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Unitary preparation of many-body Chern insulators: Adiabatic bulk-boundary correspondence

Souvik Bandyopadhyay * and Amit Dutta †

Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016, India

(Received 11 May 2020; revised 12 August 2020; accepted 17 August 2020; published 2 September 2020)

We approach the long-standing problem of preparing an out-of-equilibrium many-body Chern insulator (CI)
and associated bulk-boundary correspondence unitarily. Herein, this is addressed by constructing a dynamical
many-body Chern invariant exploiting the property of the bulk macroscopic electric polarization (Resta polar-
ization) of the CI. This Chern invariant defined from observable correlations is also established to topologically
classify many-body Chern states in equilibrium. The nonequilibrium behavior of the invariant is probed by
ramping the paradigmatic Haldane model of graphene from its trivial to the topological phase. We show that a
nonlinear ramp may work more efficiently in approaching the topological state, thereby establishing the existence
of an optimal topological state preparation. Furthermore, to ensure the near adiabatic dynamics across the
quantum critical point, we propose a counterdiabatic scheme. The topological nature of the prepared state is
firmly established by observing an emerging U (1) topological charge. We also compute the edge current in the
time-evolved state of the system under a semiperiodic boundary condition, and we clearly establish an adiabatic
bulk-boundary correspondence that firmly ensconces the validity of the many-body invariant.
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I. INTRODUCTION

There has been a recent upsurge in theoretical [1–18]
and experimental [19–28] studies probing the generation
and manipulation of topological phases of many-body quan-
tum systems. Such topological phases are characterized and
distinguished by different quantized values of a topolog-
ical invariant that serves as a nonlocal order parameter.
Distinct topological phases in thermodynamically large sys-
tems, separated by a quantum critical point (QCP) [29,30],
exhibit strong robustness against external local perturba-
tions, and thus they promise exciting new possibilities in
understanding many-body quantum phases that are stable
in experimental situations, with the potential for applica-
tions [31–34] in topological quantum computation [31,32]
and controlling decoherence [33,34]. The physical mani-
festation of “topology” in symmetry-protected topological
insulators (SPTs) (see [11–13] for review) and Chern insu-
lators (CIs) [14] is rendered in the form of topologically
protected boundary-localized zero-energy states when the
bulk system is topologically nontrivial according to the bulk-
boundary correspondence. Although the equilibrium topology
of noninteracting quantum many-body systems is well under-
stood, characterizing the topology of systems that are driven
out of equilibrium [35–54] remains a challenging task.

Dynamically engineering a nonequilibrium topological
system is a two-pronged process: (a) dynamical generation
of a topological Hamiltonian [35,37], and (b) preparation of
the system in a topologically nontrivial dynamical state, e.g.,
in the ground state of the effective topological Hamiltonian,
which is relatively difficult. Despite several works [55–66],
the topological characterization of out-of-equilibrium systems
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exhibiting a bulk-boundary correspondence is still lacking.
The dynamical topological invariant was recently studied in
an out-of-equilibrium one-dimensional (1D) topological sys-
tem [55,56,61–63]. More importantly, in Ref. [63] using a
periodic driving scheme with a linearly ramped amplitude, a
stroboscopic “out-of-equilibrium” bulk-boundary correspon-
dence was established for 1D topological systems. Therein,
we establish that it is indeed possible to adiabatically deform
a topological system and melt it in a different topological
state without ever crossing a critical point in 1D SPTs. A
similar study has also been reported in bosonic topological
phases through the introduction of interaction with a super-
lattice [67]. These studies establish that certain topological
phases can indeed be continuously connected by expanding
the accessible Hilbert space of the system or by breaking the
protecting symmetries.

Interestingly, for 2D CI systems (e.g., the Haldane
model [14]), a no-go theorem has been postulated [57], which
states that the initial bulk topology of the model characterized
by a dynamical Chern number (CN) must not change under a
smooth unitary transformation in a thermodynamically large
system. Nevertheless, following an adiabatic quench, the edge
current in considerably large systems eventually thermalizes
to a value corresponding to the topology of the post-quench
Hamiltonian [57–60], thereby implying the absence of an out-
of-equilibrium bulk-boundary correspondence with respect to
a topological index of the translationally invariant system.
This creates a paradox with regard to the existence of any
exclusive bulk topological origin of the postquench edge
current in CIs, and hence there exists a lacuna in the holis-
tic characterization of the out-of-equilibrium bulk topology
of a CI.

We precisely address this issue by constructing a many-
body Chern invariant, which can be defined through observ-
able correlators. This will thus allow an observable-based
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study of out-of equilibrium topology, including its thermal-
ization properties similar to the edge current. We propose
a generalized invariant using bulk macroscopic electric po-
larization (MEP) (Resta polarization) [68] in the topological
phase [69], and we extend it to a nonequilibrium scenario.
We further show that this generalized CN is allowed to vary
dynamically and may approach an integral value when the
system is ramped from the nontopological to the topological
phase in a near-adiabatic fashion. This is illustrated through
the the Haldane model [14] considering both linear and non-
linear quenching protocols. Although it is not possible to
initiate a topological phase transition without closing the bulk
gap, we approach the topological state through dynamics in
finite-size systems by approaching large system sizes, which
is a realistic direction of approach experimentally. Recently,
there have been studies that have probed the possibility to
prepare topological states without going through a gapless
point by the introduction of superlattices [67], and also a dissi-
pative approach to many-body topological steady states [70].
Moreover, in the case of the nonlinear quenching, we find
an optimal rate that facilitates an efficient generation of the
topological state. To approach adiabaticity feasibly in a large
system, we also propose a counterdiabatic (CD) protocol to
suppress otherwise inevitable excitations in passage through
the minimum spectral gap. Furthermore, we explicitly demon-
strate the dynamical occupation of topological edge states
and thus establish an adiabatic bulk-boundary correspondence
with respect to the many-body Chern number in a clean CI.

Furthermore, the many-body measurable topological in-
variant we propose would generically approach integral values
under unitary dynamics as nonequilibrium generation of
excitations is progressively suppressed in sufficiently large
systems. Recently, the method has also turned out to be useful
for a dissipative preparation of many-body Floquet Chern
insulators [70]. It has also been reported lately that the many-
body invariant we propose can indeed be directly measured in
equilibrium through randomized measurements [71].

The paper is organized in the following fashion: In Sec. II,
we introduce the notion of a generalized CN using the prop-
erty of the MEP both in equilibrium and nonequilibrium
situations, and we establish its topological properties. In
Sec. III, on the other hand, we illustrate the concepts presented
in Sec. II considering the linear as well as nonlinear quenching
of the Semenoff mass of the Haldane model of graphene. In
this section, we also discuss the CD protocol at length, em-
phasizing its significance and shortcomings. In Sec. III D, we
calculate the edge current in the final evolved state and show
the existence of an adiabatic bulk-boundary correspondence.
Concluding comments are presented in Sec. IV. Further, we
have added five Appendixes to complement the discussion in
the main text. We note, at the outset, that everywhere in this
paper, we have used h̄ = kB = 1 such that all quantities and
observables are specified in natural units.

II. MEP AND CHERN TOPOLOGY

The macroscopic dipole polarization vector [68,69] of a
band insulator in the directions of the lattice basis vectors
âi (see Appendix A for an elaborate discussion) is defined as
�P = ∑

i P̂iâi. Here P̂i = 〈X̂i〉, X̂i being the many-body position

operator, and the expectation is taken over occupied single-
particle states. The operator X̂i = ∑

n xn
i â†

nân is the many-body
position operator, where xn

i denotes the coordinate of an atom
at the nth site along the ith lattice direction, with a†

n being
the corresponding fermionic creation operator at that site.
The expectation is taken over a fermionic many-body state.
The momentum translation operator in the ith direction under
periodic boundary conditions is

T̂i(δi ) = eiδi X̂i , (1)

where we choose δi = 2π/Li, Li being the dimension of the
system in the ith direction.

Under periodic boundary conditions, the above definition
may be compactified as Pi = Im ln 〈T̂i〉, where T̂i is the mo-
mentum translation operator.

It then follows that in the thermodynamic limit (see [69]),

Pi[�k0] =
∑

α

Im
∫

BZ[�k0]
〈ψk,α|∂ki |ψk,α〉 dk1dk2, (2)

where the Brillouin zone (BZ) is spanned by the reciprocal-
lattice vectors �b1 and �b2 such that �k = k1�b1 + k2�b2, where
k1, k2 ∈ [0, 1]. �k0, having components k01 and k02 along the
directions �b1 and �b1, is chosen to be the origin of the BZ. Here,
|ψk,α〉’s are the respective occupied single-particle bands la-
beled by “α.′′

Unlike in a 1D system, the MEP is not itself a topological
quantity in 2D. However, in the topological phase, the macro-
scopic dipole polarization is not a well-behaved quantity due
to the absence of localized Wannier functions, or equivalently
the presence of conducting edge states. Rather, for every adi-
abatic shift in the origin of the BZ, the MEP vector changes
proportionally to the CN (note that an adiabatic shift implies
that the occupation of each band remains invariant). For a
band insulator, it can be shown that for an infinitesimal shift
in δ�k0 in the origin �k0 of the Brillouin zone,

δPi[�k0] = Pi[�k0 + δ�k0] − Pi[�k0] = 2πεi jδk0 jC, (3)

where C is the CN and εi j is the antisymmetric tensor.
We utilize this nonuniqueness of the MEP in the topologi-

cal phase [69] to conjecture a generalized CN as

C = εi j
δPi[�k0]

2πδk0 j
. (4)

In a half-filled system at equilibrium, the Chern number re-
duces perfectly to the conventional CN [12].

Generalized CN and unitary dynamics

We start from an initial eigenstate |ψ (0)〉 of a CI in the
nontopological phase having C = 0, which is subjected to an
arbitrary unitary time-dependent drive.

To define the out-of-equilibrium CN, we extend the quan-
tity defined in Eq. (2) to a weighted average over the
instantaneous bands of single-particle states,

P̃i =
∑

α

Im
∫

BZ
dk1dk2nk

α (t )Ak
i [|φkα (t )〉]. (5)

Here, Ak
i [|φkα (t )〉] = 〈φkα (t )|∂ki |φkα (t )〉 is the U (1) gauge

connection on the single-particle eigenstate |φkα (t )〉 of the
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instantaneous Hamiltonian, and the weights nk
α (t ) are the

time-dependent population of the instantaneous band “α” as
a function of momenta k, i.e.,

nk
α (t ) = 〈ψk (t )|c†

kα
(t )ckα (t )|ψk (t )〉 . (6)

nk
α (t ) is the weighted average of the electric polarization in

each band of the time-evolved Hamiltonian H (t ), the weights
being precisely the time-dependent population of each band.
This in turn is manifested in the instantaneous current as
we have thoroughly discussed in Appendix C, which also
provides the motivation behind defining the dynamical CN.

We now proceed to define the dynamical CN as the change
in the quantity P̃i corresponding to a shift δ�k0 in the BZ origin.
This leads to the time-dependent CN,

CU (t ) ∝ δP̃1[�k0] = −δk02

∫ k02+1

k02

dk2∂k2β(k2, t ), (7)

where β(k2, t ) = −Im
∫ k01+1

k01

dk1Ãk
1[|φkα (t )〉], (8)

where Ãi(t ) = ∑
α nk

α (t )〈φkα (t )|∂ki |φkα (t )〉.
The quantity CU defined in Eq. (7) is invariant under a

local U (1) gauge transformation due to the noninteracting
nature of the systems studied in this context (as elaborated
in Appendix A). At equilibrium, when any one of the bands is
completely filled, the quantity P̃i reduces to the total MEP of
the occupied band. In this situation, the CN defined in Eq. (7)
simply detects a branch change of the function β(k2) in the
closed S1 interval k2 ∈ [0, 1] ≡ I , which equivalently counts
the winding of β(k2) along k2 [69]. This implies that the exis-
tence of a branch singularity in the map k2 ∈ [0, 1] → β(k2)
signals the Chern nontriviality of the system. In the following,
we shall elaborately discuss different aspects concerning the
topological nature of the dynamical CN defined above.

First, let us focus on the equilibrium topological character-
ization: The function β(k2) as described in the manuscript is
merely a unidirectional Berry phase along one of the periodic
directions S1

a ≡ k1 ∈ [0, 1] and defined at each point of the
S1

b interval k2 ∈ [0, 1]. This decomposition into two circles
S1

a and S1
b is possible because the Brillouin zone (BZ) forms

a 2-tori T 2 which is topologically equivalent to

T 2 ≡ S1
a × S1

b . (9)

As shown in Eq. (2), the shift in the polarization is directly
proportional to the Chern number, which is a Z topological
invariant. Equivalently, a branch change of the function β(k2)
in equilibrium at the ends of the BZ in a topological phase
immediately results in the nonuniqueness of the polarization.
We observe, however, that it is not essential for the branch
singularity to occur at the end points of the BZ. In fact, the
branch singularity of β(k2) at any point k∗

2 ∈ [0, 1] reflects the
topology of the system (as illustrated below). This is because
the invariant CU defined in the manuscript simply provides
a homotopy classification of the map κ2 ∈ S1

b → β(k2) ∈ S1.
In fact, the invariant CU reflects the integer winding of the
function β(k2) as k2 ∈ [0, 1], which in turn is bound to be
integer-quantized as the fundamental homotopy group of the
map S1

b → S1 is π1(S1) ≡ Z.

By fixing a gauge, such that β(k2) remains continuous for
all I : k2 ∈ [0, 1] in a topological phase, the function β(k2) ex-
hibits a branch change proportional to the CN, at the endpoints
of the BZ, i.e., C ∝ β(k02) − β(k02 + 1) as in Ref. [69].

To elaborate, choosing a smooth gauge in I ensures that
the derivative dβ(k2 )

dk2
is well defined in the interval, and its

integration over the S1 ≡ I : k2 ∈ [0, 1],

1

2π

∫ 1

0

dβ(k2)

dk2
dk2 = 1

2π
[β(1) − β(0)] = −�, (10)

simplifies to the difference between the β function evaluated
at the “end-points” of interval I . Due to the single-valuedness
of the wave function at k2 = 0 and k2 = 1, this jump “−�” is
simply the integer-quantized Chern number. Hence, a nonzero
Chern index in this case implies a branch change of the map
B : κ2 → β(k2) after a complete rotation in k2 ∈ S1.

Now, since the interval I forms a complete circle S1, the
occurrence of the branch change at any other point k∗

2 can
also be included in the same equivalence class. This can
be equivalently understood since the topological invariant
counts the winding of the fiber β(k2) over the base space
S1 ≡ k2 ∈ [0, 1], and merely changing the position of the
topological kink does not change the homotopy class of the
map. However, if a smooth gauge is not chosen and β becomes
discontinuous (and hence nondifferentiable) at an inner point
k∗

2 ∈ I , caution must be taken while evaluating the integral in
Eq. (7),

1

2π

∫ 1

0

dβ(k2)

dk2
dk2

= 1

2π
lim

ε→0+

(∫ k∗
2 −ε

0
+

∫ 1

k∗
2 +ε

)
dβ(k2)

dk2
dk2, (11)

where we have tactically removed the isolated point k∗
2 where

β is not differentiable. This in a way is again equivalent to the
destruction of simply the connectedness of the base manifold
I with respect to the map B, hence allowing for a nontrivial
homotopy classification. By evaluating the integrals on the
right-hand side of Eq. (11), we obtain

1

2π

∫ 1

0

dβ(k2)

dk2
dk2

= 1

2π
lim

ε→0+
[β(k∗

2 − ε) − β(k∗
2 + ε)] = −�, (12)

which is exactly the jump in β(k2) and therefore may be
interpreted as a signature of topological nontriviality of the
equilibrium system. Also, the jump � is a gauge invariant
quantity and must be integer multiples of 2π due to the single-
valuedness of the wave functions at every point of I , i.e.,

� = 2πC, C ∈ I. (13)

We note in general that β may exhibit multiple isolated
discontinuities, in which case, applying a similar protocol, one
obtains

C = 1

2π

∑
ν

�ν, (14)

where the sum is taken over all the isolated jump discontinu-
ities of β.
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FIG. 1. (a) The emergence of a sharp branch singularity in the function β(k2, τ ). The sharp jump in the β(k2, τ ) function for an adiabatic
protocol [Eq. (18)], starting from an initial trivial state, demonstrates the topological nontriviality of the final time evolved state. The magnitude
of the jump shown by the distance between the horizontal dashed lines is � = −0.96 × 2π . The initial and the final Hamiltonian are
chosen such that nearest-neighbor hopping t1 = 1.0, next-nearest-neighbor hopping t2 = 0.5, and flux through each plaquette φ = −π/2,
Mi = 3

√
3t2 + 2.5, Mf = 3

√
3t2 − 2.5. (b) The topological transition at t = τ/2 (when the system crosses the QCP), through the topological

charge of a Haldane model subjected to a linear slow quench for a 40 × 40 lattice with τ = 1600 (τ � τa). The quench parameters are t1 = 2.0,
t2 = 1.0, φ = −π/2, Mi = 3

√
3t2 + 2.5, Mf = 3

√
3t2 − 2.5. (The dotted line is just a guide to eye.)

Moving on to a generic out-of-equilibrium situation, the
quantity CU (t ) defined in Eq. (7) fails to be integer-quantized,
as a single instantaneous band may not be completely occu-
pied far from equilibrium; this is reflected in β defined Eq.
(8) as a weighted average of U (1) connections along a single
parametric direction k1 over all single-particle instantaneous
bands. Nonetheless, for an adiabatic protocol dynamically
exchanging the Chern character of two bands, the U (1) con-
nection reduces to be over the single instantaneous band,
which is nearly completely filled. This allows the CN to vary
in time. Thus, in an adiabatic situation, the MEP assumes the
exact U (1) form,

P̃i = Im
∫

BZ
dk1dk2Ak

i [|φks(t )〉], (15)

over the filled band α = s.

III. ILLUSTRATION WITH A HALDANE MODEL

To exemplify, we consider a linear as well as nonlinear
ramping [72–74] of the Semenoff mass M of a Haldane model
in reciprocal space (see Appendix B for detail),

Hk (t ) = hx(�k)σx + hy(�k)σy + hz(�k, t )σz, with (16)

hx(k) = −t1

3∑
i=1

cos (�k · ��1i ),

hy(k) = −t1

3∑
i=1

sin (�k · ��1i ),

hz(k) = M − t2 sin φ

3∑
i=1

sin (�k · ��2i ), (17)

where ��1i and ��2i are the nearest-neighbor and next-nearest-
neighbor lattice vectors, t1 is the nearest-neighbor hopping

strength, t2 is the next-nearest-neighbor hopping strength, M
is the chiral symmetry breaking Semenoff mass, and φ is the
time-reversal breaking flux through each plaquette.

A. Linear quenching

Initially (t = 0), the system is in a pure state |ψk (0)〉, which
is the ground state of the initial (nontopological) Hamilto-
nian Hk (0) with M(0) = Mi, and the final value M(τ ) = M f

corresponds to a topological Hamiltonian; thus, the system is
ramped across a QCP during the evolution (refer to Fig. 7 of
Appendix. B). The protocol we propose is the following:

M(t ) = Mi − (Mi − M f )

(
t

τ

)
, (18)

in time t ∈ [0, τ ]. We proceed to evaluate the function
β(k2, τ ) in the final state |ψk (t )〉 at t = τ generated following
the evolution under the protocol in Eq. (18). As shown in
Fig. 1(a), the function β(k2, τ ) develops a sharp branch singu-
larity of nearly quantized integral multiple of 2π , only when
the quench approaches the adiabatic limit (adiabatic time scale
τa ∼ L2 for a system having L × L sites); otherwise, the quan-
tity CU (t ) loses its topological significance.

As discussed above, the existence of this sharp branch
shift in β(k2, τ ) signals the topological nontriviality of the
final state of the system. The topological nature of the adi-
abatic state is also established through the emergence of a
singularity in

F (t ) = ∂k1 Ã2(t ) − ∂k2 Ã1(t ), (19)

due to an instanton at a Dirac point when the system ap-
proaches a critical point. This arises because of the presence
of a gapless point of the instantaneous Hamiltonian for large
enough system sizes (see Appendix A). This is more precisely
captured by the integral of the curvature over the complete
BZ or the net flux, which acts as a closed surface integral
enclosing a monopole charge C [see Fig. 1(b)]. This charge
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FIG. 2. (a) The defect density [Eq. (21)] at the end of a nonlinear quench [Eq. (20)], obtained numerically (presented by dots), shows an
excellent agreement with the modified Kibble-Zurek scaling for different values of r expressed in Eq. (24) (shown by solid lines). (b) The
corresponding optimal power ropt � 0.65 of the protocol which minimizes the defect production at the end of the quench. Inset: The function
β(k2) again calculated at the end of the quench shows a considerably sharp jump of magnitude �(r) = |�|r/2π = 0.81 (black) resembling
the emergence of a topological nontriviality (CU � −0.81) in the final state with r = ropt even for a much smaller quenching time τ = 20.0 for
a 40 × 40 lattice. Notably for the linear quenching case r = 1, one requires τ ∼ 1600 to get as close to the topological state with other quench
parameters kept fixed. The parameters are chosen to be t1 = 1.0, t2 = 0.5, Mi = 3

√
3t2 + 1 (nontopological), Mf = 3

√
3t2 − 1 (topological).

is explicitly understood as the Chern number for Chern non-
trivial systems, and the net flux holds a direct correspondence
to Gauss law for a U (1) magnetic monopole.

B. Nonlinear quench and optimal rate

In this section, we shall discuss that the efficacy of adia-
batic quenching protocols has been established to improve to
a remarkable degree by the application of nonlinear ramping
schemes [72–74] and exploit the same for an efficient ap-
proach to the topological state. We exemplify this advantage
considering a nonlinear quench in the Semenoff mass of the
Haldane model,

M(t ) = Mi − (Mi − M f )

(
t

τ

)r

(20)

with an exponent r(> 0) from t = 0 to t = τ . The initial and
final masses Mi and M f are again chosen such that the initial
state is trivial and the final state is topologically nontrivial as
in the main text.

In the linear ramping (r = 1) protocol, Kibble-Zurek scal-
ing (KZS) [75–78] predicts that the defect density produced
due to diabatic excitations, e.g., in this case it is the density
of occupation of the excited state at the end of the quench,
defined by

ne =
∫

BZ
nk

e (r)d2k, (21)

satisfies a universal scaling relation

ne ∼ τ− νd
νd+1 . (22)

Here, d is the spatial dimension, and ν and z are the cor-
relation length and dynamical exponents associated with the
quantum critical point across which the system is ramped. The
defect density generated for the topological transition across
a quantum critical point which the Haldane model is ramped
across is shown in Fig. 2(a).

Interestingly, for a nonlinear quench, the KZS gets mod-
ified as the spectral minimum gap in the system gets
renormalized [72,73]: One arrives at a KZS,

ne(r) ∼ τ− νrd
νrd+1 , (23)

for a nonlinear quench of the form given in Eq. (20). For
the topological transition across a critical point where the
Haldane model is ramped, as shown in Fig. 2(a), the universal
critical exponents are ν = 1, z = 1, and spatial dimension
d = 2, respectively. Putting these together, the defect density
scales as

ne(r) ∼ τ− 2r
2r+1 . (24)

The scaling of ne(r) is verified for the quenching protocol
of Eq. (20) in Fig. 2(a). Furthermore, we highlight that there
also exists an optimal power ropt specifying the protocol such
that the defect produced at the end of the quench is min-
imized. This optimality arises because of the fact that for
r → 0 the sudden limit generates many excitations, while in
the r → ∞ limit M(t ) evolves very slowly close to the QCP,
and it changes very rapidly otherwise [73]. We demonstrate
this precise optimization through a nonlinear quench of the
Semenoff mass starting from a trivial state to a nontrivial
phase, and we find that the jump in �(r) is maximum for ropt

[see Fig. 2(b)].
We further explicitly show that remarkably, through the op-

timization protocol, the β(k2) function develops an emergent
branch singularity of considerable sharpness even for a small
quenching time τ in the optimal quench, and one finds a value
of the dynamical Chern number CU � −1.

The above numerical observation in Fig. 2(a) for a finite
system can again be perfectly justified using the KZS. Consid-
ering a nonlinear quench, for a d-dimensional system of linear
dimension L it can be shown that the adiabatic limit of τ = τa

scales as τa ∼ L(rνz+1)/νr , which reduces to τa ∼ L(r+1)/r for
the Haldane model. This implies that for τ ∼ τa, the dynamics
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is effectively adiabatic. Given that attaining the adiabatic limit
is essential for a perfect preparation of a topological state, we
note that τa ∼ L2 = 1600 for L = 40 with the linear quench.
On the contrary, for ropt we obtain a considerable jump �(ropt)
even for a small quenching time of τ = 20. Thus, we achieve
the preparation of the Chern topological state unitarily with
a high fidelity at a much smaller value of τ for the optimal
ramping protocol. With increasing system size, the value ropt

would change and consequently the jump in β(k2) would be
even sharper.

C. Counterdiabatic protocol

During the passage through a gapless QCP, the adiabaticity
criteria necessarily break down in the thermodynamic limit
and diabatic excitations are inevitable. Nevertheless, the ap-
plication of a control field [79–81] may allow one to approach
adiabaticity quicker even for large systems than within the
protocol in Eq. (18), thereby allowing for a much more ef-
ficient preparation of a topological state even for τ � τa. The
protocol we propose is the following:

Hk (t ) = hx(�k)σx + hy(�k)σy + hz(�k, t )σz − Bx(t )σx,
(25)

M(t ) = Mi − (Mi − M f )
t

τ
,

where the control (counterdiabatic) field is chosen as

Bx(t ) = G sin

(
πt

τ

)
, t ∈ [0, τ ]; Bx(0) = Bx(τ ) = 0. (26)

The CD mass in Eq. (25) is generated numerically in the real-
space lattice by inducing an anisotropy in the nearest-neighbor
hopping strength, as we have discussed in Appendix D.

Under protocol (25), again the initial system is in a trivial
state while the final is expected to be a topological one. Start-
ing from the ground state of the initial Hamiltonian, we probe
the emergence of topology in the out-of-equilibrium state.
In Fig. 3, we observe that once again the postquench state

FIG. 3. The β(k2, τ ) function exhibits a sharp branch singularity
in the postquench state for a drive employing a shortcut to adiabatic-
ity [Eqs. (25) and (26)] with increasing control field strength G. The
magnitude of the jump shown by the distance between the horizontal
dashed lines is � = −0.92 × 2π with the set of quench parameters
as in the linear quench in Fig. 1(a). The quenching period is chosen
to be τ = 5.0, which is much shorter than the adiabatic time scale
(τa � 3600). Periodic boundary conditions are imposed with a grid
size of 60 × 60 lattice sites in both figures.

develops a sharp branch singularity showing near quantization
of the jump � [i.e., CU (τ ) � −1], however in a much shorter
duration of quench than that in the case of a linear ramp.
The advantage of the CD term is that it expands the phase
diagram into an additional parametric direction. Importantly,
the minimum gap encountered during the topological tran-
sition is enhanced for a nonzero G when compared to the
protocol Eq. (18) (where G = 0) for the same system size
(see figure 4(b)). This allows one to maintain adiabaticity for
shorter quench times in considerably larger systems. Thus,
even though adiabaticity necessarily breaks down in crossing
the QCP in a thermodynamically large system, the CD proto-
col provides an efficient method for experimentally relevant
finite systems.

To understand the role of CD driving, it is essential to
note that it allows adiabaticity in considerably large system
sizes for small quenching times that are not feasible in simple
annealing protocols. However, the quench is bound to cross
a critical point in a thermodynamically large continuum sys-
tem if one intends to change the topology of the system. In
Fig. 4(a), we show the critical surface of the system as a
function of all the free parameters, and we show that the CD
quench trajectory necessarily crosses a critical point for differ-
ent values of the CD field G. However, as shown in Fig. 4(b),
the minimum gap δ in the system during the transition point is
considerably higher in the CD quench as compared to a simple
linear quench. This clearly illustrates the advantage of using
a CD protocol to suppress excitations even in system sizes
hosting a very small gap at the transition point.

D. Bulk-boundary correspondence

The measurable identity of the topological nature of the
postquench state is manifested in the emergence of localized
edge currents Jx

L under semiperiodic boundary conditions in
a system having L × L atoms, as demonstrated in Fig. 5. To
evaluate the edge currents, we impose semiperiodic boundary
conditions on the 2D lattice. Generically, as defined above,
the single-particle current can be decomposed as (see also
Appendix C)

〈 �JSS〉 = 〈 �JN〉 + 〈 �JNN〉 , (27)

where �JN and �JNN are the nearest-neighbor and the next-
nearest-neighbor current operators, respectively,〈

Jx
Nn

〉 =
∑

m

t1 〈a†
nam〉 − H.c.,

(28)〈
Jx

NNn

〉 =
∑

m

t2 〈a†
nam〉 − H.c.,

where 〈Jx
Nn〉 (〈Jx

NNn〉) is the nearest (next-nearest) current at the
nth site, and the summation indices extend over all nearest-
(next-nearest-) neighbor sites to the nth site. Considering the
lattice to be periodically wrapped in the x-direction (see Ap-
pendix E) while being open in the y-direction, one obtains
two armchair edges at the ends of the cylinder. We compute
the total horizontal current flowing in the periodic x-direction
on one of the armchair edges Jx

L for an L × L lattice. The
existence of the localized edge current therefore bears the
signature of the postquench bulk-boundary correspondence
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FIG. 4. (a) The 2D critical surface (purple) in a continuum system parametrized by M, φ, and the counterdiabatic field G, and the trajectory
of different quenches (1D lines) for different values of G. (b) The minimum gap in system vs system size L × L at times when the quench
trajectory intersects the critical surface for different values of G. The minimum gap encountered during the topological transition is enhanced
for a nonzero G when compared to the protocol for r = 1, where G = 0, for the same system size.

both under adiabatic and CD dynamics. In Appendix E, we
show that the current is indeed localized at the edges and
decays rapidly in the bulk. Further, the transition reflected in
the edge-behavior is expected to be sharper with increasing
system size.

IV. OUTLOOK AND CONCLUDING COMMENTS

In conclusion, we have achieved the dynamical prepara-
tion of topological states of a CI within a unitary setup.
The dynamical CN evolves with time unlike that defined in
Ref. [57] and assumes an integer-quantized value, though not
for an arbitrary protocol, nevertheless for a perfectly adiabatic
evolution.

FIG. 5. The time evolution of the magnitude of the edge-current
Jx

N through an armchair edge of the Haldane model with semiopen
boundary conditions (periodic about the x-direction and open in
y-direction) under a linear quench with the counterdiabatic mass
generation as in Eq. (25) with an 18 × 18 lattice. The quench pa-
rameters are t1 = 2.0, t2 = 1.0, φ = −π/4, Mi = 3

√
3t2 + 2.5, and

Mf = 0 for an 18 × 18 lattice. G is the strength of the anisotropic
hopping (see Appendix D) introduced in the real-space lattice which
in turn generates a CD mass. Inset: The adiabatic evolution of the
edge-current vide the protocol in Eq. (18) with the same parameters
as in Fig. 2(b) for a 16 × 16 lattice. At t = τ , the edge-current (solid
curve) thermalizes to its equilibrium topological value (dashed line)
in both protocols.

On a comparative note, crossing a gapless QCP is in-
evitable in a topological quench both for linear and nonlinear
ramping protocols in the thermodynamic limit. However, we
establish an improvement in the branch singularity in the final
topological state through an optimal nonlinear ramp for a
much shorter quench time as compared to the adiabatic time-
scale in a large but finite-size system. Interestingly though, we
establish a remarkable improvement in the branch singularity
in the final topological state through a CD protocol for a much
shorter quench time as compared to the adiabatic time-scale.

Furthermore, the CD protocol we propose was not reported
before, to the best of our knowledge, and at the same time
can be experimentally generated in graphene and borophene
lattices by applying anisotropic strains in particular bond di-
rections or through dynamical gap manipulations as explored
theoretically and experimentally in [82–89]. Furthermore, we
reiterate that the experimental possibility of directly measur-
ing the many-body Chern number has already been proposed
recently through the measurements of correlations [71]. Inter-
estingly, as the MEP can be written in terms of single-particle
correlators, it would be interesting to probe its long-time ther-
malization properties in fast quenches. One may also proceed
to study the many-body topological nature of the generalized
Gibbs state in quenched integrable systems. Although herein
we basically introduce the many-body invariant through the
MEP and deal with the adiabatic scenario, future studies are
necessary to comprehend the scope of the many-body Chern
invariant.
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APPENDIX A: MACROSCOPIC POLARIZATION,
MANY-BODY CHERN NUMBER, AND ITS

OUT-OF-EQUILIBRIUM GENERALIZATION

We evaluate the macroscopic electric polarization vec-
tor [68,69] of the system in the directions of the lattice basis
vectors [see Fig. 8(a)],

�P =
∑

i

P̂iâi, (A1)

where P̂i = 〈X̂i〉, and âi are the lattice basis vectors. The
quantity X̂i = ∑

n xn
i â†

nân is the many-body position operator,
where xn

i denotes the coordinate of an atom at the nth site
along the ith lattice direction with a†

n being the correspond-
ing fermionic creation operator at that site. The expectation
is taken over a fermionic many-body state. The momentum
translation operator in the ith direction under periodic bound-
ary conditions is

T̂i(δi ) = eiδi X̂i , (A2)

where we choose δi = 2π/Li, Li being the dimension of
the system in the ith direction. The periodicity of the expo-
nential enforces periodic boundary conditions on the lattice.
Therefore, under periodic boundary conditions and in the ther-
modynamic limit, the macroscopic polarization of the system

assumes the following form:

Pi = Im ln
〈
T̂i

〉
, (A3)

where the expectation is taken over the full many-body state
of the system. In the thermodynamic limit, this compactified
definition of the macroscopic polarization reduces to the con-
ventional bulk polarization of the system. This is evident from
the fact that, for a many-particle pure state, |�〉 (which is a
slater determinant of the occupied single-particle states),

Pi = Im ln
〈
T̂i

〉 = Im ln det U = Im ln eTr ln U , (A4)

where the matrix U contains all the overlap of the single-
particle matrix Ti between the occupied single-particle
states, i.e.,

Umn= 〈ψm| Ti |ψn〉⇒(U )kα,k′α=〈ψki+δi,α|ψk,α〉98�e−i(Ak
i )αα

δi,

(A5)
where k denotes the single-particle momenta while α is the
single-particle band indices and (Ak

i )αα is the U (1) connection
of the αth occupied band. In the thermodynamic limit (δi →
0), retaining only terms of linear order in δi, one obtains

Pi =
∑

α

Im
∫

BZ
〈ψk,α|∂ki |ψk,α〉dk1dk2, (A6)

which is the bulk macroscopic polarization of the system.
The Chern invariant conventionally defined as

C = 1

4π

∫
BZ

dk1dk2[∂k1〈ψk|∂k2 |ψk〉 − ∂k2〈ψk|∂k1 |ψk〉] (A7)

can be recast to the form

C = 1

2π

∫ k20+1

k20

dk2∂k2

∫ k10+1

k10

dk1〈ψk|∂k1 |ψk〉 = − 1

2π

∫ k20+1

k20

dk2∂k2β(k2), (A8)

where

β(k2) = −Im
∫ k10+1

k10

dk1〈ψk|∂k1 |ψk〉. (A9)

The Chern number, therefore, essentially counts the U (1)
winding of the map,

S1 : k2 ∈ [0, 1] → S1 : β(k2). (A10)

In the main text, we consider an arbitrary unitary drive
starting from an initial eigenstate |ψ (0)〉 of the Chern insula-
tor (this ensures half-filling of the initial single-particle states)
in the nontopological phase with C = 0 (as shown in Fig. 7)
such that the time-evolved state is

|ψ (t )〉 = U (t, 0) |ψ (0)〉 , (A11)

where U (t, 0) is the evolution operator generated by an
instantaneous hermitian Hamiltonian H (t ). Translating to
Fourier space, the instantaneous eigenmodes |φkα (t )〉 of the

instantaneous Hamiltonian Hk (t ) satisfy

Hk (t ) |φkα (t )〉 = Ekα (t ) |φkα (t )〉 , (A12)

with eigenvalues Ekα (t ) for all k ∈ BZ, and α denotes the band
index.

As discussed in Eq. (A6), the electric polarization in the ith
direction for an arbitrary pure quantum many-body state |χ〉
reduces to the average of the quantity,

�k
i =

∑
α

Ak
i (|χkα〉), (A13)

over the complete Brillouin zone and summed over all the
occupied single-particle states |χkα〉. Here, Ak

i (|χkα〉) is the
U (1) gauge connection on the state |χkα〉, i.e.,

Ak
i (|χkα〉) = 〈χkα|∂ki |χkα〉 . (A14)

In the out-of-equilibrium situation, we extend the quantity
defined in Eq. (A6) as a weighted average over the instanta-
neous single-particle bands,

P̃i =
∑

α

Im
∫

BZ
dk1dk2nk

α (t )Ak
i [|φkα (t )〉], (A15)

094301-8



UNITARY PREPARATION OF MANY-BODY CHERN … PHYSICAL REVIEW B 102, 094301 (2020)

where the weights nk
α (t ) are the time-dependent population of

the αth instantaneous band, i.e.,

nk
α (t ) = 〈ψk (t )|c†

kα
(t )ckα (t )|ψk (t )〉 , (A16)

where ckα (t ) and c†
kα

(t ) are the annihilation and creation op-
erators, respectively, of the eigenmodes of the instantaneous
Hamiltonian Hk (t ), i.e., c†

kα
(t ) |0〉 = |φkα (t )〉, where |0〉 is

fermionic vacuum. P̃i is the weighted average of the electric
polarization in each band of the time-evolved Hamiltonian

H (t ), the weights being precisely the time-dependent popu-
lation of each band. We reiterate that the topological invariant
perfectly reduces to the conventional Chern number in an
equilibrium setting under half-filling.

U (1) monopole and topological charge

Here, we have chosen the instantaneous eigen-
states |φk±(t )〉 of the instantaneous Hamiltonian
Hk (t ) = �h(k, t ) · �σ as

|φk−(t )〉 =
(

−e−iφ sin θ
2

cos θ
2

)
, |φk+(t )〉 =

(
e−iφ cos θ

2

sin θ
2

)
, (A17)

where

θ (k, t ) = arccos

(
hz(k, t )

|�h(k, t )|

)
and φ(k, t ) = arctan

(
hy(k, t )

hx(k, t )

)
. (A18)

When adiabaticity is maintained, the instantaneous ground
state of the system is almost occupied while the instantaneous
excited states are vacant at all times. Thus, nk−(t ) � 1 while
nk+(t ) � 0 for all k (in large but finite-size systems). There-
fore, for an adiabatic situation, the averaged connection Ã
essentially reduces to that of the instantaneous ground state (as
also described in the manuscript), and the monopole charge
is that of the lower energy band |φk−(t )〉, which in turn is
integer-quantized for large system sizes. Hence, when the
instantaneous Hamiltonian crosses the critical point (say at
t = tc), the instanton appears in the gauge curvature [or the
U (1) field] as a singularity [Fig. 6(d)] at the Dirac point.
This is in exact correspondence with the field of a magnetic
monopole. In Fig. 1(b) of the main text, we show that the
net flux of this charge when integrated over the complete BZ
precisely gives the topological charge according to the Gauss
theorem. This is simply the well-established Chern number of
a system.

However, the topological charge is not integer-quantized
for a generic nonadiabatic dynamics as the band-averaged
quantity Ã is no longer a U (1) gauge connection (as has also
been discussed in the main text).

The topological transition can also be understood as an
emergent obstruction in defining a universal gauge in 2 + 1D
(kx, ky, t). It is established that the gauge connection around
a U (1) monopole cannot be uniformly defined within a con-
sistent universal gauge choice. This is reflected in a line
singularity in the potential originating at the monopole and
extending to infinity, also known as the Dirac string.

Now, as evident from Eq. (A17), this specific gauge choice
for |φk−〉 works well for all θ except at the south pole θ = π

of the Bloch sphere. What happens in a trivial phase (t < tc)
is that ∀ (kx, ky), the vector |φk−(t )〉 in Eq. (A17) is confined
in a region that can be described in a smooth uniform gauge
[see Figs. 6(a)–6(c)]. However, for (t > tc) the vector |φk−(t )〉
reaches the south pole where the gauge choice fails.

Gauge invariance

We observe that the defined quantity CU is gauge invariant
due to the noninteracting nature of the problem,

CU ∝
∫

dk1∂k1β(k1), (A19)

up to gauge invariant constants and where

β(k1) =
∑

α

∫
dk2nk

αAα
2 . (A20)

Expanding Eq. (A19), one finds∫
dk1∂k1β(k1)=

∑
α

∫
dk1dk2

(
nk

α∂k1 Aα
2 + Aα

2 ∂k1 nk
α

)= I+II.

(A21)
The first term I is the intrinsic Hall conductivity after the
removal of interband coherences and also manifestly gauge
invariant. We therefore proceed to study the transformation of
the second term under a local U (1) gauge transformation.

Under a local U (1) gauge transformation, |φk
α〉 →

eiγ (k) |φk
α〉, the populations nk

α being expectations of Hermitian
operators remain manifestly gauge invariant. However, the
quantities Aα

2 transform as

Aα
2 → Aα

2 + i∂k2γ . (A22)

Therefore, the second term II in Eq. (A21) under the gauge
transformation gains an additional term of the form

II → II + i
∫

dk1dk2
(
∂k2γ

)(
∂k1

∑
α

nk
α

)

= II + i
∫

dk1dk2(∂k2γ )[∂k1 N (k)], (A23)
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FIG. 6. We consider the Haldane model subjected to a linear quench for a 40 × 40 lattice with τ = 1600. The quench parameters are
t1 = 2.0, t2 = 1.0, φ = −π/2, Mi = 3

√
3t2 + 2.5, Mf = 3

√
3t2 − 2.5. (a)–(c) The angle θ of the instantaneous eigenstate at all points of the

Brillouin zone (BZ) (see Appendix B) for t = 0, t = tc = τ/2, and t = τ , respectively, for a linear adiabatic quench (τ � τa) from the trivial
phase to the topological phase. (d) The curvature at t = tc shows a monopole singularity due to the instanton in (kx, ky, tc ) at the Dirac point.

where N (k) is the expectation of the number operator for each
k-mode. However, since the k-modes do not scatter among
each other and remain decoupled from each other, the total
occupation N (k) of each k-mode when summed over all the
single-particle bands must be constant and depend only on
their equilibrium filling. Starting from an equilibrium half-
filled state [N (k) = 1 ∀ k], the second term on the right-hand

side of Eq. (A23) vanishes. This makes the quantity defined in
Eq. (A19) invariant under local U (1) transformations.

APPENDIX B: A BRIEF REVIEW ON THE HALDANE
MODEL OF GRAPHENE

The bare Hamiltonian for the Haldane model [14] is
obtained by breaking the time reversal and sublattice of
graphene,

H0
α,β,n,m = −t1

∑
〈mα,nβ〉

a†
m,αan,β + M

∑
n

a†
n,Aan,A − M

∑
n

a†
n,Ban,B −

∑
〈〈mα,nα〉〉

t2eiφa†
m,αan,α + H.c., (B1)

where the real nearest-neighbor (N1) hopping t1 (with t2 =
0, M = 0) comprises the bare graphene Hamiltonian; the
indices n and α represent site and sublattice, respectively.
The diagonal staggered mass (Semenoff mass) M explicitly
breaks the sublattice symmetry of the model. Furthermore,
the complex next-nearest-neighbor (N2) hopping term t2 is
applied such that the time-reversal symmetry is broken in
the next-nearest-neighbor hopping while the net flux through
each plaquette remains zero. The Haldane model is known
to exhibit nontrivial Chern topology when its ground state
is completely filled depending on the parameters M, t1, t2,
and φ.

Interestingly, the Haldane model with explicitly broken
time-reversal symmetry is known to host topologically non-
trivial phases for certain parameter regions. The topology of
the Hamiltonian is essentially the homotopy classification of
the map (k1, k2) → Hk (k1, k2) in reciprocal space and is char-
acterized by the gauge invariant Chern topological invariant,

C = 1

(2π )2

∫
BZ

dk1dk2F12(|ψk〉), (B2)
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FIG. 7. The topological phase diagram of the Haldane model
with t1 = 1.0. The distinct topological phases are separated by quan-
tum critical lines on which the parameter values are such that the
system becomes gapless. The parameter regions showing nonzero
values of the Chern number (C) are topologically nontrivial. The red
arrow shows the direction of the initial and final region of a quench
from a trivial phase to a topological phase.

where F12(|ψk〉) is the U (1) curvature defined over the ground
state |ψk〉 of the Hamiltonian Hk , i.e.,

F12(|ψk〉) = ∂k2〈ψk|∂k1 |ψk〉 − ∂k1〈ψk|∂k2 |ψk〉. (B3)

The Chern invariant is integer-quantized as long as the Hamil-
tonian Hk does not approach a QCP where the Chern number
becomes ill-defined. Different integer values of the Chern
number characterize distinct topological phases separated by
QCPs (see Fig. 7).

Each point on the Bravais lattice can be referenced in terms
of the Bravais lattice vectors, i.e.,

�a = n1�a1 + n2�a2, (B4)

where the vectors �a1 and �a2 span the Bravais lattice, and n1, n2

are integers. We choose the vectors �a1 and �a2 to be the next-
nearest-neighbor hopping vectors such that

�a1 = ��22, �a2 = − ��21, (B5)

where ��2i are the N2 vectors as shown in Fig. 8(a).
Invoking the discrete translational invariance of the Hamil-

tonian, one can employ a discrete Fourier transform to
decouple the Hamiltonian H (t ) in momentum space. The
reciprocal space is spanned by the reciprocal-lattice vec-
tors �b1 and �b2, i.e., every reciprocal-lattice point can be
represented as

�b = k1�b1 + k2�b2, (B6)

where, k1, k2 ∈ [0, 1). We choose a rhomboidal Brillouin zone
spanned by reciprocal-lattice vectors �b1 and �b2 [see Fig. 8(b)]
containing two independent Dirac points K and K ′. In our
choice of representation,

�b1 = 2π

3a
{1,

√
3} and �b2 = 2π

3a
{1,−

√
3}, (B7)

where we have chosen a = 1. The corresponding inequivalent
Dirac points in the Brillouin zone shown in Fig. 8(b) are
given by

K = 2π

3

(
1,

1√
3

)
and K ′ = 2π

3

(
1,− 1√

3

)
. (B8)

FIG. 8. (a) The hexagonal graphene lattice showing the nearest-neighbor (N1) and next-nearest-neighbor (N2) hopping vectors ��1i and
��2i, respectively, where the lattice constant is set to be a = 1. The hollow and filled atoms represent the B and A sublattices, respectively.
(b) The Brillouin zone of graphene spanned by the reciprocal-lattice vectors �b1 and �b2 containing two inequivalent Dirac points K and K ′

(the Cartesian directions have been labeled by kx and ky, respectively). The color density shows the absolute value of the band gap �k of the
reciprocal space graphene Hamiltonian showing vanishing gaps at the Dirac points for a 600 × 600 lattice size having the N1 hopping strength
t1 = 1.0 and the N2 hopping t2 = 0.
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The bare Haldane Hamiltonian gets decoupled in the mo-
mentum space where H0(k) can be written in the basis |k, A〉
and |k, B〉 as

H0(k) = �h(k) · �σ = hx(k)σx + hy(k)σy + hz(k)σz, (B9)

such that

hx(k) = −t1

3∑
i=1

cos (�k · ��1i ),

hy(k) = −t1

3∑
i=1

sin (�k · ��1i ),

hz(k) = M − t2 sin φ

3∑
i=1

sin (�k · ��2i ). (B10)

��1i and ��2i are the nearest-neighbor and next-nearest-
neighbor lattice vectors, respectively [see Fig. 8(a)] chosen
to be

��11 = a

2
{1,

√
3}, ��12 = {−a, 0}, ��13 = a

2
{1,−

√
3}, and

��21 = a

2
{−3,

√
3}, ��22 = a

2
{3,

√
3}, ��23 = {0,−a

√
3},

(B11)

in the Cartesian frame [Fig. 8(a)], where we have chosen the
lattice parameter a = 1. Note that we have used Eq. (B9)
where the Semenoff mass term which appears only in hz(k)
is linearly ramped across the quantum critical point from the
nontopological to the topological phase.

APPENDIX C: CURRENTS

The definition of the topological classification of out-of-
equilibrium states is directly connected to the evolution of
particle currents generated in the time-dependent state of the
system. For the topological invariant to conform with the
adiabatic edge current dynamics, it is essential to take note
of the time evolution of the current operator.

As discussed in Refs. [57,79], the measured particle current
in the out-of-equilibrium system is dependent on the instan-
taneous Hamiltonian. This can be easily seen by explicitly
computing the expectation of the current operator between
two sites when the system is driven out of equilibrium.

Referring to the Haldane Hamiltonian and resorting to the
Heisenberg picture,

d (a†
nam)

dt
= −i[H (t ), a†

nam]. (C1)

As the dynamics is unitary, the mean rate of change of local
population at a site is directly proportional to the average local
current at the site. Thus, the expectation is〈

d (a†
nam)

dt

〉
=

∑
n

Jnm, (C2)

where Jnm is the average current between the sites i and j.
Comparing Eq. (C1) and Eq. (C2), one obtains

Jnm = Im[2Hnm(t )〈a†
nam〉], (C3)

where Hnm(t ) is the single-particle time-dependent Hamilto-
nian,

H (t ) =
∑
nm

H (t )nma†
nam. (C4)

To evaluate the edge currents, we impose semiperiodic bound-
ary conditions on the 2D lattice. Generically, as defined above,
the single-particle current can be decomposed as

〈 �JSS〉 = 〈 �JN〉 + 〈 �JNN〉 , (C5)

where �JN and �JNN are the nearest-neighbor and the next-
nearest-neighbor current operators, respectively,

〈
Jx

Nn

〉 =
∑

m

t1 〈a†
nam〉 − H.c.,

(C6)〈
Jx

NNn

〉 =
∑

m

t2 〈a†
nam〉 − H.c.,

where 〈Jx
Nn〉 (〈Jx

NNn〉) is the nearest (next-nearest) current at the
nth site, and the summation indices extend over all nearest-
(nest-nearest-) neighbor sites to the nth site. Considering
the lattice to be periodically wrapped in the x-direction [see
Fig. 8(a)] while being open in the y-direction, one obtains
two armchair edges at the ends of the cylinder. We compute
the total horizontal current flowing in the periodic x-direction
on one of the armchair edges Jx

L for an L × L lattice in the
postquench state to reestablish the bulk boundary correspon-
dence, which is depicted in Fig. 5 of the main text.

APPENDIX D: NUMERICAL AND EXPERIMENTAL
GENERATION OF THE COUNTERDIABATIC MASS

The time-dependent generation of the counterdiabatic term
in Eq. (25) of the main text can be realized experimentally
by a temporal modulation of the nearest-neighbor hopping
amplitude along a particular direction in the real lattice.
This is experimentally realized by the application of small
anisotropic strain on the graphene lattice. The application of
strain changes the C − C bond length between and thus renor-
malizes tunneling amplitudes anisotropically. It is established
that under a strain, the hopping energies are modified as [89]

ti j ∼ t0e−β(
li j
a0

−1)
, (D1)

where li j are bond lengths under strain while a0 is the nearest-
neighbor bond length (see Sec. I) that is proportional to the
nearest-neighbor hopping t0 in unstrained graphene, and β ∼

094301-12
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3.37 is a dimensionless modulation factor. Therefore, with the
application of small anisotropic strain, each nearest-neighbor
hopping strength can be differentially modulated to generate
an effective pseudomagnetic field in graphene, which is the
essence of the CD protocol.

In Fig. 5 of the manuscript we explicitly demonstrate
this by applying a time-dependent modulation to the hop-
ping strength along the direction ��12 while keeping the other
two nearest-neighbor and next-nearest-neighbor hopping un-
affected,

t ��12
(t ) = −t1 − G sin

(
πt

τ

)
; G � 0,

t ��11
= −t1, t ��13

= −t1, (D2)

for the duration of the quench, i.e., t ∈ [0, τ ] (see Fig. 5 of
the main text), and G represents the anisotropic strain. Note
that the term G × sin ( πt

τ
) vanishes both at t = 0 and t = τ

but not at the quantum critical point, thus maintaining a finite
gap at the topological critical point of unstrained graphene.
For the translationally invariant situation (periodic boundary
condition), this term can be shown to modify the hx(k) of the
reduced 2 × 2 Hamiltonian [see Eq. (B9)]. Under semiopen
boundary conditions, we analyze the entire real-space Hamil-
tonian along with the counterdiabatic term to evaluate the
postquench real-time edge current in Fig. 5 of the main text.

Such anisotropic modulations can be generated experimen-
tally by applying anisotropic strain on the graphene lattice and
then modifying it temporally to open up a controlled gap in
the spectrum [82,83], which in turn suppresses diabatic exci-
tations while crossing a quantum critical point. Eventually, at
the final time t = τ , the anisotropic strain is removed and the
lattice returns to its unstrained form provided the maximum
applied strain is within the elastic limit of graphene.

APPENDIX E: EDGE CURRENT AND CD PROTOCOL

To establish the emergent topological nature of the
postquench state, we have explicitly checked the boundary

FIG. 9. Localization of the single-particle edge current generated
in the initial and the postquench Haldane model with a cylindrical
geometry. The index N denotes the position of a strip along the trans-
lational symmetry-broken direction of the cylinder. The postquench
current is observed to be localized into the boundary of the lattice.
The simulation is performed for an 18 × 18 lattice. All the other
quench parameters are very similar to those used in the paper.

localization of the generated edge currents as defined in
Eq. (27). It is straightforward to see that the eigenstates of
the postquench Hamiltonian are expected to host conducting
edge states. However, the dynamical population of the edge
states of the final Hamiltonian is in itself an emergent phe-
nomenon, which has been demonstrated in the body of the
paper. Furthermore, it is essential that the edge states lie in
the bulk gap for the edge currents to get boundary-localized.
This is ensured by half-filling in the equilibrium system and
by suppressing diabatic excitations in the out-of equilibrium
state while at the same time populating the edge channels.
It is in this aspect that we discuss it as an indicator of the
postquench system comprised of the edge states and the bulk.
To exemplify this, we plot the chiral current in a cylindrical
geometry in strips along the periodic direction in Fig. 9. We
show that the CD postquench current is well-localized in
the edges and decays rapidly into the bulk. The dynamical
behavior of the edge current is similar even without the CD
term, nevertheless the latter facilitates a quicker preparation,
as discussed before.
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