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Dynamical quantum phase transitions in a spin chain with deconfined quantum critical points
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We analytically and numerically study the Loschmidt echo and the dynamical order parameters in a spin
chain with a deconfined phase transition between a dimerized state and a ferromagnetic phase. For quenches
from a dimerized state to a ferromagnetic phase, we find that the model can exhibit a dynamical quantum phase
transition characterized by an associating dimerized order parameter. In particular, when quenching the system
from the Majumdar-Ghosh state to the ferromagnetic Ising state, we find an exact mapping into the classical
Ising chain for a quench from the paramagnetic phase to the classical Ising phase by analytically calculating
the Loschmidt echo and the dynamical order parameters. By contrast, for quenches from a ferromagnetic state
to a dimerized state, the system relaxes very fast so that the dynamical quantum transition may exist on only a
short timescale. We reveal that the dynamical quantum phase transition can occur in systems with two broken
symmetry phases and the quench dynamics may be independent of equilibrium phase transitions.
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I. INTRODUCTION

Understanding the behaviors of many-body systems out of
equilibrium is a central problem of research in physics [1].
Dynamical quantum phase transitions (DQPTs) [2,3] are
proposed to occur at critical times tc during the real-time
evolution with nonanalyticities of the rate function after a sud-
den quench of the system across equilibrium quantum critical
points. Contrary to conversional classical (quantum) phase
transitions driven by temperature (magnetic field or pressure),
DQPTs are considered new types of phase transitions driven
by time. There has been a lot of interest in the study of DQPTs,
including critical properties [4–11], dynamical order parame-
ters [12–15], spontaneously broken symmetries [16–21], etc.
Realizations of DQPTs have been performed in a large num-
ber of experiments based on different platforms [22–29].

On the other hand, the deconfined quantum critical point
(DQCP) was originally introduced as a second-order quan-
tum phase transition between the valence bond solid (VBS)
state and the antiferromagnetic (AF) Neél phase [30–33]. The
lattice symmetry is broken for the VBS phase, while the
spin symmetry is broken for the AF phase [30]. A transition
between two different broken symmetry phases is usually
considered a first-order transition instead of second order ac-
cording to Landau-Ginzburg-Wilson theory [34,35]. Hence,
in two-dimensional models, whether the phase transition is a
DQCP or weakly first order is still under debate [33]. Contrary
to two-dimensional systems, recent numerical results [36–41]
strongly support a continuous second-order transition with
the conversional finite-size scaling [39,40] in one-dimensional
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models. In this paper, we will focus our study on DQPTs in a
one-dimensional spin chain with DQCPs.

Previous studies on DQPTs with spontaneously broken
symmetry phases were carried out in many systems (i.e.,
discrete Z2 symmetries [16,20], broken continuous symme-
tries [19], lattice symmetry breaking [21], etc.). Recently,
the DQPTs were investigated in a two-dimensional quan-
tum dimer model with VBS phases by considering quenches
across a Berezinskii-Kosterlitz-Thouless (BKT) transition and
a first-order transition [21]. However, to the best of our knowl-
edge, whether DQPTs can occur in systems after a quench
across a DQCP is so far less studied. In the following, we
will investigate DQPTs in systems with a quench between
two broken symmetry phases based on the Loschmidt echo
and dynamical order parameters. We show that DQPTs can
occur and be characterized by dimerized order parameters for
quenches from VBS phases to ferromagnetic (FM) phases.
More importantly, we find that DQPTs in a spin chain with
DQCPs for the quench from the Majumdar-Ghosh phase to
the classical Ising phase can be mapped to DQPTs in the
Ising chain for the quench from the paramagnetic phase to
the classical Ising phase.

This paper is organized as follows. In Sec. II, we introduce
the concept of the Loschmidt echo. In Sec. III, we discuss the
spin chain model with DQCPs we used. In Sec. IV, we review
the DQPTs in the transverse field Ising chain. In Sec. V,
we present the main results of this paper. In Sec. VI, we
summarize.

II. LOSCHMIDT ECHO

Given an initial quantum state |ψ0〉, the Loschmidt ampli-
tude G(t ) is defined as the overlap between the initial state
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|ψ0〉 and its time-evolved states |ψ (t )〉 = e−iHt |ψ0〉,
G(t ) = 〈ψ0|e−iHt |ψ0〉, (1)

where H is the quench Hamiltonian governing the time evolu-
tion of the system. The Loschmidt amplitude can be regarded
as a dynamical counterpart of the partition function. Thus, we
can define the return rate function,

r(t ) = − 1

N
ln L(t ), (2)

as an analogy of the free energy of classical systems [2,3].
Here L(t ) = |G(t )|2 is the Loschmidt echo, and N is the
system size. The rate function will exhibit nonanalytical be-
haviors (such as a kink structure) at critical times.

III. MODEL

We consider the following spin chain model for the
nonequilibrium dynamics proposed recently in [36–40]:

H =
∑

j

(−Jxσ
x
j σ

x
j+1 − Jzσ

z
j σ

z
j+1

+ Kxσ
x
j σ

x
j+2 + Kzσ

z
j σ

z
j+2). (3)

Here σ x
j , σ

z
j are the Pauli matrices at the jth sites; Jx �

0, Jz � 0 and Kx � 0, Kz � 0 are the nearest-neighbor and
next-nearest-neighbor coupling constants, respectively. The
model has Z2 × Z2 symmetry, translation symmetry, and in-
version symmetry [36]. The system undergoes a second-order
quantum phase transition, known as DQCP, between the VBS
dimerized phase and the FM phase. We note that (1) for Jx =
Jz = 1, Kx = Kz = 1/2, the ground state is the Majumdar-
Ghosh state [37] and (2) for Jx = Kx = Kz = 0, Jz = 1, the
model is reduced to the classical Ising model. In the following,
we will study the quench dynamics from the VBS phase to the
FM phase and vice versa with periodic boundary conditions
(PBCs).

IV. TRANSVERSE FIELD ISING CHAIN

Let us first revisit the DQPTs in the ferromagnetic trans-
verse field Ising chain, which will help us to understand the
quench dynamics from the VBS state to the FM phase. The
Hamiltonian of the transverse field Ising chain is given by

H = −Jz

∑
j

σ z
j σ

z
j+1 − h

∑
j

σ x
j , (4)

with interaction strength Jz � 0 and transverse field h � 0.
The system undergoes a second-order quantum phase tran-
sition at the critical point hc = 1 between the FM phase for
h < 1 and the paramagnetic phase for h > 1. In particular, the
ground state is the classical ferromagnetic phase at h = 0 and
the fully polarized phase at h → ∞.

We consider the quench from a fully polarized initial state,

|ψ0〉 =
N⊗

j=1

1√
2

(| ↑〉 j + | ↓〉 j ), (5)

which is the eigenstate of the Hamiltonian in Eq. (4) with the
transverse field h → ∞, to a final Hamiltonian,

H = −Jz

∑
j

σ z
j σ

z
j+1, (6)

which corresponds to the Hamiltonian with transverse field
h = 0 in Eq. (4). Here | ↑〉 j , | ↓〉 j are the two basis states of
σ z

j denoting spin up and spin down at the jth site. Then the
Loschmidt amplitude G(t ) in Eq. (1) can be written as

G(t ) = 〈ψ0|e−iHt |ψ0〉
= 〈ψ0|eiJzt

∑
j σ z

j σ
z
j+1 |ψ0〉

= 1

2N
Tr[eiJzt

∑
j σ z

j σ
z
j+1 ], (7)

where Tr denotes the trace. The Loschmidt amplitude G(t ) in
Eq. (7) is equivalent to the partition function of the classical
Ising model [2,4] by replacing the time t by the inverse tem-
perature β using it = β; then the Loschmidt amplitude G(t )
in Eq. (7) with PBCs becomes

G(t ) = Tr[DN ] = λN
+ + λN

−, (8)

where D is the 2 × 2 matrix

D = 1

2

(
eiJzt e−iJzt

e−iJzt eiJzt

)
(9)

and λ+ = cos(Jzt ) and λ− = i sin(Jzt ) are the two eigenvalues
of matrix D. We can derive the critical times,

tn = π

4Jz
(2n + 1), (10)

of the DQPTs by using the condition [2,4]

|λ+| = |λ−|, (11)

where n are integers. This is equivalent to solving the equation
of the Loschmidt amplitude G(t ),

[cos(Jzt )]N + [i sin(Jzt )]N = 0, (12)

with the condition N = 4n + 2 in the domain of real numbers.
For N = 4n, the critical time tn in Eq. (10) is obtained by
finding the minima of the Loschmidt amplitude G(t ), which
decreases towards to zero when increasing system size N .
Hence, the rate functions in Eq. (2) will diverge for even
numbers of system sizes in the limit of N → ∞, indicating
DQPTs occur at critical times tn.

V. SPIN CHAIN WITH DQCP

In this section, we will study the spin chain model with
DQCPs defined in Eq. (3) and analytically and numerically
present our main results for DQPTs for the quenches from
VBS phases to FM phases and vice versa.

For simplicity, In Eq. (3) we choose Jx = 1, Kx = 1/2,
Kz = 1/2, and Jz > 0 as in Refs. [38–40]. The system exhibits
a phase transition from the VBS phase to the FM phase at
critical point Jc

z ≈ 1.465 [38–40]. For Jz < Jc
z , the ground

state is the VBS phase; for Jz > Jc
z , the ground state becomes

the FM phase. In particular, at Jz = 1, the ground state is the
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exact Majumdar-Ghosh state [37],

|ψ0〉 =
N/2⊗
m=1

( | ↑↑〉 + | ↓↓〉√
2

)
2m−1,2m

, (13)

where m are integers.
We first consider the quench from the Majumdar-Ghosh

state in Eq. (13), which is the eigenstate of the Hamiltonian
in Eq. (3) at Jz = 1, to the classical Ising phase in Eq. (6)
corresponding to the Hamiltonian in Eq. (3) with Jz → ∞.
The Loschmidt amplitude G(t ) in Eq. (1) now becomes (see
Appendix A for details)

G(t ) = 〈ψ0|e−iHt |ψ0〉
= Tr[DN/2]

= [cos(Jzt )]N/2 + [i sin(Jzt )]N/2. (14)

This is just the Loschmidt amplitude G(t ) of the Ising model
as shown in Eq. (8) with system size N/2. Hence, DQPTs
occur at exactly the same critical times tn as in Eq. (10) of
the transverse field Ising model.

The understanding of this result is as follows. For the case
of the transverse field Ising model, the initial state in Eq. (5)
is the product state of the eigenstate of single-site operator σ x

j .
In the σ z

j base, the eigenstate of σ x
j is the superposition of the

spin-up state | ↑〉 j and the spin-down state | ↓〉 j . Similarly, the
Majumdar-Ghosh state is also a product state of the entangled
triplet state, as shown in Eq. (13). And the Majumdar-Ghosh
state can be regarded as a fully polarized state of system
size N/2 if each pair in the entangled triplet state is grouped
together as a new site, | ⇑〉m = | ↑↑〉2m−1,2m, | ⇓〉m = | ↓↓
〉2m−1,2m.

In the following, we will show such DQPTs can be de-
scribed by dimerized order parameters. The dimerized order
operators are defined as

Dx = 1

N

∑
j

(−1) j (σ x
j σ

x
j+1), (15)

Dy = 1

N

∑
j

(−1) j (σ y
j σ

y
j+1), (16)

Dz = 1

N

∑
j

(−1) j (σ z
j σ

z
j+1) (17)

in the equilibrium VBS state. Hence, the dynamics of the
dimerized order parameters are given by

Dx(t ) = 〈�(t )|Dx|�(t )〉, (18)

Dy(t ) = 〈�(t )|Dy|�(t )〉, (19)

Dz(t ) = 〈�(t )|Dz|�(t )〉, (20)

where |�(t )〉 = e−iHt |�0〉 is the time-evolved state. The
dimerized order parameters Dx(t ), Dy(t ), Dz(t ) are evaluated
by (see Appendix B for details)

Dx(t ) = cos(2Jzt )2

2
, (21)

Dy(t ) = − cos(2Jzt )2

2
, (22)

Dz(t ) = 1
2 . (23)

FIG. 1. Dynamics from the initial Majumdar-Ghosh state to the
quenched classical Ising chain of Eq. (3) with time t/tc1 and tc1 =
π/4. (a) Rate function r(t ) for N = 2400, 240, 96, 48, 24, 16 lattice
sites from top to bottom. The inset in (a) shows the finite-size effects
near the first critical time for L = 2400, 240, 96, 48 from top to bot-
tom. (b) Dimerized order parameters Dx (t ) with the same parameters
as (a). The results are the same as the classical Ising model with
N ′ = N/2, where the dimerized order parameters Dx (t ) corresponds
to 〈σ x (t )〉.

We can see that the dimerized order parameter Dz(t ) is con-
served during the time evolution, which is due to the fact that
the Majumdar-Ghosh state is the eigenstate of the quenched
Hamiltonian in Eq. (6), while Dx(t ) and Dy(t ) vary sinu-
soidally with time t in the opposite direction. The results of the
rate function r(t ) and the dimerized order parameters Dx(t )
are plotted in Fig. 1, where we can clearly see the kinks in the
rate functions, indicating DQPTs occur at tn/tc1 = (2n + 1),
as predicted in Eq. (10), with tc1 = π

4 being the first critical
time. We find that DQPTs can be described by x-component
dimerized order parameters Dx(t ) [or y-component Dy(t )],
which become zero at critical time tn [42]. Interestingly, the
value of the x-component dimerized order parameters Dx(t )
is just half of the value of 〈σ x(t )〉 in the transverse field Ising
chain. It supported our argument again that we can group the
two entangled particles together and consider their dynamics
to be that in the Ising model.

Indeed, the above arguments and results for the Loschmidt
amplitude G(t ) can be generated to any product state consist-
ing of a K-qubit Greenberger-Horne-Zeilinger (GHZ) state,

|ψ0〉 =
N/K⊗
m=1

( | ↑〉⊗K + | ↓〉⊗K

√
2

)
Km−K+1,...,Km

. (24)

The Loschmidt amplitude G(t ) for the initial K-qubit GHZ
state would become

G(t ) = [cos(Jzt )]N/K + [i sin(Jzt )]N/K (25)
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FIG. 2. Dynamics from the initial VBS phases to FM phases
of Eq. (3) with time t/tc1 and tc1 = π/4. (a) Rate function r(t ) of
N = 24 lattice sites for the quench from the Majumdar-Ghosh (MG)
phase at Jz/Jx = 1 to the FM phase at Jz/Jx = 50 (black dash-dotted
line), Jz/Jx = 20 (red dashed line), Jz/Jx = 10 (blue solid line). The
green solid circles denote the data for the quench from the VBS phase
at Jz/Jx = 1.05 to the FM phase at Jz/Jx = 10 with N = 24 lattice
sites. The results change little compared to that for the quench from
the MG state to the FM phase at Jz/Jx = 10. (b) Dimerized order
parameters Dx (t ) with the same parameters as (a). (c) The finite-size
scaling of the rate function r(t ) for the quench from the MG phase to
the FM phase at Jz/Jx = 10 with N = 8 (red solid line), N = 16 (blue
dashed line), N = 24 (green dotted line) lattice sites. We rescale the
Hamiltonian by choosing Jz = 1 in the simulations.

if we grouped the K-qubit GHZ state as a new single-lattice
size. We numerically confirm the above analytical results of
the Loschmidt amplitude G(t ) by using the exact diagonaliza-
tion for GHZ states in small systems.

Next, let us start to consider the general quenches from the
Majumdar-Ghosh state Jz = 1 to FM states (large but finite Jz)
by increasing Jz from Jz → ∞. For very large Jz, where the
fluctuations are weak, we expect that the DQPTs will survive.
To support our argument, we perform the exact diagonaliza-
tion up to N = 24 lattice size for Jz/Jx = 50, Jz/Jx = 20, and
Jz/Jx = 10 in PBCs. The rate function r(t ) and x-component
dimerized order parameters Dx(t ) are presented in Fig. 2. For
very large Jz = 50, the rate function r(t ) and order parameters
Dx(t ) change little compared to the classical Ising model.
Increasing Jz, the peak of rate functions r(t ) and minima of
order parameters Dx(t ) move in the right direction due to the
stronger fluctuations in the quenched Hamiltonian. We find
the peaks of the rate functions r(t ) increase with system size
around the local minima of the order parameters Dx(t ), indi-
cating that DQPTs persist even for Jz/Jx = 10 [see Fig. 2(c)].

FIG. 3. Dynamics from the initial fully polarized FM phases
(N → ∞) to the Majumdar-Ghosh phase Jz = 1 of Eq. (3) with time
t . (a) Rate function r(t ) for N = 16 (red dashed line), N = 20 (blue
dash-dotted line), N = 24 (green solid line) lattice sites. The inset in
(a) denotes the finite-size effects near the first critical time. (b) Bond
order parameters B(t ) (dashed line) and the magnetization Mz(t )
(dash-dotted line) with N = 24 sites.

And the existence of DQPTs is robust under a small per-
turbation of the initial Majumdar-Ghosh state [i.e., changing
Jz/Jx = 1 to Jz/Jx = 1.05; see Fig. 2(a)]. We note that when
Jz is close to the equilibrium critical point Jc

z ≈ 1.465, we
cannot find nice kinks due to the strong fluctuations where
the criticality of the DQCP plays an important role in the
DQPTs. The study of the quenches near the critical point is
a very difficult problem that we leave for future work.

Finally, we will briefly discuss the DQPTs from the
quenches from the fully polarized FM phase (Jz → ∞) to the
Majumdar-Ghosh state (Jz = 1). We quench our system from
one of the doubly degenerate polarized FM phases

|ψ0〉 =
N⊗

i=1

(| ↑〉i ) (26)

to the Majumdar-Ghosh model and perform the exact diag-
onalization to compute the rate functions r(t ), bond order
parameters B(t ) = 〈�σi · �σi+1〉, and magnetization Mz(t ) =
1
N

∑
i〈σ z

i 〉 in PBCs. The results are shown in Fig. 3, where
we can see that the bond order parameters B(t ) and the mag-
netization Mz(t ) decay very quickly to equilibrium values of
B(t ) ≈ 1/2 and Mz(t ) ≈ 0 so that it is very difficult to denote
the DQPTs, although it seem that there is a DQPT (kink
structure) on the short timescale. We note that our result in this
case is different from that in the XXZ model [16], where the
magnetization shows an oscillatory behavior and DQPTs can
be well described by comparing two rate functions rη(t ), with
η denoting two degenerate Néel phases. Therefore, our results
reveal that different broken symmetries will play a different
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role in the quench dynamics. It would be very interesting to
understand the relations between DQPTs and symmetries in
the future.

VI. CONCLUSION

In this paper, we studied the quench dynamics in a spin
chain with a DQCP. We derived analytical results of the
Loschmidt amplitude and order parameters for the quench
from the Majumdar-Ghosh state to the classical Ising chain.
For more general cases, we numerically investigated the
quench dynamics. We showed that DQPTs can occur in sys-
tems with two broken symmetry phases and can be described
by x-component (or y-component) dimerized VBS order pa-
rameters. Our results reveal that broken lattice symmetry and
broken spin symmetry of the quenched Hamiltonian play a
different role in the quench dynamics. For the quench from the
broken lattice symmetry to the Z2 broken classical Ising chain,
we found that the dynamics of Loschmidt amplitude with the
initial Majumdar-Ghosh state is equivalent to a product state
of a translation symmetry. This means we cannot distinguish
the Ising transition and the DQCP from such quench dynam-
ics, implying that one should consider the quenches near the
DQCP in order to study its critical properties [43–45]. We note
that our results for the initial VBS states and any K-qubit GHZ
states have been realized in recent experiments [46].

It would be very interesting to investigate the quench dy-
namics in two-dimensional systems with DQCPs to know
whether DQPTs can occur and whether the dynamics of the
Loschmidt amplitude can be mapped to the two-dimensional
classical Ising model.
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APPENDIX A: DERIVATION OF LOSCHMIDT
AMPLITUDE

To investigate the DQPTs in the system, we start with the
dimerized Majumdar-Ghosh state, which is given by

|�0〉 =
N/2⊗
m=1

( | ↑↑〉 + | ↓↓〉√
2

)
2m−1,2m

, (A1)

where | ↑,↓〉 are the basis state along the z direction. We then
quench this state by a Hamiltonian deep in the z-FM regime
with Jz � 1, which is

H = −
N∑

i=1

Jzσ
z
i σ z

i+1. (A2)

To evaluate the Loschmidt echo, we note that

|�(t )〉 = e−itH |�0〉
=

∏
i

eitJzσ
z
i σ z

i+1 |�0〉

= eitJzN/2
∏

i=2,4,··· ,2m

eitJzσ
z
i σ z

i+1 |�0〉. (A3)

If we group each pair in the entangled triplet state as a new
site,

| ⇑〉m = | ↑↑〉2m−1,2m, | ⇓〉m = | ↓↓〉2m−1,2m, (A4)

the Majumdar-Ghosh state in Eq. (A1) becomes

|ψ0〉 =
N/2⊗
m=1

1√
2

(| ⇑〉m + | ⇓〉m). (A5)

The eigenvalue equations of operators

σ z
2m = 12m−1 ⊗ σ z

2m, (A6)

σ z
2m+1 = σ z

2m+1 ⊗ 12m+2 (A7)

are

σ z
2m|ψ0〉 = 1√

2
(| ⇑〉m − | ⇓〉m), (A8)

σ z
2m+1|ψ0〉 = 1√

2
(| ⇑〉m − | ⇓〉m), (A9)

which are the same as the Ising model. Then the Loschmidt
amplitude for PBCs is

G(t ) = 〈�0|e−itH |�0〉
= 〈�0|eitJzN/2

∏
i=2,4,...,2m

eitJzσ
z
i σ z

i+1 |�0〉

= Tr[DN/2]

= [cos(Jzt )]N/2 + [i sin(Jzt )]N/2. (A10)

APPENDIX B: DERIVATION OF ORDER PARAMETERS

Now let us first see how the polarizations 〈σ x〉 in the x
direction evolve in the classical Ising model for PBCs,

〈σ x(t )〉 = 1

N

〈∑
j

σ x
j

〉
= 1

N
〈�0|e−iJzt

∑
i σ

z
i σ z

i+1

∑
j

σ x
j eiJzt

∑
i σ

z
i σ z

i+1 |�0〉 = 〈�0|e−iJzt
∑

i σ
z
i σ z

i+1σ x
1 eiJzt

∑
i σ

z
i σ z

i+1 |�0〉

= 〈�0|e−iJzt
∑N−1

i=2 σ z
i σ z

i+1 e−iJztσ
z
1 (σ z

N +σ z
2 )σ x

1 eiJztσ
z
1 (σ z

N +σ z
2 )eiJzt

∑N−1
i=2 σ z

i σ z
i+1 |�0〉 = 〈�0|e−iJzt

∑N−1
i=2 σ z

i σ z
i+1

{
σ x

1 cos
[
2Jzt

(
σ z

N + σ z
2

)]
+ σ

y
1 sin

[
2Jzt

(
σ z

N + σ z
2

)]}
eiJzt

∑N−1
i=2 σ z

i σ z
i+1 |�0〉 = 〈�0|e−iJzt

∑N−1
i=2 σ z

i σ z
i+1

{
cos

[
2Jzt (σ z

N + σ z
2 )

]}
eiJzt

∑N−1
i=2 σ z

i σ z
i+1 |�0〉

= cos2(2Jzt ). (B1)
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Next, we will show the details of computing the dimerized order parameters 〈Dx(t )〉, 〈Dy(t )〉, 〈Dz(t )〉 defined in
Eqs. (18), (19), and (20). The order parameter dynamics 〈Dz(t )〉 can be easily calculated as

〈Dz(t )〉 = 〈�0|eitH Dze
−itH |�0〉 = 〈�0|Dz|�0〉 = 1

2
. (B2)

To evaluate 〈Dx(t )〉 and 〈Dy(t )〉, we note that the quenched state has the form

|�(t )〉 = eitJzN/2e
iJzt

∑
i=2,4,...,2m

σ z
i σ z

i+1 |�0〉. (B3)

Thus, we have

〈�(t )|σ x
1 σ x

2 |�(t )〉

= 〈�0|e
−iJzt

∑
i=even

σ z
i σ z

i+1
σ x

1 σ x
2 e

iJzt
∑

i=even
σ z

i σ z
i+1 |�0〉 = 〈�0|e−iJzt

∑2m−2
i=4 σ z

i σ z
i+1 e−iJzt (σ z

2 σ z
3 +σ z

1 σ z
N )σ x

1 σ x
2 eiJzt (σ z

1 σ z
N +σ z

2 σ z
3 )eiJzt

∑2m−2
i=4 σ z

i σ z
i+1 |�0〉

= 〈�0|e−iJzt
∑2m−2

i=4 σ z
i σ z+1

i {σ x
1 σ x

2 cos[2Jzt (σ z
N ) cos[2Jzt (σ z

3 )]+ σ
y
1 σ

y
2 sin[2Jzt (σ z

N ) sin[2Jzt (σ z
3 )]}eiJzt

∑2m−2
i=4 σ z

i σ z+1
i |�0〉= cos2(2Jzt ).

(B4)

Similarly, we have

〈�(t )|σ x
2 σ x

3 |�(t )〉 = 0, (B5)

〈�(t )|σ x
3 σ x

4 |�(t )〉 = cos2(2Jzt ), (B6)

〈�(t )|σ x
4 σ x

5 |�(t )〉 = 0. (B7)

Finally, we get

〈Dx(t )〉 = 〈�(t )|Dx|�(t )〉 = cos2(2Jzt )

2
, (B8)

〈Dy(t )〉 = 〈�(t )|Dy|�(t )〉 = −cos2(2Jzt )

2
. (B9)
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