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Controlling vortical motion of particles in two-dimensional driven superlattices
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We demonstrate the control of vortical motion of neutral classical particles in driven superlattices. Our
superlattice consists of a superposition of individual lattices whose potential depths are modulated periodically
in time but with different phases. This driving scheme breaks the spatial reflection symmetries and allows
an ensemble of particles to rotate with an average angular velocity. An analysis of the underlying dynamical
attractors provides an efficient method to control the angular velocities of the particles by changing the driving
amplitude. As a result, spatially periodic patterns of particles showing different vortical motions can be created.
Possible experimental realizations include holographic optical lattice based setups for colloids or cold atoms.
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I. INTRODUCTION

Due to their experimental controllability, driven lattice
potentials have become an important test bed for the ex-
ploration of nonequilibrium physical phenomena [1–3]. The
inherent nonlinearity and tunable symmetries in these sys-
tems allow us to realize different nonequilibrium transport
phenomena, the “ratchet effect” being one of them [4–15].
A ratchet rectifies random particle motion into unidirectional
particle transport in an unbiased nonequilibrium environ-
ment. Certain spatiotemporal symmetries of the system need
to be broken in order to realize it [16–18]. This leads to
numerous applications across different disciplines, such as
controlling the transport of atomic ensembles in ac-driven
optical lattices [19,20] in both the ultracold quantum [1]
and classical regimes [2,12], colloidal transport in driven
holographic optical lattices [21], particle separation based on
physical properties [22–24], and motion of vortices in type-II
superconductors [25–27]. Due to the widespread applicability
of such directed transport, there has been extensive research to
control the strength and direction of the ratchet current. Setups
using one-dimensional (1D) driven lattices have been shown
to effectively accelerate, slow down, or even completely re-
verse the direction of transport [18,28,29]. Two-dimensional
(2D) driven lattices, on the other hand, offer a higher vari-
ability in terms of transport direction and for particles to be
transported parallel to, orthogonal to, or at any arbitrary angle
with respect to the direction of the driving force [21,30,31].

In contrast to 1D, the 2D driven lattice based ratchet se-
tups also allow for the possibility to convert random particle
motion into rotational or vortical motion leading to nonzero
angular velocity of the particles. This is particularly interest-
ing since it provides a method to realize rotational motion of
neutral particles analogous to the motion of charged particles
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in a magnetic field without explicitly rotating the system. In
fact, similar setups have been used to generate artificial mag-
netic fields for exploring topological quantum states with cold
neutral atoms in periodically modulated lattices [32,33]. How-
ever, the extensive research on symmetry-breaking-induced
directed transport in the classical regime has mostly fo-
cused on translational currents, and the control of rotational
currents has remained largely unexplored. The few existing
setups either lead to a diffusive rotational motion over an
extended space in the presence of an elliptical ac drive, in-
troducing an inherent rotational bias [34], or require specially
tailored potentials [35,36] and temporally correlated colored
noise [37,38]. Furthermore, due to the lack of spatial tun-
ability of the underlying lattice potential, these setups do not
allow patterns of multiple vortices in space analogous to the
different spatial configurations of artificial magnetic fluxes in
the quantum regime [39].

Here, we address these key limitations and present a
setup to realize controllable rotational motion of classical
particles along closed spatial paths in driven superlattices
without any explicit rotational bias. The individual lattices
are modeled by a periodic arrangement of Gaussian poten-
tial wells whose depths can be individually modulated in a
time-periodic manner, leading to a “spatiotemporally” driven
lattice setup [40,41]. We show that modulating different wells
with the same driving amplitude but different driving phases
allows us to break the relevant symmetries and generate
nonzero average angular velocities for an ensemble of par-
ticles. The angular velocities of individual trajectories can be
controlled by varying the driving amplitude. Additionally, we
demonstrate periodic spatial arrangements of different types
of rotational motion by modulating the different potential
wells with different driving amplitudes and phases.

II. SETUP

We consider N noninteracting classical particles of
mass m in a 2D potential landscape V (r ≡ (x, y, 0), t ) =
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∑+∞
m,n=−∞ Ũmn(t )e−β(r−rmn )2

formed by a lattice of 2D Gaus-
sian wells centered at positions rmn = (mL, nL, 0), m, n ∈ Z.
The depths of the wells are modulated periodically in time
by the site-dependent driving law Ũmn(t ) = Ṽmn[cos(ωt +
φmn) − 1] with driving frequency ω, driving amplitude Ṽmn,
and a temporal phase shift φmn. We consider the setup to
be dissipative, with the dissipation coefficient of the parti-
cles being denoted by γ̃ . The source of dissipation can be
different for different systems, e.g., viscous drag forces for
colloidal particles or optical molasses for cold atoms [42].
Introducing dimensionless variables r′ = r

L and t ′ = ωt and
dropping the primes for simplicity, the equation of motion
for a single particle at position r = (x, y, 0) with velocity
ṙ = (ẋ, ẏ, 0) reads

r̈ + γ ṙ =
+∞∑

m,n=−∞
2αUmn(t )(r − Rmn)e−α(r−Rmn )2 + ξ (t ),

(1)

where Umn(t ) = Vmn[cos(t + φmn) − 1] is the effective site-
dependent driving law with time period T = 2π and driving
amplitude Vmn = Ṽmn

mω2L2 . Rmn = (m, n, 0) denotes the positions
of the Gaussian wells, γ = γ̃

mω
is the effective dissipation

coefficient, and the parameter α = βL2 is a measure of the
widths of the wells. ξ (t ) = (ξx, ξy, 0) denotes thermal fluctu-
ations modeled by Gaussian white noise of zero mean with
the property 〈ξi(t )ξ j (t ′)〉 = 2Dδi jδ(t − t ′), where i, j ∈ x, y
and D = γ̃ kBT

mω2L2 is the dimensionless noise strength, with T
and kB denoting the temperature and Boltzmann constant, re-
spectively. Unless mentioned otherwise, we choose Vmn = V
for all the wells, α = 3, and γ = 0.1. The set of all wells
arranged periodically in space with a specific value of the
driving phase φmn forms a sublattice of our system. Our setup
is hence a driven superlattice formed by the superposition of
different sublattices, each driven by a distinct driving phase
φmn. Possible experimental realizations of such a 2D potential
include holographic optical lattices [21,43–46] and optical
superlattices [47] with the lattice depth modulated via stan-
dard amplitude modulation techniques [48,49]. The rotational
dynamics of particles in such a setup could be observed
with colloidal particles or with cold atoms in the classi-
cally describable regime of microkelvin temperatures [12,21].
In colloidal experimental setups with polystyrene micro-
spheres [21], our parameter values would correspond to
typical well widths of ∼10 μm at room temperatures, and the
value of V can be flexibly controlled by the intensity of light.

III. ROTATIONAL CURRENT DUE TO
SYMMETRY BREAKING

The asymptotic dynamics of particles in our setup can be
confined within either a lattice unit cell such as in linear
oscillatory motion or vortical motion along arbitrary closed
spatial curves. There can also be unconfined diffusive or
ballistic motion throughout the lattice. Different particles ex-
hibiting vortical motion can, in general, possess different
angular velocities. Hence, in order to distinguish vortical
motion of a trajectory from ballistic, diffusive, and vortical
dynamics of other trajectories, we use the angular velocity

FIG. 1. Schematic representation of superlattice setups A and B
formed by the superposition of four square sublattices driven with an
amplitude V but at different phases φi = (i−1)π

2 , i = 1, 2, 3, 4. Each
red circle denotes the position of an individual Gaussian well. The
thick black dashed lines denote the boundary of the lattice unit cells.
The spatial period of setup A is (2,2,0), whereas that of setup B is
(3,3,0) due to the presence of empty sites without any wells. The
blue and green regions in (a) denote plaquettes with clockwise and
counterclockwise chiralities with respect to the spatial orientation of
the wells with driving phases φi. The remaining parameters are V =
0.41, α = 3, γ = 0.1.

�(t ) = [ṙ(t ) × r̈(t )]/ṙ2(t ), which is equivalent to the defi-
nition of curvature of planar curves measuring the speed of
rotation of the velocity vector about the origin [34,50]. Since
the particle dynamics is confined to the xy plane, the only
possible nonzero component of �(t ) is along ẑ, the unit vector
along the z direction. The mean angular velocity of a trajectory
is defined as �̄ = 1

t lim
t→∞

∫ t
0 �(t ′)dt ′. For trajectories rotating

along a closed spatial curve with period ηT , the mean angular
velocity can be expressed as �̄ = 2πτ

ηT ẑ = τ
η

ẑ (since T = 2π ),
where 2πτ denotes the total curvature of the curve with the
turning number τ defined as the number of times the velocity
vector winds about its origin [51]. The net rotational current,
defined as the mean angular velocity of an ensemble of par-
ticles with different initial conditions, is given by J� = 〈�̄〉,
where 〈· · · 〉 denotes the average over all trajectories. Since
the only possible nonzero components of �(t ), �̄, and J� are
along ẑ, we drop the symbol ẑ henceforth.

The necessary condition for any setup to exhibit a net
rotational current is to break the symmetries, which keeps the
system invariant but changes the sign of the angular veloc-
ity �(t ) [34]. There are only two symmetry transformations
which can change the sign of �(t ): (i) time reversal together
with optional spatial inversion and space-time translations St ,
t −→ −t + t ′, r −→ ±r + δ, and (ii) parity or reflection P
about any plane perpendicular to the xy plane with optional
spatial rotation R in the xy plane and space-time transla-
tions Sp, r −→ R(Pr) + δ, t −→ t + t ′. Since our setup is
dissipative, St is broken independent of our choice of the
lattice potential V (r, t ). However, the superlattice potential
allows us to preserve or break the symmetry Sp by controlling
the driving phases of the underlying sublattices. In order to
illustrate this, we consider two setups, A and B [Figs. 1(a)
and 1(b)], each consisting of four square sublattices with
the same driving amplitude V = 0.41 but different phases

094309-2



CONTROLLING VORTICAL MOTION OF PARTICLES IN … PHYSICAL REVIEW B 102, 094309 (2020)

φi = (i−1)π
2 , i = 1, 2, 3, 4. The sublattices in setup A have

lattice vectors (2,0,0) and (0,2,0); hence, the setup has a spa-
tial period LA = (2, 2, 0). In contrast, setup B has a spatial
period LB = (3, 3, 0), with the lattice vectors being (3,0,0)
and (0,3,0). As shown in Fig. 1(a), the arrangement of the
sublattices allows us to consider the unit cell of setup A as
a collection of four distinct spatial domains or plaquettes.
The plaquettes are characterized by clockwise or counter-
clockwise arrangement of Gaussian wells with driving phase
φi, i.e., of opposite chirality. Since the parity transformation
Sp reverses chirality, each of these plaquettes breaks the Sp

symmetry. However, since the unit cell has an equal number
of plaquettes with opposite chiralities (two clockwise and two
counterclockwise), the unit cell and hence the entire setup A
are symmetric with respect to Sp. This implies that although
setup A might allow trajectories with different mean angular
velocities �̄, the net rotational current J� must be zero. In
contrast, the entire unit cell of setup B has a counterclockwise
chirality which can be reversed by Sp, and hence, setup B
breaks Sp symmetry. As a result one can expect J� to be
nonzero.

In order to verify our symmetry analysis and explore the
behavior of rotational current in our system, we initialize
N = 104 particles randomly within a square region x, y ∈
[−100, 100] × [−100, 100] in both setups A and B with small
random velocities vx, vy ∈ [−0.1, 0.1]. Subsequently, we time
evolve our ensemble up to time t f = 104T by numerical in-
tegration of Eq. (1) for different noise strengths D. In the
deterministic limit D = 0, all particles in setup A exhibit
only rotational motion along closed curves with mean angular
velocity �̄ = 1

2 (vortex) or − 1
2 (antivortex). Figure 2(a) shows

a typical trajectory in this setup having �̄ = − 1
2 . The veloc-

ity vector winds around its origin in the clockwise direction
once during the period of rotation 2T ; hence, τ = −1, and
η = 2. The vortical motion persists as the noise strength is
increased to D = 0.001. However, most importantly, there
exists an equal number of trajectories possessing �̄ = − 1

2
and �̄ = 1

2 , signifying that the net rotational current J� = 0
[Fig. 2(b)], as predicted by our symmetry analysis. Even for
higher noise strength up to D = 0.003, such a symmetry-
related cancellation of vortex-antivortex pairs with equal and
opposite angular velocities persists, leading to a zero net ro-
tational current. Beyond D > 0.003, the vortical motion is
destroyed, resulting in a symmetric distribution of particles
around �̄ = 0 and hence J� = 0. The particles in setup B
also exhibit rotational motion; however, unlike in setup A,
all the particles in setup B possess a mean angular velocity
�̄ = 3

5 = 0.6. An example trajectory in setup B in the deter-
ministic limit can be seen in Fig. 2(c). The velocity vector
makes four counterclockwise (at the four corners of the curve)
and one clockwise (corresponding to one full rotation along
the curve) windings around its origin during one period of
rotation 5T ; hence, τ = 3, and η = 5. For D � 0.002, the vor-
tical motion is quite stable, and almost all the particles in the
setup rotate with �̄ = 0.6, resulting in J� = 0.6 [Fig. 2(d)]
in accordance with our symmetry analysis. For D > 0.002,
the particles perform diffusive motion through the lattice, and
the vortical motion is gradually destroyed, thus decreasing the
value of J�.

FIG. 2. Typical trajectories exhibiting rotational motion in
(a) setup A and (c) setup B over one time period of rotation (color
bars). The colored circles denote the positions of individual Gaussian
wells with different driving phases φi. (b) and (d) The fraction of
particles ρ(�̄) possessing mean angular velocity �̄ for different
noise strengths D in setups A and B, respectively. The insets show
the variation of the net rotational current J� with D. The remaining
parameters are the same as in Fig. 1.

IV. CONTROL OF ROTATIONAL CURRENT

The question that naturally arises is that once we de-
sign a driven superlattice which breaks the Sp symmetry,
e.g., our setup B, can we predict the value of J� a priori?
Specifically, how does the mean angular velocity �̄ of the
trajectories depend on the system parameters? For a driven
dissipative nonlinear system like the present one, this can
be answered by analyzing the asymptotic t → ∞ particle
dynamics in the deterministic limit D = 0. The asymptotic
dynamics of the particles is governed by the set of attrac-
tors underlying the phase space of the system, which can be
of two types: (i) regular attractors denoting ballistic, linear
oscillatory and rotational motions and (ii) chaotic attractors
denoting diffusive motion. In order to distinguish between
attractors corresponding to rotational motion compared to
the others, we introduce a slightly modified angular velocity
vector �′(t ) = [ṙ(t ) × r̈(t )]/[|ṙ(t )||r̈(t )|]. Note that �′(t ) =
sin ϑ (t ) ẑ, where ϑ (t ) denotes the instantaneous angle be-
tween the velocity and acceleration vectors of the particle.
�′(t ) transforms under Sp and St in exactly the same way
as �(t ). However, since the values of �′(t ) are bounded in
the interval [−1, 1], as opposed to �(t ), which becomes large
for small values of ṙ(t ), it is a good quantity to differentiate
between chaotic and regular rotational dynamics of particles.
To illustrate this, we inspect the bifurcation diagram of �′(t )
in Fig. 3(a) as a function of the driving amplitude V for
our setup B by initializing particles with random positions
and velocities and stroboscopically monitoring �′(t ) after an
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FIG. 3. (a) Bifurcation diagram of �′(t ) as a function of the
driving amplitude V depicting the chaotic (broad blue bands) and
regular (thin blue lines) attractors of setup B [see Fig. 1(b)]. (b) The
mean angular velocity �̄ of the attractors in Fig. 3(a) as a function
of V . The values of �̄ for the regular attractors denoting rotational
motion and the turning number τ of the corresponding closed curves
are labeled with arrows. The remaining parameters are the same as
in Fig. 1(b).

initial transient [52]. For certain ranges of values of V , all
the particles in the setup exhibit chaotic motion [broad blue
bands in Fig. 3(a)] such that �′(t ) takes all possible values
in the range [−1, 1]. For all other values of V , they perform
regular periodic motion, resulting in only specific values of
�′(t ). Most of these periodic motions correspond to parti-
cles performing rotational motion with different nonzero �̄

(except for 0.19 � V � 0.25) depending on the value of V ,
as shown in Fig. 3(b). This provides an efficient method to
design and control the angular velocities of the trajectories in
our setup by simply choosing the desired driving amplitude
V . Our previous results [see Figs. 2(c) and 2(d)] give such an
example for setup B with V = 0.41.

V. MULTIPLE VORTICES

The ability to control the angular momentum of the par-
ticles with different driving amplitude V allows us to design
lattices with spatially periodic arrangements of multiple vor-
tices. In order to illustrate this, we consider the specific setup
shown in Fig. 4(a). It is designed such that the unit cell
consists of a collection of four plaquettes, D1, D2, D3, and
D4. Each plaquette consists of four Gaussian wells driven
at different phases φi = (i−1)π

2 , i = 1, 2, 3, 4. The plaquettes
D1 and D4 possess a counterclockwise chirality, whereas D2

and D3 have clockwise chirality with respect to the spatial

FIG. 4. (a) Schematic representation of one unit cell of our setup
consisting of four plaquettes, D1, D2, D3, and D4, with the thick
dashed lines denoting the plaquette boundaries. The shaded circles
denote the positions of individual Gaussian wells driven with ampli-
tudes V1 = 0.51 or V2 = 0.078 and phases φi. D1 and D4 (D2 and
D3) have counterclockwise (clockwise) chirality with respect to the
spatial orientation of the wells with driving phases φi. Trajectories
of particles exhibiting vortical motion for D = 0 with positive (red)
and negative (blue) �̄ have been superimposed on the unit cell. The
trajectories in D1, D2, D3, and D4 have �̄ = −1, 1, − 1

3 , and 1
3 ,

respectively. (b) and (c) An extract of the spatial arrangements of
the trajectories exhibiting vortical motion within different plaquettes
for D = 10−4 and D = 10−3, respectively. The remaining parameters
are the same as in Fig. 1.

arrangement of the wells with driving phases φi. Additionally,
the wells in D1 and D2 are driven with amplitude V1 = 0.51,
and those in D3 and D4 are driven with V2 = 0.078. Note
that these specific values of driving amplitude are chosen by
consulting the bifurcation diagram in Fig. 3 to allow only
vortex trajectories with specific angular momenta. We initial-
ize N = 104 particles randomly in this setup within a square
region x, y ∈ [−50, 50] × [−50, 50] with small random ve-
locities vx, vy ∈ [−0.1, 0.1] and propagate the ensemble up
to time t f = 104T . For D = 0, the particles exhibit vortical
motion at long timescales, with their angular velocity being
governed by the plaquette they are trapped within, as shown
in Fig. 4(a). The particles in D1 and D4 rotate with �̄ =
−1 and �̄ = 1

3 , respectively, as predicted by Fig. 3(b). Note
that plaquettes D2 and D3 can be obtained by a spatial parity
transformation on D1 and D4, respectively. Hence, the mean
angular velocity of the particles in D2 and D3 has a sign
opposite that of the particles in D1 and D4, respectively. Even
for D = 10−4, such rotational motion persists, and we obtain a
periodic arrangement of particles in space rotating with dif-
ferent angular momenta [Fig. 4(b)]. For a higher strength
D = 10−3, the vortical motion of particles with �̄ = ± 1

3 is
destroyed, and only the ones with �̄ = ±1 remain, yielding
a different periodic arrangement [Fig. 4(c)]. Noise strengths
D � 4 × 10−3 eventually destroy all the vortex trajectories.

VI. CONCLUSIONS

We have demonstrated that superlattices of periodically
driven localized wells provide highly controllable setups to
realize different patterns of rotational motion of particles. The
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spatial arrangement of the lattices is responsible for breaking
the relevant symmetries, thus allowing for the nonzero average
angular momentum of an ensemble of particles. Our analysis
of the underlying nonlinear dynamical attractors provides an
efficient method to control the angular momentum of the
particles as well as to create a variety of periodic arrangements
of vortical motion with different angular momenta. This might
be useful for technological applications too. For example,
an extension of this scheme with a mixture of two particle
species differing in mass or size would allow us to segregate
them in different spatial plaquettes with each species rotating

with different angular momenta. Future perspectives include
investigation of rotational dynamics of particles operating in
the purely Hamiltonian regime without dissipation, as well as
in the quantum regime with the possibility to realize spatially
varying artificial magnetic fluxes.
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