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Wire resonator as a broadband Huygens superscatterer
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Interference phenomena allow tailoring propagation of electromagnetic waves by controlling phases of several
scattering channels. Huygens element, being a representative example of this approach, enables enhancement
of the scattering from an object in a forward direction, while the reflection is suppressed. However, a typical
resonant realization of Huygens element employs constructive interference between electric and magnetic
dipolar resonances that makes it relatively narrowband. Here we develop the concept of a broadband resonant
Huygens element, based on a circular array of vertically aligned near-field coupled metal wires. Accurate
management of multipole interference in an electrically small structure results in directional scattering over
a large bandwidth, acceding 10% of the carrier frequency. Being constructed from nonmagnetic materials, this
structure demonstrates a strong magnetic response appearing in dominating magnetic multipoles over electric
counterparts. Moreover, we predict and observe higher-order magnetic multipoles, including hexadecapole
(M16-pole) and magnetic triakontadipole (M32-pole) with quality factors, approaching 6000. The experimental
demonstration is performed at the low GHz spectral range. Broadband Huygens elements can be employed in a
set of practical applications, where compact electromagnetic devices for tailoring wave propagation are needed,
i.e., antenna devices, directional reflectors, and even solar cells, given that the concept is scaled to the optical
frequency range.
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I. INTRODUCTION

Increasing scattering efficiencies of subwavelength struc-
tures is a long-standing objective of applied electromagnetic
theory. Quite a few fundamental bounds have been proposed
and subsequently challenged with advanced designs. For ex-
ample, the celebrated Chu-Harrington limit defines minimally
achievable quality factors (Q factors) of subwavelength loss-
less resonators [1]. On another hand, it is relatively well
known that the maximal scattering efficiency of a resonant
subwavelength object does not depend on its size if internal
material losses are neglected. In a single resonance case, a
fundamental limit of scattering is (2l ′ + 1)λ2/(2π ), where λ

is the free space wavelength and l’ is related to orbital angular
momentum of a multipolar resonance (l ′ = 1 is the electric
or magnetic dipolar case. Strictly speaking, this limit applies
on geometries with a spherical symmetry). A vast majority of
reported designs operates at dipolar resonances. In the case of
lossless structures the upper dipolar bound is 3λ2/(2π ) [2–6].

While subwavelength structures can be quite efficient scat-
terers, the penalty of size reduction is a dramatic growth in
the Q factor, described in a single resonance case by the Chu-
Harrington bound. A strategy to bypath this limitation is to
involve several spectrally overlapping multipolar resonances.
This approach allows increasing the bandwidth while keeping
strong scattering efficiency with help of cascading resonances.

*Corresponding author: dimavovchuk@gmail.com
†These authors contributed equally to this work.

The concept of multipolar spectral overlap has been developed
in the field of electrically small antennas in order to increase
directivity. The commonly accepted directivity bound is typi-
cally related to the antenna aperture (A) in units of the opera-
tional wavelength (λ) square as Gmax = 4πA/λ2, meaning that
high directivity cannot be obtained with small (nonresonant)
apertures. However, the so-called Einstein‘s needle radiation
(extremely high directivity) can be engineered in a small (even
a deeply subwavelength) structure if a large number of mul-
tipoles interferes constructively [7]. Quite a few theoretical
approaches to achieve high directivity and superscattering
have been reported. For example, core-shell spherical or cylin-
drical geometries were extensively explored. Those structures,
having closed form analytical solutions (i.e., Mie theory), are
subject to fast optimization and, hence, were found to promise
a significant overcome of classical bounds [8–12].

However, practical limitations significantly degrade the
theoretical predictions [13]. In particular, employment of
high-order multipoles in subwavelength geometries increases
the stored near-field energy within a structure, giving rise
to strong internal material losses. Another important issue
is the fabrication tolerance. Any imperfection with respect
to an original design shifts phases of multipoles and destroy
their constructive interference. As an intermediate summary
here, suggesting partial solutions to the beforehand men-
tioned challenges, is to avoid using lossy materials in the
designs (e.g., printed circuit board (PCB) substrates) and em-
ploy geometrically simple elements to facilitate fabrication
tolerances. Following these guidelines, we propose a set of
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straight copper wires within a styrofoam host as a miniature
superscatterer.

Another topic, closely related to the scattering manage-
ment, is the emerging field of metasurfaces [14–23] which
allow tailoring electromagnetic energy flow with subwave-
length thin patterned layers. In a vast majority of the
reported designs, resonant elements are organized within two-
dimensional arrays, and collective interaction phenomena are
obtained. One of them is the backscattering cancellation based
on the interference of electric and magnetic dipoles in a single
particle. This effect was first proposed by Kerker et al. [24],
and since then the concept has been advanced and generalized
in many realizations, e.g., Refs. [25–31]. Particles, which
demonstrate a suppressed backward scattering, are also re-
ferred to as Huygens elements, as they might act as sources of
secondary waves in Huygens-Fresnel diffraction theory. Being
an interference phenomenon, resonant Huygens elements are
inherently narrowband in a sharp contrast to a nonresonant
case when electric and magnetic dipoles can constructively
interfere in a broadband domain but with very low scattering
efficiency [30,32]. It is worth noting that the challenge is to
obtain a strong forward scattering and simultaneously sup-
press backward scattering. It is obvious that relaxing the first
conditions makes the problem trivial; for example, vacuum
is an ultimately broadband forward scatterer, but it does not
provide any tuning capability and the scattering efficiency is
identically zero.

Here we develop and experimentally demonstrate a con-
cept of a broadband resonant Huygens element, implemented
as a wire resonator. It is based on a circular array of wires,
embedded in a styrofoam host. The resonator supports a vari-
ety of multipolar resonances, which emerge from a near-field
coupling between short metal wires. First, we perform nu-
merical analysis of the scattering efficiency as a function of
the number of wires and find the optimal number of wires
meeting a trade-off between simplicity and performance of the
structure. Adjusting the number of wires and other geomet-
rical parameters (wire’s length and the array radius) enables
us to obtain an efficient control over the multipolar response
and cover a relatively large bandwidth with the overlapping
resonances. Accurate control of amplitudes and phases allows
achieving performances of a Huygens element.

The concept of a circular wire resonator should not be
confused with circular antenna arrays, e.g., Refs. [33–35]. In-
teractions in those structures, being more than a wavelength in
size, is governed by higher-order modes, which might provide
superior antenna characteristics [35–37]. Our configuration,
however, is smaller in size and its operation is described
by spectrally overlapping lower order modes. As the result,
broadband directional scattering can be achieved, as it will be
shown hereinafter.

The manuscript is organized as follows: Sec. I shows a
preliminary numerical analysis of the structure in order to
obtain a set of optimal parameters, i.e., a number of wires in
the array. Section II describes the eigenmodes of the resonator
and their relation to the multipolar responses. Section III
discusses far-field signatures of the modes, underlining their
contributions to the interaction. Sections IV and V concentrate
on an experimental verification and the broadband Huygens
element operation.

II. THE STRUCTURE’S OPTIMIZATION

An array of near-field coupled vertical wires supports a
variety of multipolar modes. For a relatively short wire (a
standalone wire supports a single mode in the desired fre-
quency range) and taking into account the mode degeneracy,
the number of eigenmodes equals to (N + 1)/2 if N is odd or
N/2 + 1 if N is even [33,38], where N is number of wires
(here wire and azimuthal modes do not mix). In the case
of long wires, however, the family of modes will be much
broader, as different types of mixing will take place. Hence,
it is quite appealing to increase the number of wires within
an array to achieve a richer mode structure. Nevertheless,
strong near-field coupling in the subwavelength geometry sets
certain limitations and complexity, which manifest itself in
mode hybridization. Here we will explore a circular array of
short metal wires, equidistantly distributed on a cylindrical
surface [Fig. 1(a)]. The first objective of the investigation aims
in achieving a large scattering efficiency in a small structure
that will surpass the Chu-Harrington limit (note, that under
standard definitions the resulting structure only approaches
be an electrically small). For this purpose, a numerical opti-
mization, based on the finite element method is performed.
The investigated geometry consists of a variable number of
half-wavelength thin metal wires (perfect electric conductor
is taken of the initial analysis), alighted on a cylinder with the
radius R = 33 mm. The wire length is chosen to be 60.7 mm,
corresponding to a dipole wire resonance around 2 GHz,
which is the relevant frequency range from wireless communi-
cations perspectives. The structure is illuminated with a plane
wave, propagating along the Z axis and polarized along the Y
axis.

Figures 1(b) and 1(c) summarize the results, showing the
scattering efficiency as a function of system’s parameters. It
is quite remarkable that the maximal efficiency approaches
the value of 16.2. The not normalized scattering cross sec-
tion is 650 cm2, while the single channel (l ′ = 1) limit is
(2l ′ + 1)λ2/2π ≈ 107 cm2 (at 2 GHz) is overcame by a factor
of 6. This enhancement, however, saturates fast and can be
obtained with an array of 5 five wires [Fig. 1(c)]. At the same
time, the resonant frequency weakly depends on the number
of wires and stays close to a dipole resonance of a single wire.
As it will be shown hereinafter, mode hybridization (bonding
and antibonding [39]) causes splitting around an initial reso-
nant frequency.

In order to get an insight into physical phenomena of
modes within circular wire resonators, an 11-wire structure
[to ensure reaching the scattering efficiency plateau, Fig. 1(c)]
will be investigated and the effect of strong scattering and
broadband Huygens behavior will be revealed.

III. EIGENMODES OF A CIRCULAR WIRE RESONATOR

The optimized structure of 11 vertically aligned copper
wires, equidistantly distributed over a cylindrical surface
[Fig. 2(a)], will be investigated next. Experimental conditions
correspond to the following values: wires’ diameter and length
are 1 and 60.7 mm, respectively, while the radius of the foam
cylinder is 33 mm. Styrofoam, the transparent for GHz elec-
tromagnetic radiation, has been used to host metal wires (the
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FIG. 1. (a) HERE Schematics of a circular wire array; a set of
vertically aligned wires are equidistantly distributed on a cylinder’s
surface. (b), (c) Numerical analysis of the scattering efficiency (the
values are normalized to the geometric cross section of the structure,
2R × L). Illumination, a plane wave, propagating along the Z axis
and polarized along the Y axis. (b) The total scattering efficiency as
a function of frequency and the number of wires within the array.
(c) The maximum scattering efficiency (left) and the corresponding
frequency (right) as functions of the number of wires (N). Black
arrows link the data with relevant accesses.

wires were heated and squeezed into the foam to obtain more
accurate location). Numerical and experimental investigations
to reveal electromagnetic properties of the structure include
near-to-near [Fig. 2(a)], near-to-far [Fig. 2(b)] and far-to-far
[Fig. 2(c)] field excitation and measurement methods. The
near-field excitation (Tx probe) and the receiving/scanning
(Rx probe) are realized as magnetic field loop probes, located

near the sample surface. Setups for the far-field measurements
include Tx and Rx horn antennas, allocated at the distance
of 2.5 m from the sample to satisfy the Fraunhofer condi-
tion (horns are aligned along the wires to receive the proper
polarization). The first configuration is needed to excite the
entire modes of the structure (including dark weakly radiative
ones) and to measure their field distributions. The second
configuration detects the radiation efficiencies of the modes,
while the last layout is the typical scattering scenario to test
Huygens element performances.

In order to probe the entire modes of the structure (at the
expected frequency range 1.8–2.6 GHz), the array is excited
with a small nonresonant near field loop (Tx) and the complex
reflection coefficient (S11 parameter) spectrum is acquired.
An optimal (most efficient excitation of maximal number of
modes) position of Tx with respect to the structure was found
to be at the middle of one of the wires. The S11-parameters
spectra are presented in Fig. 3, which clearly show six high
quality (high-Q) resonances.

Next, we scan near-field distributions at the relevant fre-
quencies corresponding to the minima of S11 parameter
(Fig. 4). Magnetic field probe (a loop) is placed at the distance
of 2 mm from the cylinder and moved around the structure
[Fig. 2(a)]. This circular scan is repeated for a different height
of the probe, which maps the entire structure from the bot-
tom to the top. The orientation of the probe allows detecting
the azimuthal (within a good approximation) component of
the magnetic field, including amplitude and phase. MiDAS
system (ORBIT/FR Engineering Ltd.) is used to perform the
experiment, while the sample is placed at the center of a rotat-
ing stage. Azimuthal locations of the wires correspond to the
following angles: ±18°; ±54°; ±90°; ±126°, and ±162°. An
additional wire is situated at 180°, where Tx excitation probe
is placed. The field scanning in the experiment is performed
from −170° to +170°. Scanning along the vertical axis is
executed in the range from −40 to +40 mm to cover the entire
geometry.

Eigenmodes of a circular array of omnidirectional scatter-
ers (in-plane in our case) can be characterized by an azimuthal
order, similarly to so-called phase-modes in circular antenna
arrays [33–35]. According to Bloch theorem, phase variations
of wire dipole moments obey geometrical periodicity of the
structure as pn ∼ cos(2π n

N l ), where l is the mode azimuthal
order and n is the wire’s ordinal number. Specifically, the
11-wire array possesses six eigenmodes.

Figure 4 and Table I summarize the results of the nu-
merical eigenmode analysis, predictions of Bloch theorem,
and the measurements. We underline a qualitative agreement
between all these approaches. It is instructive to relate the
classification by the azimuthal order to Cartesian multipoles
[40]. In the lowest order mode (l = 0) there is no phase shift
between wires that results in a dominating electric dipole
(ED) response of the whole structure associated with strong
scattering/radiation losses and a low Q factor. An increase
in the azimuthal order gives rise to alternating polarity of
currents, exited on wires, and nontrivially configured loops,
which serve as sources of magnetic field, so that l = 1 cor-
responds to magnetic dipole (MD), l = 2 corresponds to the
magnetic quadrupole (MQ), l = 3 to the magnetic octupole
(MO), l = 4 to the magnetic hexadecapole (M16-pole), and
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FIG. 2. Photographs of experimental setups in an anechoic chamber. The sample consists of N = 11 copper wires equidistantly distributed
on a styrofoam cylinder’s surface. Three types of setups are (a) near-field-to-near-field excitation (both Tx and Rx are realized with near-field
magnetic loop probes); (b) near-field-to-far-field excitation (Tx is a near-field magnetic loop probe and Rx is a far-field horn); (c) far-field-to-
far-field excitation (both Tx and Rx are realized as the far-field horn antennas).

l = 5 to the magnetic triakontadipole (M32-pole) (rigorous
field decomposition with respect to Cartesian multipoles is
presented in Fig. 6). A similar scenario has also been observed
in circular arrays of metal nanoparticles, where collective
plasmon resonances give rise to artificial magnetism at optical
frequencies [41,42]. Importantly, the higher azimuthal order
also leads to the higher Q factor as a result of stronger near
field concentration and weaker scattering/radiation efficiency.
In absence of Ohmic losses (or when those are negligible),
scattering/radiation efficiency governs Q factors that are re-
markably high for an open resonator in cases of l = 4 and
l = 5.

The resonant frequencies and Q factors obtained in the
experiment are fitted relatively well with the numerical
modeling. Accurate retrieval of sharp resonances is quite chal-
lenging and, hence, numerical predictions deviate from the
experiment, especially in the case of high-order multipoles
(Table I). Experimental Q factors are extracted from the S11

spectrum, while the theoretical values are obtained from the

FIG. 3. The measured reflection coefficient [abs(S11) in dB]
spectrum. The excitation configuration appears in Fig. 2(a).

eigenmode analysis. ED and MD modes, which are theoreti-
cally predicted, were not found in the experiment because of
the relatively low Q factor (below 20). In this case, resonant
peaks are mixed with tails of other nearby resonances.

Also, we note that the geometry of the real structure is
not ideally symmetric. As a result, the modal degeneracy
is removed, and the measurements show splitting of modes
with l = 4 and l = 5 with slightly shifted resonant frequen-
cies, while the Bloch theorem predicts a single mode per
a single azimuthal order. This experimental aspect reflects
the asymmetry in the realization and underlines the impact
of fabrication tolerance on performances of highly resonant
structures, as discussed in the introduction.

IV. FAR-FIELD SIGNATURES OF HIGH-ORDER
MULTIPOLES

The next step is to estimate far-field signatures of the eigen-
modes. It is worth noting that balancing those contributions
will allow achieving broadband Huygens element, which will
be discussed in the next section.

The experimental setup for far-field estimation is presented
in Fig. 2(b). Here the sample is excited by the Tx near-field
probe and the radiated patterns are acquired with the help of
Rx horn antenna, located at the far-field region. Circular scan
around the sample allows measuring the radiation in plane.
Figure 5 shows far-field patterns (E field) along with the over-
all in plane radiated power spectra (more accurate analysis
requires deconvoluting the radiation pattern of the receiving
horn antenna from the measured data or performing a normal-
ization to a tabulated object). Signatures of the eigenmodes
can be clearly identified. For example, the four-lobes E-field
structure (at 2.055 GHz) corresponds to the MQ eigenmode
with l = 2. Other modes can be identified in a similar fashion,
comparing Fig. 5 with Table I. Higher order modes have lower
radiation efficiencies and, as a result, the far-field patterns are
noisier (data in the insets to Fig. 5 is normalized to unity for
each one independently).
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FIG. 4. Characterization of eigenmodes within a circular wire array: numerical simulations, near-field measurements, and Bloch theorem
analysis. Experimental acquisition is performed with the near-field scan of azimuthal component of the magnetic field distributions [Fig. 2(a)].
Resonances of the modes and their classification appear in Table I. The eigenmodes with l = 0 and l = 1 have not been revealed in the
experiment due to low Q factors. The mode with l = 2 appears in S11 but experimental phase distribution is not presented.

V. ANALYSIS OF THE SCATTERING EFFICIENCY

Next, we investigate the performance of the structure,
operating as a scatterer in free space [the configuration in

Fig. 2(c)]. The optical theorem is used to evaluate the total
scattering efficiency from the imaginary part of the forward
one in the case of the experimental acquisition [43,44]. Ex-
perimental and numerical results are summarized in Fig. 6(a).
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TABLE I. Characterization of the resonant modes, experimental, and numerical data. Modes are characterized by their azimuthal order,
dominating multipole, resonant frequency, and quality factor. Cartesian multipoles: ED and MD, electric and magnetic dipoles; EQ and MQ,
electric and magnetic quadrupoles; EO and MO, electric and magnetic octupoles; M16-pole, magnetic hexadecapole; M32-pole, magnetic
triakontadipole.

Experimental data

Azimuthal order 0 1 2 3 4 4 5 5

f , GHz – – 2.055 2.181 2.23 2.239 2.253 2.258
Q factor – – 32.5 220 1316 1595 1211 2579

Numerical data

Contributing multipoles ED MD+EQ MQ+EO MO M16-pole M16-pole M32-pole M32-pole

f , GHz 1.773 1.887 2.094 2.217 2.273 2.295
Q factor 1.1 3.8 20 120 873 5599

While the experimental data is colored by an additional
oscillatory pattern, which is quite similar to experiments, per-
formed in an anechoic chamber (e.g., Refs. [45,46]), a good
correspondence with the numerical data can be observed.
Main high-Q peaks are clearly visible, and their spectral po-
sitions are predicted by the numerical modeling (a 40-MHz
shift was manually compensated to obtain more accurate
layout of the results). It is also worth noting the similarity
between Figs. 5 and 6(a), despite different experimental lay-
outs, used to obtain the data. This is the manifestation of
strong resonant behavior, which predominates other mecha-
nisms (e.g., absorption) that might play a role. High-Q modes
are the preferable channels for radiation and scattering; hence,
they are visible in both cases (Figs. 5 and 6). It is worth
clarifying that far-to-far field excitation characterizes the
structure in terms of scattering efficiency as a passive device,
whereas near-to-far field excitation allowed for probing its
modes.

In order to reveal the contribution of eigenmodes to the
scattering performance, we perform the decomposition of the
simulated scattered field with respect to Cartesian multipoles

FIG. 5. In-plane radiated power as a function of frequency. In-
sets; radiation patterns (E field), the setup from Fig. 2(b). Frequencies
correspond to resonant modes, which appear in Table I. Radiation
patterns are normalized to the maxima.

FIG. 6. Scattering efficiency analysis. (a) Measured and sim-
ulated scattering efficiencies spectra. (b) Cartesian multipole de-
composition of the scattering efficiency. Multipole contributions are
marked with colors: ED and MD, electric and magnetic dipoles;
EQ and MQ, electric and magnetic quadrupoles; EO and MO, elec-
tric and magnetic octupoles. Blue line indicates summation of the
multipolar contributions, while black line stands for the direct far-
field integration. Insets show near-field distribution of the magnetic
field in the equatorial plane and current distribution on the wires
(white cones) at the eigenmode frequencies. Both figures corre-
spond to the experimental layout in Fig. 2(c). Phases of multipole
contributions to the far field in the (c) forward and (d) backward
directions with respect to the wave incidence. EQ and MD are
in-phase across the full frequency range. (e) Far-field scattering
patterns for isolated multipoles, their sums, and full-wave simulation
at 1.96 GHz. Orientation of the incident plane wave is equal for all
patterns.
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with three orders included as follows [40]:

Escat_i = k2

4πε0r
eikr

[
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We assume exp(−iωt ) time dependence and Einstein’s
summation notation, where vectors and tensors are denoted by
lower-case indexes. The following parameters are defined: k
is the vacuum wave number, r = |r| the distance between the
scatterer’s center and the observation point, ε0 is the vacuum
permittivity, ni = ri/r; p j and mj are the basic ED and MD,
¯̄Q(e)

jk and ¯̄Q(m)
j p are the EQs and MQs, ¯̄O(e)

jkp and ¯̄O(m)
j pl are the

EOs and MOs. The toroidal moments are marked with T. The
superscripts in round brackets indicate their belonging to the
corresponding basic multipole moments. Explicit expressions
for multipole tensors can be found in Ref. [40]. The differen-
tial scattering power is given by

dPscat = 1

2

√
ε0

μ0
|Escat|2d�.

Normalization of Pscat to the incident wave energy flux
and the geometrical efficiency of the scatterer leads to the
following expression for the scattering efficiency:

σscat = 2

2RL

√
μ0

ε0

Pscat

|E0|2
,

where |E0| is the amplitude of the incident field.
Figure 6(b) summarizes the results. The validity of the

decomposition is evidenced from the agreement between the
sum of multipole contributions and the scattering efficiency
obtained by the integration of scattered field. The only sig-
nificant differences appear for the highest order modes with
l = 4 and l = 5 because the order of multipoles to which they
correspond is beyond the set of six considered multipoles.
However, accounting for the symmetry of these modes, one
can assume that the dominating multipoles for in this case are
M16- and M32-poles, respectively.

It is important to note that magnetic multipoles prevail
over electric counterparts for all eigenmodes except for the
lowest order ED mode. This is the result of alternating wire
polarizations serving as sources of magnetic field which is
shown in the insets of Fig. 6(b) and confirmed by the phase
patterns, presented in Fig. 4.

VI. BROADBAND HUYGENS ELEMENT

The broadband performance of the system is mainly pro-
vided by the zero-, first-, and second-order azimuthal modes,
which contain ED, MD+EQ, and MQ+EO multipoles, re-
spectively [Fig. 6(b)]. Hence, the behavior of the scattering
pattern in the broadband frequency domain is determined by
the interference between these multipoles. Figures 6(c) and
6(d) show an analysis of the far-field phases for the mul-
tipole contributions. We distinguish phases for the forward
and backward directions with respect to the incident plane

wave. Interestingly, couples of multipoles contributing to the
same eigenmodes MD + EQ and MQ+EO are in-phase in
both directions in the spectral ranges of mode existence.
Moreover, the strength of particular multipole contributions
to the scattering correlates well with their constructive and
destructive interference in the forward and backward direc-
tions, respectively. For example, at the frequencies less than
2 GHz the major contributing multipoles are ED, MD, EQ,
and MQ [Fig. 6(b)]. The phase shift between them in the
forward direction is much less than π [Fig. 6(c)], and ED and
MQ are shifted approximately by π from MD and EQ in the
backward direction [Fig. 6(d)]. The same situation appears for
other combinations of major contributing multipoles in other
frequency ranges. Hence, the broadband forward scattering
pattern is formed.

It is also instructive to analyze this generalized Kerker
effect at the level of scattering patterns. Figure 6(e) demon-
strates far-field scattering patterns for isolated multipoles and
their sums at the eigenfrequency of the first-order azimuthal
mode 1.96 GHz. The sum of MD and EQ (which form the
first-order azimuthal mode) results in the equal scattering in
the forward and backward directions, which follows from the
analysis of the multipole phases as well. However, accounting
for ED and MQ gives rise to the pronounced forward scatter-
ing, as confirmed by the full-wave simulation.

Next, we compare the forward and the backward scatter-
ing efficiencies predicted by the theoretical model with the
measurements (Fig. 7). Once the forward-to-backward ratio
prevails the value of 2 (rather arbitrary yet reasonable cri-
teria), the element can be considered as Huygens. One can
observe a minimum of the backward scattering at 1.93 GHz
in the experiment [Fig. 7(a)] and at 1.6 GHz in the simula-
tion [Fig. 7(b)], which corresponds to the maximum in the
forward-to-backward ratio (frequency shift between the nu-
merical and experimental results are quite common and may
be as large as 10% of the carrier in the case resonant structures
are in use). This is the result of the classical Kerker effect
[24] associated with almost equal and in-phase ED, MD, and
EQ contributions to the scattering [Figs. 6(b)–6(d)]. At higher
frequencies, the directional resonant scattering is achieved
over a relatively broad spectral range, covering 10s of percent
of the bandwidth [Figs. 7(c) and 7(d)] for the experiment
and the theory). Scattering patterns, which appear as insets
in Fig. 7(d), clearly show dominating forward scattering.
The only exceptions are the fourth- and fifth-order azimuthal
modes that impinge the forward scattering due to the very
multilobe structures. Nevertheless, apart from several spectral
notches the generalized Kerker effect is supported in the rest
part of the spectrum. It should be noted that the effect here
is different from other broadband Huygens elements, based
on nonresonant elements [30,32]. In nonresonant cases the
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FIG. 7. Forward and the backward scattering efficiency spectra: (a) experimental, (b) numerical. Forward-to-backward scattering ratio:
(c) experimental, (d) numerical. Insets: far-field scattering diagrams. Measurements have been performed for two directions only, while in
simulations the forward and backward scattering efficiencies have been calculated by integrations of the far-field over hemispheres.

scattering efficiencies are much weaker and spectral control
over the effect is more challenging if even possible.

VII. CONCLUSION AND OUTLOOK

The concept of a broadband resonant Huygens element
based on a circular array of vertically aligned metal wires
has been proposed and experimentally demonstrated. The
effect stems from spectral cascading a variety of system’s
eigenmodes appearing as a result of a strong near-field cou-
pling between dipolar responses of individual wires. Field
expansion with respect to Cartesian multipoles shows pre-
dominant contribution of magnetic multipoles with respect to
electric ones for almost all eigenmodes except from the low-
est one. Very high-order magnetic hexadecapole (M16-pole)
and magnetic triakontadipole (M32-pole) with quality factors,
approaching 6000, have been predicted and mapped with a
near-field scanner. Multipoles contribution to the Huygens
element performance have been shown. Scattering efficiency
of the demonstrated configuration is 15 times larger than
its geometrical cross section and, at the same time, the de-
vice demonstrates broadband forward scattering capabilities,

obtained at a bandwidth ∼10% of the carrier frequency in the
GHz range.

Resonant Huygens elements of this kind can find a use
in frequency-selective surfaces designs, antenna isolation de-
vices, directional reflectors, refractors, and many others. It is
also worth noting that the concept can be scaled in frequency
and the resonant cascading approach can be mapped on the
optical domain, taking into account corresponding issues of
material losses and dispersion, which are not the scalable
quantities. Resonant cascading in optics is valuable for light
harvesting, which is an important objective, contributing to
green energy efforts and flat miniaturized imaging optics to
name just few. For example, Huygens metasurfaces are used
for implementing flat objectives with high numerical apertures
[47] and in other all-dielectric photonic applications [14].
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