ′)
with an atomic displacement u(lκ) in a supercell. Similarly,
anharmonic force constants are obtained using [41]

�αβγ (lκ, l ′κ ′, l ′′κ ′′) � −Fγ [l ′′κ ′′; u(lκ ), u(l ′κ ′)]
uα (lκ )uβ (l ′κ ′)

, (4)

where F[l ′′κ ′′; u(lκ), u(l ′ κ ′)] is the atomic force computed at
r(l ′′ κ ′′) with a pair of atomic displacements u(lκ) and u(l ′κ ′)
in a supercell. These two sets of linear equations are solved
using the Moore-Penrose pseudoinverse as is implemented in
PHONO3PY [41].
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We use a 2 × 2 × 2 supercell of GeTe for our first-
principles calculations of anharmonic force constants. Using
the supercell and finite displacement approach, 228 super-
cells are obtained, having different pairs of displaced atoms,
for the calculations for the anharmonic force constants. A
larger 3 × 3 × 3 supercell is employed for calculating the
harmonic force constants. For all the supercell force calcu-
lations, the reciprocal space is sampled using a 3 × 3 × 3
k-sampling Monkhorst-Pack (MP) mesh [43] shifted by a
half-grid distances along all three directions from the �-point.
For the density functional calculations, the Perdew-Burke-
Ernzerhof (PBE) [44] generalized gradient approximation
(GGA) is used as the exchange-correlation functional. The
spin-orbit interaction has been ignored due to its negligible
effects on the vibrational features of GeTe as mentioned in the
literature [34,45]. Electron-ion interactions are represented
by pseudopotentials using the framework of the projector-
augmented-wave (PAW) method [46]. The Kohn-Sham (KS)
orbitals are expanded in a plane-wave (PW) basis with a
kinetic cutoff of 60 Ry and a charge density cutoff of 240
Ry as prescribed by the pseudopotentials of Ge and Te. The
total energy convergence threshold has been kept at 10−10

a.u. for supercell calculations. For lattice thermal conductivity
calculations employing both the direct solution of LBTE and
that of the RTA, a q-mesh of 24 × 24 × 24 is used. The
imaginary part of the self-energy has been calculated using
the tetrahedron method from which phonon lifetimes are ob-
tained. For KCM [47] calculations, KCM.PY code [47] with the
PHONO3PY [41] implementation is employed.

III. AVERAGE PHONON SCATTERING RATE
AND HYDRODYNAMIC REGIME

The theory of lattice dynamics assumes crystal potential
energy to be an analytical function of the atomic displace-
ments from their equilibrium positions [41]. Therefore, the
crystal potential is expanded with respect to atomic dis-
placements, and the corresponding third-order coefficients
that contain the anharmonicity are employed to calculate the
imaginary part of the self-energy [41]. The phonon lifetime
(τph-ph) is computed from the imaginary part of the phonon
self-energy using PHONO3PY [41,48]. Generally, in a har-
monic approximation, phonon lifetimes are infinite, whereas
anharmonicity in a crystal gives rise to a phonon self-energy

ωλ + i�λ. The phonon lifetime has been computed from
the imaginary part of the phonon self-energy as τλ = 1

2�λ(ωλ )
from [41]

�λ(ωλ)

= 18π

h̄2

∑
λ′λ′′


(q + q′ + q′′) | �−λλ′λ′′ |2 {(nλ′ + nλ′′ + 1)

× δ(ω − ωλ′ − ωλ′′ ) + (nλ′ − nλ′′ )[δ(ω + ωλ′ − ωλ′′ )

− δ(ω − ωλ′ + ωλ′′ )]}, (5)

where nλ = 1
exp(h̄ωλ/kBT )−1 is the phonon occupation number at

the equilibrium. 
(q + q′ + q′′) = 1 if q + q′ + q′′ = G, or
0 otherwise. Here G represents a reciprocal-lattice vector. In-
tegration over q-point triplets for the calculation is made sep-
arately for normal (G = 0) and umklapp processes (G �= 0),

and therefore phonon umklapp (τU ) and phonon normal life-
time (τN ) have been distinguished.

For both the direct method and RTA, scattering of phonon
modes by randomly distributed isotopes [41] is also incor-
porated for comparison. The isotope scattering rate (τ−1

I ),
using second-order perturbation theory, is given by Shin-
ichiro Tamura [49] as

1

τ I
λ (ω)

= πω2
λ

2N

∑
λ′

δ(ω − ω′
λ)

×
∑

k

gk

∣∣∣∣∣
∑

α

Wα (k, λ)W∗
α (k, λ)

∣∣∣∣∣
2

, (6)

where gk is the mass variance parameter, defined as

gk =
∑

i

fi

(
1 − mik

mk

)2
, (7)

fi is the mole fraction, mik is the relative atomic mass of the
ith isotope, mk is the average mass = ∑

i fimik , and W is a po-
larization vector. The database of the natural abundance data
for elements [50] is used for the mass variance parameters.

The effect of a crystal boundary has been implemented
using Casimir diffuse boundary scattering [51] as τB

λ = L
|vλ| ,

where vλ is the average phonon group velocity of phonon
mode λ, and L is the grain size, which is also called Casimir
length L, the length phonons travel before the boundary ab-
sorption or reemission [51].

The thermodynamic average of different phonon scattering
events is defined using

〈
τ−1

i

〉
av =

∑
λ Cλτ

−1
λi∑

λ Cλ

. (8)

Here, λ defines phonon modes (q, j) comprising wave vector
q and branch j. Index i denotes normal, umklapp, isotope, and
boundary scattering processes used, denoted by N , U , I , and
B, respectively. Cλ is the modal heat

capacity, given by

Cλ = kB

( h̄ωλ

kBT

)2 exp(h̄ωλ/kBT )

[exp(h̄ωλ/kBT ) − 1]2
, (9)

where T denotes temperature, h̄ is the reduced Planck con-
stant, and kB is the Boltzmann constant. According to the
condition prescribed by Guyer and Krumhansl [13], the hy-
drodynamic regime exists if〈

τ−1
U

〉
av � 〈

τ−1
N

〉
av. (10)

Moreover, Guyer’s condition [13] for the occurrence of sec-
ond sound and Poiseuille’s flow reads〈

τ−1
U

〉
av <

〈
τ−1

B

〉
av <

〈
τ−1

N

〉
av. (11)

We carefully introspect these conditions in GeTe for the
two different grain sizes. Here we note that our earlier exper-
imental study [31] on the variation of GeTe grain size with
annealing temperature revealed the grain size to be 40 nm
for an annealing temperature of 453 K, and the grain size
grows with increasing annealing temperature. Therefore, in
this investigation we study two different grain sizes, namely
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FIG. 1. Thermodynamic average phonon scattering rates as a function of temperature in log-log scale for GeTe for (a) grain size (L) =
40 nm and (b) grain size (L) = 400 nm. N , U , I , B, and R denote normal, umklapp, isotope, boundary, and resistive scattering, respectively.
The shaded regions correspond to the validation of Guyer’s condition [13] for Poiseuille’s flow [Eq. (11)].

40 and 400 nm, to study the effect of grain size on the phonon
hydrodynamics.

Figure 1 presents the average scattering rates due to var-
ious scattering processes as a function of temperature for
GeTe. The shaded region in the temperature range defines
the regime where Guyer’s condition [13] for Poiseuille’s flow
[Eq. (11)] is satisfied. It is observed that at high temperatures,
the difference between umklapp and normal scattering is low
and it gradually increases with decreasing temperature. The
average isotope scattering shows an almost constant value
at higher temperature and subsequently a gradual dip in the
value as the temperature is lowered. The resistive scattering
rate (τ−1

R = τ−1
U + τ−1

I ) is realized by adding the resistive
scattering processes, namely umklapp and phonon-isotope
scattering. Similar to the trend of the umklapp scattering rate
with temperature, the difference between resistive and normal
scattering rate is low at high temperatures and it gradually
increases upon lowering the temperature. Here we mention
that the average resistive scattering is dominated by umklapp
scattering at higher temperatures. However, as temperature is
lowered, isotope scattering emerges as a significant contribu-
tor for total resistive scattering in GeTe and even dominates
the resistive scattering rate at further lowering of temperature.
Therefore, as mentioned earlier [2], isotopic purity is an im-
portant factor for the existence of the hydrodynamic regime,
and isotopic impurity can reduce the chances of hydrody-
namic phonon flow.

Finally, satisfying or not satisfying both of Guyer’s
conditions [Eqs. (10) and (11)] crucially depends on the
phonon-boundary scattering, or more elaborately, the grain
size. Equation (11) has been found to be valid in the temper-
ature regime ≈ 37–47 K [Fig. 1(a)] for L = 40 nm, whereas
a temperature regime of ≈ 8–16 K [Fig. 1(b)] is identified for

the Poiseuille flow regime for L = 400 nm. Although for both
of the grain sizes Eq. (11) is satisfied in the regime defined
above, Eq. (10) is found to be valid only for L = 400 nm
[Fig. 1(b)]. Therefore, reducing the phonon-boundary scatter-
ing using a larger grain size is found to be an avenue to explore
the hydrodynamic regime in GeTe.

IV. LATTICE THERMAL CONDUCTIVITY FOR
DIFFERENT TRANSPORT REGIMES: ACOUSTIC

AND OPTICAL MODE DECOMPOSITION

After defining the hydrodynamic regime from phonon
scattering rates, we tend to investigate the lattice thermal
conductivity (κL) of crystalline GeTe as a function of tem-
perature. We note that the lattice thermal conductivity picture
can also serve as a way to distinguish different phonon trans-
port regimes when direct noniterative solutions to Boltzmann
transport equations (LBTE) are compared with that of the
single-mode relaxation time (RTA) solution. The deviation of
RTA κL from the direct solution of LBTE κL can be under-
stood as a marker to the failure of the concept of a single,
uncorrelated phonon heat transfer mechanism [1,2].

To evaluate the lattice thermal conductivity (κL) through
the direct solution of LBTE, the method developed by
Chaput [40] is adopted. According to this method, lattice
thermal conductivity is given as [40]

καβ = h̄2

4kBT 2NV0

∑
λλ′

ωλυα (λ)

sinh
( h̄ωλ

2kBT

) ωλ′υβ (λ′)

sinh
( h̄ωλ′

2kBT

) (�∼1)λλ′ , (12)

where �∼1 is the Moore-Penrose inverse of the collision ma-
trix �, given by [40,41]

�λλ′ = δλλ′/τλ + π/h̄2
∑
λ′′

| �λλ′λ′′ |2 [δ(ωλ − ωλ′ − ωλ′′ ) + δ(ωλ + ωλ′ − ωλ′′ ) + δ(ωλ − ωλ′ + ωλ′′ )]

sinh
( h̄ωλ′′

2kBT

) . (13)
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FIG. 2. Lattice thermal conductivity (κL) as a function of temperature using direct-LBTE as well as RTA solution for GeTe with grain size
(a) 40 nm and (b) 400 nm. Separate contributions of each phonon mode to κL are presented as a function of temperature using direct-LBTE
for grain size (c) 40 nm and (d) 400 nm. Transverse acoustic and optical modes are denoted by TA and TO, respectively, whereas longitudinal
acoustic and optical modes are denoted by LA and LO, respectively. The shaded region with light red and gray denote kinetic and hydrodynamic
regimes, respectively.

Here, �λλ′λ′′ denotes the interaction strength between three
phonon λ, λ′, and λ′′ scattering [41]. However, implementing
the RTA in solving LBTE, lattice thermal conductivity tensor
κL can be written in a closed form as [41,52]

κL = 1

NV0

∑
λ

Cλvλ ⊗ vλτλ, (14)

where N is the number of unit cells and V0 is the volume of
the unit cell. Cλ is the modal heat capacity, λ being the mode.
We consider different scattering processes, namely normal,
umklapp, isotope, and boundary scattering, denoted by N , U ,
I , and B, respectively. For each of these processes, the total
phonon lifetime has been realized using Matthiessen’s rule
as [51]

1

τλ

= 1

τN
λ

+ 1

τU
λ

+ 1

τ I
λ

+ 1

τB
λ

, (15)

where τN
λ , τU

λ , τ I
λ , and τB

λ are phonon lifetimes corresponding
to the normal, umklapp, isotope, and boundary scattering,
respectively.

Figures 2(a) and 2(b) present κL as a function of tempera-
ture for grain sizes 40 and 400 nm, respectively. Since GeTe
is polycrystalline and κL is anisotropic along the hexagonal
c axis and a-b axes [34,37], the average lattice thermal con-
ductivity is calculated as κav = 2

3κx + 1
3κz [34,37]. We will

focus here on the direct solution of LBTE (red circles) and
will use RTA solutions for comparison. At higher temper-
ature, κL is found to follow a 1

T trend, reminiscing of the
significant contribution from umklapp scattering described by
the phenomenological Slack model [53–55] and thus defin-
ing the kinetic regime (light red shaded region in Fig. 2) of
thermal transport for GeTe. We observe [green dotted lines
in Figs. 2(a) and 2(b)] that the extent of the kinetic regime
for GeTe is longer for L = 400 nm (≈ 150–300 K) than L =
40 nm (≈ 200–300 K). Lowering the temperature gradually
enhances the κL to reach maximum and then gradually helps
drop the κL to zero upon further temperature lowering. While
reaching maximum is a manifestation of enhanced normal
scattering, phonon boundary scattering is responsible for the
decrement of κL from maximum to zero. Thus, a higher value
of κL is observed [Fig. 2(b)] for the relatively weak phonon
boundary scattering rate by increasing the grain size.

By carefully comparing the κL-LBTE solution with that
of the RTA in Figs. 2(a) and 2(b), a qualitative estimate can
be made regarding the hydrodynamic regime. The difference
between the direct LBTE solution (red circles) and the RTA
(blue line) gradually increases as we lower the temperature
from 300 K. After the difference reaches maximum, the two
solutions start to fall into each other and become identi-
cal at very low temperatures. According to the conventional
wisdom [1,2], the difference becomes maximum when the
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FIG. 3. Contribution of transverse (TA1, TA2) and longitudinal (LA) acoustic modes to total κL for GeTe as a function of temperature for
(a) L = 40 nm and (b) L = 400 nm.

single uncorrelated phonon gas concept with an individual
phonon lifetime breaks down, and momentum-conserving
normal scattering overpowers resistive scattering processes.
Thus deviating from 1/T scaling marks the departure from
the kinetic phonon transport regime and gradual entrance to
the hydrodynamic regime. On the other extreme, as shown
in Figs. 2(a) and 2(b), at very low temperatures, boundary
scattering dominates over any other scattering mechanisms,
and

direct-LBTE and RTA based solutions become identical.
This is called the “ballistic regime” where the phonon mean
free path is dictated by the grain boundary Casimir length
L. As the temperature is increased, the two solutions start
diverging and thus phonon transport enters the hydrodynamic
regime from the ballistic regime. We find that the criteria for
the hydrodynamic regime and phonon Poiseuille flow, shown
as the shaded area in Figs. 2(a) and 2(b), mark consistently
the regions for both the grain sizes that are close to the
κL-maximum and start from the point where direct-LBTE
and RTA solutions just start diverging immediately after the
ballistic regime.

Figures 2(c) and 2(d) show the variation of each decom-
posed acoustic and optical modes of κL with temperature for
L = 40 and 400 nm, respectively. Consistent with the recent
observation from the high-temperature study of GeTe [37],
transverse acoustic modes are found to dominate the phonon
heat transfer throughout the whole temperature range studied.
The contribution of optical modes happens to be substantially
low for GeTe. For T < 30 K, this contribution nearly vanishes
(as will be discussed further below).

The contributions of three acoustic modes (TA1, TA2, and
LA) are found to evolve in a different fashion with temper-
ature as realized via Fig. 3. The TA1 mode seems to be the
dominant contributor for the whole temperature range for both
L = 40 and 400 nm. At higher temperature, the contribution
of TA1 reaches a constant value of ≈45%, while TA2 and
LA modes contribute ≈34% and ≈21%, respectively, to the
total acoustic κL. As the temperature is lowered below 100 K,
both TA2 and LA contributions start decreasing. Remarkably,
the TA1 contribution shows a gradual increasing trend below
100 K and reaches a maximum value around 80% at extreme

low temperature for both grain sizes. As the hydrodynamic
regime is prominent for L = 400 nm, looking at Fig. 3(b),
we can observe that the contributions of all three acoustic
modes are constant in the kinetic regime, whereas in the
hydrodynamic and ballistic transport regimes, the TA1 mode
overshadows the TA2 and LA modes. To further understand
the role played by the optical modes compared to the acoustic
modes, in thermal transport in GeTe we calculate the cumula-
tive lattice thermal conductivity (κc

L) as a function of phonon
frequency defined as [41,48]

κc
L =

∫ ω

0
κL(ω′)dω′, (16)

where κL (ω′) is defined as [41,48]

κL(ω′) ≡ 1

NV0

∑
λ

Cλvλ ⊗ vλτλδ(ω′ − ωλ) (17)

with 1
N

∑
λ δ(ω′ − ωλ) the weighted density of states (DOS).

As realized from the detailed investigation of the phonon
density of states and phonon dispersion relation in our earlier
work [37] on GeTe, a phonon frequency around 2.88 THz can
be found to be a good approximation of a separator between
acoustic and optical modes [37]. Figure 4 presents the cu-
mulative lattice thermal conductivities along the a-axis (κx

L),
the hexagonal c-axis (κz

L), and the average κc
L as a function of

phonon frequency for different temperatures for L = 40 nm.
The anisotropy of κL for GeTe along the hexagonal c-axis
and its perpendicular direction (a-axis) had been described
in detail elsewhere [37]. The spectral representation of κc

L
indicates the density of heat carrying phonons with respect
to the phonon frequencies and their contributions to κc

L. The
density of modes goes to zero at a frequency where κc

L reaches
a plateau marking the separation between acoustic (frequency
<2.87 THz) and optical (frequency >2.87 THz) modes. From
Fig. 4, we note that below 50 K, the optical mode contribution
gets very low and at 10 K it nearly vanishes. For understanding
the role of boundary scattering, Fig. 5 shows the relative con-
tribution of acoustic and optical phonons to total κL for L = 40
and 400 nm. At higher temperature, we find that decreasing
the boundary scattering effect by increasing the grain size
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FIG. 4. Cumulative lattice thermal conductivities (κc
L) of crystalline GeTe are presented as a function of frequencies at six different

temperatures: (a) T = 300 K, (b) 200 K, (c) 100 K, (d) 50 K, (e) 30 K, and (f) 10 K for L = 40 nm. AM and OM define acoustic and
optical modes, respectively. Cumulative κc

L are shown, computed along the hexagonal c axis (κ z
L), along its perpendicular direction (κx

L) and
their average κav

L . The derivatives of κ z
L and κx

L with respect to frequencies are also shown for each temperature.

from 40 to 400 nm can slightly enhance the contribution of
acoustic modes from 77% to around 80%, thereby reducing
the optical mode contribution from 23% to 20%. The con-
tribution gradually increases (decreases) for acoustic modes
(optical modes), and below 20 K the contribution saturates to
almost 100% for acoustic modes. We recall that this vanishing
contribution of optical modes can also be seen from Figs. 2(c)
and 2(d).
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75

100

%
κ

L

Acoustic(L = 40 nm)

Optical(L = 40 nm)

Acoustic(L = 400 nm)

Optical(L = 400 nm)

FIG. 5. The variation of acoustic and optical mode contributions
to total κL in % with temperature for both L = 40 and 400 nm.

V. PHONON PROPAGATION LENGTH: ROLE
OF RESISTIVE PROCESSES FOR DAMPING

Second sound, a characteristic and important hydrody-
namic heat transport phenomenon, refers to heat propagation
as damped waves in a system [3,11,13]. This phenomenon is
a direct manifestation of phonon collective motion due to the
dominating contribution of normal scattering over the resistive
scattering processes. For various materials, second sound in
the Poiseuille flow regime had been identified at cryogenic
temperature, both experimentally and theoretically [2,24,28].
Following [2], we define two important quantities for investi-
gation, namely second sound velocity or drift velocity (v) and
phonon propagation length (λph) as

v2
j =

∑
α Cαvg

α j · vg
α j∑

α Cα

(18)

and

λph = v/〈τ−1〉av, (19)

where Cα is the heat capacity of mode α, vg
α j is the phonon

group velocity of mode α, and j can be either the compo-
nent along the a-axis (x) or the hexagonal c-axis (z). We
recall from our earlier study [37] that the heat transfer of
GeTe is anisotropic [34,37]. Therefore, group velocities along
the hexagonal c-axis and its perpendicular (a-axis) direc-
tion of GeTe [37] are different, giving rise to different drift
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FIG. 6. Phonon propagation length as a function of temperature for L = 40 nm along (a) the a-axis and (b) the hexagonal c-axis of GeTe.
Phonon propagation lengths for L = 400 nm along the a-axis and the c-axis of GeTe are also shown in (c) and (d), respectively. Phonon
propagation lengths due to various scattering processes are shown where U , R (= U + I ), I , and B denote umklapp, resistive, isotope, and
boundary scattering, respectively. Variation of average mean free path (〈l〉av) with temperature is also shown. Light red and gray shaded regimes
indicate kinetic and hydrodynamic regime as defined in earlier sections.

velocities and different phonon propagation lengths along
these two directions. Figure 6 shows the variation of second
sound propagation length or the phonon propagation length
with temperature along both a- and c-axis directions of GeTe.
As λph is the distance that the phonon travels before damp-
ing [2], we present the separate contributions of different
resistive processes for damping of a heat wave, namely λ(U )
(umklapp only), λ(R) (resistive), and λ(R + B) (resistive and
boundary scattering), where

λ(U ) = v
/〈

τ−1
U

〉
av, (20)

λ(R) = v
/(〈

τ−1
U

〉
av + 〈

τ−1
I

〉
av

)
, (21)

λ(R + B) = v
/(〈

τ−1
U

〉
av + 〈

τ−1
I

〉
av + 〈

τ−1
B

〉
av

)
. (22)

For comparison, the average mean free path (〈l〉av) has also
been shown in Fig. 6.

At higher temperature in the kinetic regime (light red
shaded region in Fig. 6), λ(U ), λ(R), and λ(R + B) are found
to be almost collapsed in a single curve for L = 40 and 400 nm
grain sizes. This collapse is due to the dominant contribution

of umklapp scattering as the most significant resistive process
for damping the phonon waves at higher temperatures. As
temperature is lowered, the phonon propagation lengths due
to different resistive processes start varying and are found to
increase and separate out gradually.

λ(R + B) takes both resistive and boundary scattering into
account for damping of phonon propagation and is found to
approach to the phonon average mean free path (〈l〉av) at
very low temperature due to the significant boundary scat-
tering in the ballistic regime. We observe that the damping
by the umklapp and resistive scattering processes increases
the phonon propagation length significantly compared to the
〈l〉av of phonons, starting from the intermediate temperature.
This arises due to the fact that 〈l〉av is defined via uncorre-
lated phonon gas, and considers both normal and umklapp
as resistive [2]. Following the work of Markov et al. [2], we
note that at low temperature, the heat wave propagation length
is close to the phonon propagation length calculated using
only umklapp scattering as a damping source. For L = 40 nm
[Figs. 6(a) and 6(b)], in the region where Eq. (11) is satis-
fied (gray shaded region), propagation lengths λ(U ) and λ(R)
are found to possess only slightly higher values (≈ 6 times)
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compared to 〈l〉av. This indicates a feeble effect of phonon
hydrodynamics for L = 40 nm, consistent with the earlier
description of phonon hydrodynamics from average scattering
rates. On the other hand, L = 400 nm displays a notable
difference of the order of 102 and 101 between λ(U ) and 〈l〉av

and λ(R) and 〈l〉av, respectively [Figs. 6(c) and 6(d)]. Further,
for L = 400 nm, in the defined hydrodynamic regime (gray
shaded region), λ(U ) reaches micron scale (from ≈1 μm at
16 K to ≈35 μm at 8 K), which further strengthens the possi-
bility of observing second sound and phonon hydrodynamics
for L = 400 nm.

We note here that experimentally detecting second sound
depends on the precise manifestation of many parameters. For
example, the size of the experimental setup and the distance
between pump and probe are two crucial parameters to realize
the observation of second sound experimentally [3].

VI. THERMAL DIFFUSIVITY: ROLE OF VARIOUS
PHONON SCATTERING PROCESSES

Heat diffusion can be characterized by thermal diffusiv-
ity, an important quantity for inspection of the heat transfer
mechanism in solids. It is defined as Dth = κ/ρC, where κ is
thermal conductivity, ρ is mass density, and C is specific heat
of the material, obtained through the heat equation via

∂T

∂t
− Dth∇2T = 0. (23)

Here T and t define temperature and time, respectively. The
thermal diffusion within a material describes the rate at which
the heat flows or the speed of propagation of heat when a tem-
perature gradient is introduced in the material [56]. Therefore,
higher thermal diffusivity quantifies the faster heat transfer.
Generally, at high temperature, or specifically higher than the
Debye temperature (�D = 180 K for GeTe), Dth decreases
with 1/T due to the dominance of umklapp scattering between
phonons [57]. This can be simply understood from the fact
that at higher temperature, κ scales with 1/T and C is almost
constant, giving Dth (=κ/ρC) ∝ 1/T . Figure 7 presents the

inverse of thermal diffusivity as a function of temperature for
crystalline GeTe. The trend shows a gradual decrement of D−1

th
(increment of Dth) as the temperature is lowered.

Recently, considering heat carriers as diffusive quasipar-
ticles, a universal boundary to thermal transport by phonons
has been studied [57,58]. At high temperature, it was found
that Dth exhibits a lower bound, governed by the sound
speed in the material and a Planckian scattering time (τp)
via [25,57,58]

Dth = sv2
s τp, (24)

where τp = h̄
kBT , vs is average sound speed, and s (>1) denotes

a dimensionless parameter, which is constant for a specific
material. This bound had also been found for amorphous
materials [57], which predicts a more fundamental quantum-
mechanical origin to this phenomenon.

We find a consistent behavior of D−1
th ∝ T at higher tem-

perature in the kinetic transport regime for both grain sizes
(Fig. 7), and fitting with the lower bound approximation us-
ing vs (= 1900 m/s [59]) and τp as known parameters for
GeTe yields s = 3.6 and 3.8 for L = 40 and 400 nm, respec-
tively. The closeness of these two values of s, or in other
words a nearly constant value of s for different grain sizes,
is representative of the fact that s is constant for a particular
material.

To understand thermal diffusivity in terms of the contribu-
tions coming from different phonon scattering mechanisms,
we perform a qualitative analysis for Dth. In general, κ can
be expressed as

∑
λ Cλv

2
λ/τ

−1
λ , which leads to Dth ≈ v2/τ−1.

We take the thermodynamic averages of the numerator and
denominator and calculate v2/〈τ−1〉av for different phonon
scattering processes to qualitatively understand the essence
of thermal diffusion in terms of these scattering mechanisms.
Figure 8 shows v2/〈τ−1〉av as a function of temperature for
L = 40 and 400 nm along the a- and c-axis of crystalline
GeTe. For L = 40 nm, at high temperature, phonon-isotope
scattering is shown to contribute the maximum [Figs. 8(a)
and 8(b)], whereas for L = 400 nm, phonon-boundary scat-
tering shows the maximum contribution at high temperature
[Figs. 8(c) and 8(d)]. At very low temperature, umklapp scat-
tering contributes the maximum for both grain sizes. While
different scattering processes give comparable contributions
to Dth in the hydrodynamic regime [shaded region in Figs. 8(a)
and 8(b)] for L = 40 nm, umklapp scattering is shown to con-
tribute several order higher values to Dth for the hydrodynamic
regime [shaded region in Figs. 8(c) and 8(d)] for L = 400 nm
compared to other scattering events. The very low resistive
scattering processes, particularly the umklapp process (very
high v2/〈τ−1

U 〉av) and correspondingly the very high normal
scattering process (very low v2/〈τ−1

N 〉av) for L = 400 nm,
are found to be responsible for the enhancement of Dth at
low temperature. Therefore, the higher values of v2/〈τ−1〉av

(or qualitatively Dth) for L = 400 nm in the hydrodynamic
regime imply faster heat transfer, which stems from the high
normal scattering rate and low umklapp scattering rate in the
denominator

of v2/〈τ−1〉av. This guarantees that strong momentum-
conserving phonon scattering will take place, which further
supports the argument of hydrodynamic phonon flow for L =
400 nm.
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VII. THE KINETIC-COLLECTIVE MODEL PREDICTIONS

To further investigate the detailed consequences of phonon
hydrodynamics in GeTe, we employ the kinetic-collective
model (KCM) [47] to detect and scrutinize the implications
of phonon hydrodynamics from a different perspective. The
KCM [47] considers a part of the heat to be transferred
via collective phonon modes, borne out of normal scattering
events, apart from heat transfer by independent collisions.
Therefore, lattice thermal conductivity can be expressed as a
sum of both kinetic and collective contributions weighed by
a switching factor (� ∈ [0, 1]), which measures the relative
weight of normal and resistive scattering processes [4,47].
While each mode possesses individual phonon relaxation time
in the kinetic contribution term, the collective contribution is
specified by an identical relaxation time for all modes [47,60].
In the kinetic contribution term, the boundary scattering is
included via the Matthiessen’s rule as

τ−1
k = τ−1

U + τ−1
I + τ−1

B , (25)

where τk is the total kinetic phonon relaxation time. On the
contrary, a form factor F , calculated from the sample geome-
try, is used to incorporate boundary scattering in the collective

term [47,60]. The KCM equations are

κL = κk + κc, (26)

κk = (1 − �)
∫

h̄ω
∂ f

∂T
v2τkDdω, (27)

κc = (�F )
∫

h̄ω
∂ f

∂T
v2τcDdω, (28)

� = 1

1 + 〈τN 〉
〈τRB〉

, (29)

where κk and κc are kinetic and collective contributions to
κL, respectively. 〈τN 〉 and 〈τRB〉 designate average normal
phonon lifetime and average resistive (considering U , I , and
B) phonon lifetime respectively. 〈τN 〉 and 〈τRB〉 are defined in
the KCM [47] as integrated mean free times:

〈τRB〉 =
∫

C1τkdω∫
C1dω

(30)

and

〈τN 〉 =
∫

C0τN dω∫
C0dω

, (31)
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FIG. 9. κL of crystalline GeTe as a function of temperature for (a) L = 40 nm and (b) L = 400 nm grain sizes. The solutions for lattice
thermal conductivity, obtained using a direct solution of LBTE, RTA, and KCM are compared.

where τk is the total kinetic relaxation time and phonon distri-
bution function in the momentum space, represented in terms
of Ci(ω), defined in [47] as

Ci(ω) =
(v|q|

ω

)2i

h̄ω
∂ f

∂T
D, (32)

where v(ω) is the phonon mode velocity and | q | is the mod-
ulus wave vector. C0 represents the specific heat of mode ω.
f stands for the Bose-Einstein distribution function, v is the
mode velocity, and D(ω) is the phonon density of states for
each mode. � stands for the switching factor. F is the form
factor approximated via [60]

F (Leff ) = L2
eff

2π2l2

(√
1 + 4π2l2

L2
eff

− 1

)
, (33)

where Leff is the effective length of the sample (in our system
we use Leff = L, the grain size) and l is the characteristic non-
local scale (details will be given later) [14,60]. τc denotes the
total collective phonon relaxation time. All the calculations
regarding KCM have been done using the KCM.PY code [47]
with the PHONO3PY [41] implementation.

As a first step, we seek to compare the results for κL

of GeTe, between direct solution of LBTE and that of the
KCM [47]. Figure 9 presents κL as a function of tempera-
ture for both (a) L = 40 nm and (b) L = 400 nm, obtained
using LBTE, RTA, and KCM. It is observed that at lower
temperature, before the κL peak, LBTE and KCM solutions
are in excellent agreement. At higher temperature up to
300 K, a reasonably matching trend of κL is retrieved us-
ing KCM, although exhibiting slightly lower values than the
LBTE solutions. It can be noted that the LBTE solutions can
be further lowered by incorporating the vacancy scattering
in GeTe [34,37] (we describe this vacancy effect later in
this paper). It has been found that the experimental values
of lattice thermal conductivity match quite well with KCM

approximations for bulk Si, Ge, diamond, and GaAs [47,60].
As the study of this paper does not consist of experimental
explorations at low temperature of GeTe, we are unable to
comment whether KCM or direct-LBTE matches well with
experimental values for GeTe. However, we can further inves-
tigate the reason behind the differences between LBTE-direct
solution and KCM predictions by closely studying the cumu-
lative lattice thermal conductivity as a function of phonon
frequency, obtained using both direct-LBTE and KCM at
a temperature where the difference is prominent. Figure 10
shows a comparison between direct-LBTE and KCM cumu-
lative lattice thermal conductivity (κc

L) of GeTe at 300 K for
L = 40 and 400 nm. For L = 40 nm [Fig. 10(a)], we find that
the difference between direct-LBTE and KCM solutions is
mostly appreciable in the optical modes regime (frequency >

2.87 THz) of GeTe. For L = 400 nm [Fig. 10(b)], although
acoustic modes also show differences, a very feeble optical
modes contribution is found to be responsible for restrict-
ing the κc

L of KCM to a lower value than that of the direct
solution of LBTE. A possible reason for the overestimation
of direct-LBTE solutions was discussed by Feng et al. [61],
and it has been attributed to four-phonon scattering processes
that can reduce the intrinsic thermal conductivity of solids,
as shown for boron arsenide, Si, and diamond. Also, Torres
et al. [4] found similar discrepancies between LBTE and
KCM solutions for MoS2, borne out of the dissimilarities of
these two solutions in the optical mode frequency regime.
Therefore, we can predict a similar situation for GeTe and
indicate that the four-phonon scattering, which can reduce
the lifetime of the optical phonons, can be responsible for
the slight overestimation of direct-LBTE solutions for GeTe
compared to the KCM solutions beyond the peak of lattice
thermal conductivity maximum in the temperature variation
of κL.

Also, as mentioned in [60], depending on the techniques
for solving LBTE, the total relaxation time of the distribution
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using both direct-LBTE and KCM, as a function of phonon fre-
quency at 300 K for (a) L = 40 nm and (b) L = 400 nm.

function of the heat carrier can be different. Though direct-
LBTE and KCM produce similar trends for relaxation times
as both are the solutions borne out of the same phonon LBTE,
there exist small differences between them, observed for Si
and diamond [60], as KCM computes collective relaxation

time through a switching factor �, which is different from
the diagonalization of the full collision matrix as is done via
the direct LBTE approach. However, in the proposed hydro-
dynamic temperature regime for GeTe as obtained earlier, the
solutions of LBTE and KCM collapse satisfactorily. These
observations mark KCM as a solid and reliable approach for
our study on GeTe.

A. The kinetic and collective thermal transport

Earlier in this paper, we established the strong and weak
hydrodynamic effects of GeTe for grain sizes 400 and 40 nm,
respectively. To further scrutinize this effect, we calculate and
show the contributions of the collective part (κC) of κL to
the total κL, using the KCM model for these two grain sizes.
Starting from high temperature at 300 K, for both grain sizes
κC is found to increase gradually as the temperature is lowered
[Fig. 11(a)]. As expected, due to increased grain size, L =
400 nm shows several order higher values of κC compared
to that of the L = 40 nm case, as low temperature is being
approached [Fig. 11(a)]. The hydrodynamic regime, calcu-
lated in earlier sections, is denoted via the shaded regions.
For better realization, both collective (κC) and kinetic lattice
thermal conductivities (κkin), obtained from KCM, have been
shown via Figs. 11(a) and 11(b), respectively. Figures 11(a)
and 11(b) have been found to show the complementary be-
havior for κC and κkin, respectively. The κkin is observed to
be the dominant part in determining the total lattice thermal
conductivity, especially at low temperatures where κkin shows
a steep increase [Fig. 11(b)]. Moreover, in the hydrodynamic
regime, the values of κkin are ≈ 10 times and ≈102 times
larger than the κC for L = 400 and 40 nm, respectively. In a
more illustrative way, Fig. 11(c) presents the percentage con-
tributions of κC to the total KCM-lattice thermal conductivity.
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temperature for both L = 40 and 400 nm. The hydrodynamic regimes under investigation are denoted via gray shaded zones in the κC .
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The complementary trends for κC and κkin are manifested
in the smooth, monotonically decaying dependence of the
percentage contribution of κC to total lattice thermal conduc-
tivity on temperature [Fig. 11(c)]. Consistent with the earlier
realizations of a weak hydrodynamic effect for smaller grain
size, L = 40 nm has been found to possess an extremely low
percentage with negligible collective contribution in the desig-
nated hydrodynamic regime (gray shaded region) as shown in
Fig. 11(b). In contrast, we observe a substantial percentage of
collective contribution to be present for L = 400 nm, varying
from ≈7% at 16 K to ≈18% at 8 K, which validates the earlier
approach of identifying a strong hydrodynamic regime for

a larger grain size of GeTe.
Further, to investigate the minimum in the collective lattice

thermal conductivity (κC), as shown in Fig. 11(a), obtained
from KCM, we present the variations of the constituent
parameters of κC with temperature. KCM represents the col-
lective lattice thermal conductivity (κC) as [47,60]

κC = �F
∫

h̄ω
∂ f

∂T
v2τcDdω = κ∗

C�. (34)

Figure 12 shows the temperature variation of κC along with the
switching parameter (�) and κ∗

C for L = 40 nm [Fig. 12(a)]
and L = 400 nm grain sized GeTe [Fig. 12(b)]. The minimum
is found to originate as a result of the product between κ∗

C and
�. At temperatures close to 10 K, κ∗

C exhibits a plateaulike
regime and � follows an increasing trend for both cases.
Therefore, the multiplication of κ∗

C and � gives rise to the
minima in κC . We note that �L=400 > �L=40 for the whole
temperature range and � shows a steeper increasing trend
for L = 40 nm compared to L = 400 nm, thus featuring a
more prominent minimum in κC for L = 40 nm [Fig. 12(a)].
Therefore, the distinction of the collision matrix in terms of

collective and kinetic relaxation times in the KCM approach
is found to be the key for giving rise to the minimum in κC .

An alternative way to understand the collective contribu-
tion is to present the cumulative lattice thermal conductivity
(κc

L), obtained from KCM, as a function of phonon frequency.
Figure 13 displays the variation of total (κc

tot) and kinetic
lattice thermal conductivity

(κc
kin) in a cumulative way with temperature. For L =

40 nm, as temperature is lowered from 300 to 10 K
[Figs. 13(e), 13(c) and 13(a)], no substantial difference is
observed between κc

tot and κc
kin, implying the negligible contri-

bution of the collective part of κc
L. As temperature is lowered

from 300 to 4 K [Figs. 13(f), 13(d) and 13(b)] for L = 400 nm,
a substantial difference is found to develop between κc

tot and
κc

kin, indicating a gradual increment of the contribution coming
from the collective part of κc

L [shown via the shaded region in
Figs. 13(b) and 13(d)]. Figures 13(b) and 13(d) also feature a
crucial frequency dependence. At T = 14 K [Fig. 13(d)], we
observe that the difference between κc

tot and κc
kin pops out in

the acoustic regime (defined as frequency <2.87 THz [37])
and then stays constant thereafter. No contribution is found to
come from optical modes (defined as frequency >2.87 THz)
in the hydrodynamic regime of GeTe. A similar feature can be
found at T = 4 K for L = 400 nm [Fig. 13(b)].

B. Hydrodynamic KCM and Knudsen number

Instead of dealing separately with kinetic effects in the
kinetic transport regime and hydrodynamic derived conditions
in the collective regime, it is often helpful to envisage the ther-
mal transport through a full hydrodynamic description, where
both kinetic and hydrodynamic limits can be achieved under
certain conditions [60]. This generalized equation, which is
an extension of the Guyer and Krumhansl equation [14] done
in the KCM framework [60], named the hydrodynamic KCM
equation, reads

τ
dQ
dt

+ Q = −κ∇T + l2(∇2Q + 2∇∇ · Q), (35)

where τ is the total phonon relaxation time, Q is the heat
flux, κ is phonon thermal conductivity, and l is the nonlocal
length. We investigate this nonlocal length (l) that determines
the nonlocal range in phonon transport. The generalized form
of nonlocal length is [60]

l2 = l̂2
K · (1 − �) + l̂2

C · � = l2
K + l2

C . (36)

Here, the caret defines the limit situation (either kinetic limit
or collective limit), and lK and lC define nonlocal length for
kinetic and collective limit, respectively.

For a clear demonstration of the hydrodynamic regime
of GeTe, within the hydrodynamic KCM framework, it is
instructive to compute the Knudsen number, defined via total
nonlocal length (l) as

Kn = l/L, (37)

where L is the grain size for GeTe. Ideally, the Fourier
law is seen to be recovered for low Kn values, whereas
hydrodynamic behavior becomes important when Kn gets
higher [8,60].
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FIG. 13. Cumulative lattice thermal conductivity (κc
L) using the KCM method is presented as a function of phonon frequency. κc

L for
L = 40 nm are shown for (a) T = 10 K, (c) 40 K, and (e) 300 K. κc

L for L = 400 nm are shown for (b) T = 4 K, (d) 14 K, and (f) 300 K. Total
cumulative lattice thermal conductivity (κc

tot) and its kinetic contribution (κc
kin) are shown for each case. The difference between κc

tot and κc
kin is

recognized as the collective contribution to κc
L [prominently shown in (b) and (d) via the shaded region]. For each case, κc

tot is divided by the
maximum value of κc

tot to modify the y-axis scale from 0 to 1.

Until now, all the findings in this paper have indicated
a significant hydrodynamic effect with a prominent low-
temperature range in GeTe for the larger grain size (L =
400 nm) compared to the smaller grain size (L = 40 nm),
where the effect is seen to be weak. Therefore, to further con-
firm our findings in a quantitative way, the Knudsen number
Kn is calculated and presented as a function of temperature
for GeTe with grain size L = 400 nm in Fig. 14. Starting from
300 K, a gradual increasing trend of Kn is observed as the
temperature is lowered. Holding the conceptual similarities
with fluid flow or more specifically microscale gas flow, the
Knudsen number (Kn) has been described in earlier heat trans-
fer studies [2,8] to identify a phonon hydrodynamic regime
when 0.1 � Kn � 10. Remarkably, we find that the hydrody-
namic regime for GeTe for L = 400 nm (shown via the gray
shaded region in Fig 14), obtained and identified using various
methods in earlier sections, falls under the regime of 0.1 �
Kn � 10, which is in agreement with the criteria for phonon
hydrodynamics. From Fig. 14, it is also observed that all the
points that lie inside the range 0.1 � Kn � 10 (18 < T <

50 K) do not necessarily fall within the hydrodynamic regime
defined using Eqs. (10) and (11) (gray shaded region). We
recall from Fig. 1(b) that this region corresponds to the con-
dition 〈τ−1

N 〉av > 〈τ−1
R 〉av > 〈τ−1

B 〉av, which can be referred to
as the Ziman hydrodynamic regime [3]. Therefore, using Kn
and an average scattering rate comparison, both the Poiseuille

hydrodynamic regime and the Ziman hydrodynamic regime
can be realized for GeTe. However, we mention here that
although this regime follows the prescribed hierarchy of the
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FIG. 14. The variation of Knudsen number (Kn = l/L) with
temperature for GeTe with L = 400 nm. Light red, light orange,
and light blue define kinetic, hydrodynamic, and ballistic regimes,
respectively (see the text). The gray shaded region indicates hydro-
dynamic regime calculated from Eqs. (10) and (11).
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FIG. 15. Phonon scattering rates are shown as a function of phonon frequency for crystalline GeTe for various temperatures: (a) T = 300 K,
(b) 100 K, (c) 50 K, (d) 30 K, (e) 14 K, and (f) 4 K. Phonon-phonon, phonon-isotope, phonon-boundary, and phonon-vacancy scattering rates
(for four different vacancy concentrations in percentage: x = 0.0001, 0.001, 0.01, and 0.1) are shown.

Ziman hydrodynamic conditions, the differences between the
scattering rates are found to be quite small.

From Fig. 14, we also clearly distinguish the kinetic trans-
port regime from the temperature variation of the Knudsen
number as the region that satisfies Kn � 0.1. Moreover, the
region corresponding to Kn � 10 (Fig. 14), commonly un-
derstood as a free molecular flow or ballistic regime in fluid
hydrodynamics, consistently corresponds to the ballistic ther-
mal transport regime [8]. Thus, a hydrodynamic KCM study
of GeTe, realized through characteristic nonlocal length and
Knudsen number estimation, provides a quantitative picture
that agrees well with the scattering rate analysis and is con-
sistent with various thermal transport property calculations in
this study.

VIII. PHONON-VACANCY SCATTERING: EFFECT
OF VACANCY ON HYDRODYNAMIC REGIME

In the previous sections, we calculated the phonon life-
time and consequently the lattice thermal conductivity using
phonon-phonon, phonon-isotope, and phonon-boundary scat-
tering processes. However, the role of vacancies in the
thermal transport is an important consideration. For GeTe,
phonon-vacancy scattering has been found to be crucial to ac-
curately describe the experimental data through the theoretical

calculations at room temperature [34] as well as at high tem-
peratures [37]. In our earlier work [37], the hole concentration
of GeTe was found to be 6.24 × 1019 cm−3, indicating a va-
cancy concentration (x) of ≈0.08%. To understand the effect
of phonon-vacancy scattering for GeTe, compared to the other
phonon scattering events, scattering rates have been calculated
and shown in Fig. 15 for grain size (L) of 400 nm as a function
of frequency for different temperatures. The phonon scattering
rates by vacancy defects are calculated following the work by
Ratsifaritana et al. [62] as

1

τV (ω)
= x

(
M

M

)2 π

2

ω2g(ω)

G′ , (38)

where x is the density of vacancies or vacancy concentration,
G′ denotes the number of atoms in the crystal, and g(ω) is
the phonon density of states (PDOS). Using vacancies as iso-
tope impurity, Ratsifaritana et al. [62] evaluated mass change

M = 3 M, where M is the mass of the removed atom. It
is noted from Eq. (38) that the phonon-vacancy relaxation
time is temperature-independent. Figure 15 shows that the
effect of phonon-vacancy scattering is quite significant at the
high-frequency regime. As we gradually lower the tempera-
ture from 300 to 4 K, phonon-phonon scattering gradually
decreases, and at very low temperature phonon-boundary scat-
tering overpowers the phonon-phonon scattering [Fig. 15(f)].
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FIG. 16. Thermodynamic average phonon scattering rates as a
function of temperature in log-log scale for GeTe for grain size
(L) = 400 nm. N , R, and B denote normal, resistive, and boundary
scattering, respectively. Here R = U + I + V , where U , I , and V
stand for umklapp, phonon-isotope, and phonon-vacancy scatter-
ing, respectively. Four vacancy concentrations are used: x = 0.0001,
0.001, 0.01, and 0.1. The gray shaded region corresponds to the
hydrodynamic regime for x = 0 and 0.0001. The light pink shaded
region defines the hydrodynamic regime for x = 0.001.

Therefore, the hydrodynamic regime can be significantly
modified depending on the order of vacancy concentration,
which adds up to the phonon resistive scattering.

The average phonon scattering rates are investigated
(Fig. 16) incorporating phonon-vacancy scattering as resistive
scattering along with umklapp and phonon-isotope scattering,
to observe the effect on the previously defined hydrodynamic
regime for L = 400 nm. Starting from a pure GeTe (x = 0),
four different vacancy concentrations are considered: x =
0.0001, 0.001, 0.01, and 0.1. Figure 16 shows that x = 0.0001
has a negligible impact on the modification of the hydrody-
namic window, whereas x = 0.001 slightly alters the regime
by shrinking the window from ≈ 8–16 K (gray shaded region)
to ≈ 8–14 K (light pink shaded region). Further increasing x
(>0.001) has been shown to affect the hydrodynamic window
for GeTe drastically. Strong vacancy scattering effects com-
ing from x = 0.01 and 0.1 seem to completely shrink and
vanish the hydrodynamic regime present in GeTe. Looking
at Fig. 15, we note that the phonon-isotope scattering rate
(green symbols) separates these two kinds of vacancy scatter-
ing. Scattering rates corresponding to x = 0.0001 and 0.001
lie below the phonon-isotope scattering rate while x = 0.01
and 0.1 lie above it. Thus, phonon-isotope scattering [τ−1

I (ω)]
acts as an indicator for phonon vacancy scattering rates (τ−1

V )
for controlling the hydrodynamic regime for GeTe. When
τ−1

I (ω) > τ−1
V (ω), the hydrodynamic regime is found to exist

whereas the condition τ−1
I (ω) < τ−1

V (ω) is responsible for
shrinking and vanishing of the hydrodynamic window.

IX. SUMMARY AND CONCLUSIONS

A systematic and in-depth theoretical investigation has
been carried out to understand the low-temperature thermal

transport in low κL chalcogenide material GeTe in a crystalline
phase. The low-temperature investigation reveals a plethora
of novel and interesting phenomena related to phonon scat-
tering that helps us to attain a complete understanding of
the different competitive phonon scattering mechanisms and
their implications. Lattice dynamics simulations have been
carried out using density functional methods and solving lin-
earized Boltzmann transport equations for a wide temperature
range, starting from room temperature (300 K) to as low as
4 K, for GeTe. Two different grain sizes are considered to
investigate the role of phonon-boundary scattering. Normal,
umklapp, phonon-isotope, and phonon-boundary scattering
are separately distinguished and the thermodynamic average
scattering rates are studied as a function of temperature. A
prominent hydrodynamic regime is found for L = 400 nm
grain size, which gets weak while increasing the phonon-
boundary scattering introducing a smaller grain size (L = 40
nm). The variations of lattice thermal conductivity (κL) are
studied, and comparing direct LBTE solutions with the single-
mode relaxation time (RTA) approximations further shows
the signatures of kinetic, hydrodynamic, and ballistic heat
transport regimes of GeTe. Mode-wise decomposition of κL

shows the dominant heat transfer by acoustic phonons, which
even increases its contribution upon increasing the grain size.
Different acoustic modes (TA1, TA2, LA) are shown to evolve
in a different way as a function of temperature. The trans-
verse acoustic mode TA1 shows the maximum contribution
throughout the temperature range, while at low temperature
the contribution even reaches 80% for the total acoustic κL.
On the other hand, TA2 and LA modes contribute ≈20%
and 0%, respectively, at extreme low temperatures. Second
sound propagation lengths have been calculated using various
resistive processes as the damping sources and compared with
the average mean free path of phonons. For larger grain size,
the phonon propagation length corresponds to the umklapp
and resistive damping, reaching up to the micron scale. Heat
diffusion of GeTe has also been characterized using thermal
diffusivity. At high temperature, the universal lower bound of
thermal diffusivity has been found to exist, and it is governed
by the sound speed in the material and the Planckian scattering
time. The parameter s has been identified for GeTe and found
to be around 3.6–3.8. We perform a qualitative analysis for Dth

by calculating v2/〈τ−1〉av for different phonon scattering pro-
cesses to understand the thermal diffusion in terms of various
scattering mechanisms. Whereas almost comparable contri-
butions are found for the Dth for L = 40 nm, extremely low
umklapp scattering is shown to contribute several order higher
values to Dth compared with other scattering processes in
the hydrodynamic regime for L = 400 nm. The higher values
of v2/〈τ−1〉av, for L = 400 nm in the hydrodynamic regime,
indicate faster heat transfer, which comes from the simultane-
ous high normal scattering and low umklapp scattering rate.
Thus a strong momentum-conserving phonon scattering oc-
curs, which further supports the possibility of hydrodynamic
phonon flow for L = 400 nm.

The kinetic-collective model (KCM) has also been imple-
mented to scrutinize the hydrodynamic behavior of GeTe from
a different perspective. Collective and kinetic contributions to
the thermal transport properties are understood via a switching
factor, which measures the relative weight of normal and
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resistive scattering. The KCM predictions on lattice thermal
conductivity (κL) match quite well with the direct solution of
LBTE, especially at low temperatures below the κL peak. This
leads us to calculate the collective contribution to the KCM-
κL, and up to a contribution of 18% is found to exist for larger
grain size (400 nm) in the hydrodynamic regime of GeTe. The
characteristic nonlocal length, an indicator of the nonlocal
range for phonon transport, along with the grain size, gives
the Knudsen number (Kn), which further quantifies and val-
idates the various thermal transport regimes, namely kinetic,
hydrodynamic, and ballistic regimes. Finally, phonon-vacancy
scattering for GeTe is incorporated considering various va-
cancy concentrations ranging from x = 0.0001% to 0.1%.
For x > 0.001, vacancies are found to contribute significantly
to the total resistive scattering and alter the hydrodynamic
window severely. Thus, a proper combination of vacancy

concentration and grain size emerged as important controlling
parameters to observe phonon hydrodynamics in GeTe. Fur-
ther, interestingly, the phonon-isotope scattering rate [τ−1

I (ω)]
has been found to act as an indicator of phonon vacancy
scattering rates (τ−1

V ) with different vacancy concentration for
controlling the hydrodynamic regime for GeTe. These find-
ings can help to demystify the unconventional hydrodynamic
behavior in other chalcogenide alloys in the future.
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