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Dielectric relaxation experiments performed at ambient and elevated pressures P in molecular, ionic, and
polymeric glass formers have established that the relation of the Johari-Goldstein (JG) β-relaxation time τβ (T, P)
to the α-relaxation time τα (T, P) is invariant to changes of T and P while the latter is kept constant. This property
of the JG β relaxation is remarkable despite the fact that the invariance of the ratio τβ (T, P)/τα (T, P) from
experiment is sometimes approximate because the β relaxation is composed of a distribution of processes, and the
τβ (T, P) determined can be arbitrary. The property indicates the fundamental importance of the JG β relaxation
and it cannot be neglected whenever the α relaxation is considered. Notwithstanding, the property has not been
checked on whether it applies to metallic glasses. Conventional experiment techniques cannot fulfill the task,
and the alternative is molecular dynamics simulations. In this paper we report the results of molecular dynamics
simulations of dynamical mechanical spectroscopy performed on two very different metallic glasses, Zr50Cu50

and Ni80P20, at different pressures P. The JG β relaxation appears as an excess wing on the low-temperature
side of the α loss peak at Tα,P in the isochronal loss modulus spectra EP

′′(T ). On the other hand, the isochronal
non-Gaussian parameter α2P(T ) peaks at the temperature Tα2,P different from Tα,P of E ′′

P(T ). From the fact that
Tα2,P is significantly lower than Tα,P, we identified the peak temperature Tα2,P of α2P(T ) with the JG β relaxation,
and hence the JG β relaxation is fully resolved by studying the isochronal non-Gaussian parameter α2P(T ).
After scaling temperature by Tα,P, the normalized EP

′′(T/Tα,P ) and α2P(T/Tα,P ) both show superposition of data
taken at various pressures for all T/Tα,P covering the JG β relaxation and the α relaxation. Moreover the ratio
Tα2,P/Tα,P is invariant to changes of T and P while τα (T, P) is maintained constant. Thus we have verified for
two different metallic glasses, Zr50Cu50 and Ni80P20, that τα (T, P)/τβ (T, P) is invariant to changes of T and P at
constant τα (T, P), as found in soft matter.

DOI: 10.1103/PhysRevB.102.094205

I. INTRODUCTION

Chronologically the dynamics of glass formers starts at
short times when all basic units, atomic, molecular, or par-
ticles, are mutually caged via the intermolecular potential.
According to the coupling model [1–4] the caged dynamics
is not a relaxation process. Manifesting in susceptibility as
the nearly constant loss (NCL) the caged dynamics has no
characteristic time, and it persists until the cages decay first by
the local and independent relaxation with primitive relaxation
time τ0 [1–5]. The caged dynamics in the coupling model
(CM) is different from that in the mode coupling theory of
Götze [6]. The latter does not have the NCL but instead a
susceptibility minimum generated by the sum of two power
laws. The onset of cage decay in the CM is followed in time
by relaxations of an increasing number of units and stochas-
tically at locations with overlap [1–5] before arriving at the
structural α relaxation. The collection of these relaxation pro-
cesses with a distribution of relaxation times is defined [1–6]
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effectively as the Johari-Goldstein (JG) β relaxation [7,8],
which does not contribute to viscosity η or diffusion constant
D. Notwithstanding, the β relaxation is indispensable for the
onset of the structural α relaxation. In Fig. 1 we utilize the
isochronal loss modulus G′′(T ) of Zr65Al7.5Cu27.5 measured
by Rösner et al. [9] to show the NCL of caged dynamics
and termination by the JG β relaxation which acts as the
precursor of the α relaxation. The complementary Fig. S1
in the Supplemental Material (SM) [10] shows the relation-
ship of NCL, JG β relaxation, and the α relaxation in a
hypothetical isothermal dielectric loss spectrum. This view
of how the dynamics evolve with time is supported by the
time-resolved all-particles motion data of colloidal particles
by confocal microscopy [11,12], the MD simulations results
of binary Lennard-Jones particles [13] and related model
systems [14,15], ions in glasses [16,17], a polymer [18], bi-
nary metallic alloys Zr50Cu50 [19,20] and Ni80P20 [21,22],
and experiment [23]. It was envisaged by theoretical models
[1–4,24]. Some of the examples given are in the liquid state
while the metallic glasses we studied in this paper are glasses.
Notwithstanding, the relations between the caged dynamics,
JG β relaxation, and the α relaxation are the same in the liquid
or in the glassy state.
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FIG. 1. The loss modulus G′′(T ) of Zr65Al7.5Cu27.5 measured by
Rösner et al. [9] (open squares), and the calculated the isochronal
shear loss modulus at 5.4 kHz contributed by the dominant α re-
laxation, G′′

α (T ) (dashed line). The JG relaxation is not resolved
as a loss peak and instead appears as an excess wing. The most
probable temperature of the JG relaxation at 5.4 kHz is estimated
to lie between TJG = 647 and TJG = 635 K.

The fact that the JG β relaxation is dynamically hetero-
geneous and distributed is not only obvious from some the
papers cited in the above, but also this property was antic-
ipated in the island of mobility model [7,25,26] and in the
CM [27]. It was verified in metallic glasses by experiments
[28–30] and simulations [19–22]. In molecular glass formers
it was found by deuteron NMR experiment [31]. Despite
the heterogeneous nature of the JG β relaxation, a single
relaxation time τβ determined from fit to the susceptibility
frequency spectrum by some empirical function is often used
to stand for the distribution of relaxation times.

The caged dynamics and the JG β relaxation are not inde-
pendent and instead are linked. This property was verified in
many glass formers by the termination of the caged dynamics
regime by the onset of the JG β relaxation observed in the
susceptibility spectra [1,2,5], or by the change in temperature
dependence of the caged dynamics at the secondary glass
transition temperature Tgβ in molecular [32,33] and polymeric
[34] glass formers, and also in metallic glasses [35]. In turn,
the JG β relaxation is strongly linked to the onset of struc-
tural α relaxation by various properties [3,36,37], and also in
metallic glasses [21,22]. The property we emphasize in this
paper is the approximate invariance of the relation between
the JG β and the α relaxation times, τβ (T, P) and τα (T, P),
to changes of temperature T and pressure P while keeping
τα (T, P) constant. This is a general property observed in var-
ious glass formers [3–5,36–46]. It is fundamentally important
because it implies that the α relaxation is strongly linked to
and inseparable from the JG β relaxation. It even implies that
the dependence of τα on specific volume and entropy actually
originates from τβ [36,38–42], and therefore no glass transi-
tion theory is complete without considering the role of the JG
β relaxation. Although this fundamentally important property
had been verified in many different glass formers, it has not
been investigated before on whether it applies to metallic

glasses. Conventional experimental measurements at elevated
pressure would be difficult if not impossible to use because
the material is metallic and is in the glassy state. Nevertheless,
molecular dynamic simulations when combined with the dy-
namic mechanical spectroscopy (MD-DMS) method [19–22]
possibly can give an answer to this question. In metallic
glasses, usually the isochronal mechanical loss moduli E ′′
is obtained as a function of temperature by dynamic me-
chanical spectroscopy at low frequencies around 1 Hz and
corresponding long times tp of the order of 0.1 s. On the other
hand, combined with the dynamic mechanical spectroscopy
method (MD-DMS), molecular dynamics simulations make it
possible to study the relaxation of metallic glasses at elevated
pressures [19–22].

In this paper, we study the relation of the JG β relax-
ation and the caged dynamics to the α relaxation through the
MD-DMS method. By calculating the loss modulus EP

′′(T )
and the dynamic heterogeneity α2P(T ), we find that the re-
lation of the JG β-relaxation time τβ (T, P) and the caged
dynamics to the α-relaxation time τα (T, P) is insensitive to
changes of T and P while τα (T, P) is kept constant. These
are verified by superposition of the data after normalizing
EP

′′(T ) by the peak height EP,max
′′ and scaling T by Tα,P

for the metallic glasses Zr50Cu50 and Ni80P20. Furthermore,
we show after scaling the temperature dependence of α2P(T )
by Tα,P that the normalized α2P(T/Tα,P )/α2P,max(T/Tα,P ) has
approximately the same shape, and the ratio of the two peak
temperatures, Tα2,P/Tα,P, is independent of P. The reason is
that the α2P(T ) data encompass both the caged dynamics
regime and the JG β-relaxation spectral range, and the peak is
dominated by the latter and its heterogeneous dynamics. It is
the isochronal analog of the approximate invariance of the ra-
tio τα (T, P)/τβ (T, P) to variations of T and P while τα (T, P)
is maintained constant, which was found in many nonmetallic
glass formers [3–5,36–46]. Thus, we can conclude that the
relation of the caged dynamics and the JG β relaxation to
the α relaxation in the two metallic glasses is invariant to a
change of pressure at constant τα (Ta,P, P) = tp for all P. This
result for metallic glasses is remarkable because high pressure
causes marked changes to the local structure, medium range
order, and density of metallic glasses, as can be inferred from
the change in the total radial distribution functions [19,20].
The paper is organized as follows. In Sec. II the models of the
two metallic glasses Zr50Cu50 and Ni80P20 and the methods
of simulation are given. The simulations are described and
the results presented in Sec. III. The results are discussed and
conclusions are drawn in Sec. IV.

II. MODELS AND METHODS

In order to ensure our results and conclusions are general,
we performed the DMS simulations with different loading
frequencies in two distinct model metallic glass systems
(metal-metal Zr50Cu50 and metal-metalloid Ni50P50 systems)
with various thermal histories.

A. Model systems

Molecular dynamics (MD) simulations were performed
by the open source code LAMMPS [47]. A series of sim-
ulations based on Zr50Cu50 and Ni80P20 were performed
by the embedded atom method potential [48–50], for
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system size NZr50Cu50 = 8000 (5.2 nm × 5.2 nm × 5.2 nm)
and NNi80P20 = 32 000 (7.5 nm × 7.5 nm × 7.5 nm) respec-
tively. Samples were prepared under different external pres-
sures for comparing the results at different pressures.

The Zr50Cu50 samples were equilibrated at 1900 K with
constant number, pressure (0 and 15 GPa) and temperature
(NPT) ensembles for 10 ns. Next, the samples were quenched
down to 50 K, step by step with the step size of 50 K at a
rate of 0.1 K/ps with the corresponding NPT ensembles. At
the end we obtained the samples under external pressures of
0 and 15 GPa at the cooling rate of 0.1 K/ps at different tem-
peratures. To confirm the validity of the following results, the
samples with external pressures, 0 and 15 GPa, at a different
rate of 10 K/ps were prepared using the same method.

The Ni80P20 samples were prepared by quenching a liquid
from 1000 to 200 K at a rate of 0.1 K/ns (108K/s). Such a
slow cooling rate is about two to three orders of magnitude
slower than most of the MD simulations of MGs conducted
thus far. NPT ensembles were used during the quenching. The
external pressure was adjusted to five different values of P =
−10, −4, 0, 5, and 10 GPa.

During the quenching process, configurations of each sam-
ple at the temperatures of interest were collected for further
study by dynamical mechanical spectroscopy (DMS). All sim-
ulations were applied under periodic boundary condition in
all three directions. The temperature is maintained by the
Nosé-Hoover thermostat [51] and the time step is 2 fs.

B. Molecular dynamics simulation of dynamical
mechanical spectroscopy

In the MD-DMS method, we apply ten full cycles of
sinusoidal strain ε(t ) = εA sin(2πt/tp) to the Zr50Cu50 and
Ni80P20 metallic glasses (MGs). For the Zr50Cu50 samples, the
sinusoidal strain is along the xy direction, where tp is set at
100 ps and εA at 2%. For the Ni80P20 samples, the sinusoidal
strain is along the x direction, where tp is set at 100 ns and
εA at 0.71%. The two values of εA are in the linear elastic
region to ensure the deformations do not change the structure
of the MGs. To make possible the statistical analysis of the
results and to avoid the dependence on the initial state, we
perform 50 independent MD-DMS loadings for the Zr50Cu50

samples, at every temperature of interest, which all started
from the same initial configuration but with momenta ran-
domly assigned from the Maxwell-Boltzmann distribution at
the specific temperature. Then the mean resultant stress ob-
tained from the 50 independent MD-DMS loading processes
were fitted by the formula σ (t ) = σ0 + σAsin(2πt/tp + δ),
where σA is maximum stress and δ is the phase shift between
strain and stress. Finally, the formulas E ′′ = (σA/εA) ∗ sin(δ)
and E ′ = (σA/εA) ∗ cos(δ) were used to calculate the loss
and storage modulus respectively. All the MD-DMS loading
processes were performed under the condition of constant
number, volume, and temperature (NVT) ensemble.

III. RESULTS

A. Zr50Cu50

The glassy samples were prepared by different cooling
rates at either zero pressure or under elevated pressures as

FIG. 2. The loss modulus EP
′′(T ) and the non-Gaussian parame-

ter α2P(T ) at P = 0 and 15 GPa of Zr50Cu50 metallic glass prepared
by the cooling rate of 0.1 K/ps.

described. The procedure used to tune the state of metallic
glasses by the cooling rate and pressure during the quench-
ing process as well as the characterization of the structures
by the total radial distribution functions has been given
in Refs. [19,20]. Prominent changes in the local structure,
medium-range order, and density were found by pressure ele-
vated to 15 GPa.

By using the MD-DMS simulations method described be-
fore, the loss moduli EP

′′(T ) were obtained as a function of
T for samples of Zr50Cu50 prepared at two different cooling
rates and pressures, P = 0 and 15 GPa, with the choice of
tp = 100 ps. The results are shown in Figs. 2 and 3 for cool-
ing rates of 0.1 and 10 K/ps respectively. The loss modulus
EP

′′(T ) shows a peak contributed by the α relaxation, which is
accompanied by a broad shoulder contributed by the not fully
resolved β relaxation at lower temperatures than the peak. At

FIG. 3. The loss modulus EP
′′(T ) and the non-Gaussian parame-

ter α2P(T ) at P = 0 and 15 GPa of Zr50Cu50 metallic glass prepared
by the cooling rate of 10 K/ps.
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FIG. 4. The data of EP
′′(T ) and α2P(T ) at P = 0 and 15 GPa

from Fig. 1 are normalized by the respective peak values. Tempera-
ture is scaled by Tα,P. The broken line on the left indicates the value
of Tα2,P/Tα,P, which is independent of P.

the α-loss peak temperature T = Tα,P, the α-relaxation time
is equal to tp, i.e.,

τα (Tα,P, P) = tp, (1)

for all P. At temperature lower than Tα,P, the loss modulus
EP

′′(T ) is contributed by the JG β relaxation and the caged
dynamics at even lower temperatures, as found in dynamic
mechanical measurements [9,24,35] (see Fig. 1). If the re-
lation of the JG β-relaxation time τβ (T, P) and the caged
dynamics to the α-relaxation time τα (T, P) are insensitive to
changes of T and P while τα (T, P) is kept constant, it can be
verified by superposition of the data after normalizing EP

′′(T )
by the peak height EP,max

′′ and scaling T by Tα,P. As shown in
Figs. 4 and 5, good superposition of the normalized and scaled
EP

′′(T/Tα,P ) data of Zr50Cu50 at zero and 15 GPa pressures

FIG. 5. The data of EP
′′(T ) and α2P(T ) at P = 0 and 15 GPa

from Fig. 2 are normalized by the respective peak values. Tempera-
ture is scaled by Tα,P. The broken line on the left indicates the value
of Tα2,P/Tα,P, which is independent of P.

was obtained for the entire range of T/Tα,P covering the α-loss
peak and the JG β relaxation. In the scaled EP

′′(T/Tα,P ) data
of Zr50Cu50, although the JG β relaxation is not fully resolved,
its presence is suggested by the excess loss shown by the
broad shoulder on the low-temperature side of the α-loss peak
at T/Tα,P = 1.

As an assist to EP
′′(T ) in our study of the β relax-

ation in Zr50Cu50, we examine additionally the non-Gaussian
parameter

α2(t ) = 3〈r4(t )〉/5〈r2(t )2〉 − 1. (2)

It is the indicator of the dynamical heterogeneity of all
processes including the caged dynamics, the β relaxation, and
the α relaxation. For each metallic glass Zr50Cu50 prepared
under pressure P, we computed α2(t ) at t = tp as a function
of temperature over broad temperature range from way below
Tα,P to above Tα,P at which τα (T, P) is equal to tp. Denoted by
α2P(T ) as shown in Figs. 2 and 3, the result shows it increases
with increasing temperature to exhibit a peak at Tα2,P. Since
Tα2,P lies far below Tα,P, the α2P(T ) peak at Tα2,P cannot be
associated with the α relaxation. It has to be identified with
the β relaxation, even though it is not resolved in EP

′′(T ). This
association is also suggested by the results obtained before at
ambient pressure and shown in Figs. 1(a) and 1(b) in Ref. [19].
It is made clearer by the illustrations of data from samples
prepared at ambient pressure for three different cooling rates
in Fig. S2 in the Supplemental Material [10]. At Tα2,P, the
characteristic β-relaxation time τβ (Tα2,p, P) is equal to tp.
Thus like Eq. (1) for τα (Tα,P, P), we also have

τβ (Ta2,P, P) = tp. (3)

In order to see via α2P(T ) if the relation between the
JG β relaxation and the α relaxation is invariant to changes
of P and T at constant τα , temperature is scaled by Tα,P.
Furthermore, α2P(T/Tα,P ) are normalized by the respec-
tive peak heights α2P,max. The Tα,P-scaled and normalized
α2P(T/Tα,P )/α2P,max for Zr50Cu50 at cooling rates of 0.1 and
10 K/ps are presented in Figs. 4 and 5 respectively. It is made
clearer by the illustrations of data obtained from samples un-
der different conditions in Fig. 6. By inspection of the figures,
it is clear that the ratio Tα2,P/Tα,P, as well as the Tα,P-scaled
temperature dependence of α2P(T/Tα,P ) covering both the α

and the JG β relaxations, is invariant to change of pressure
at constant τα (Tα,P, P) = tp for all P. These results derived
by isochronal considerations are equivalent to having verified
that the ratio τα (T, P)/τβ (T, P) is invariant to P and T at
constant τα (T, P) as found generally in soft matter.

The Tα,P-scaled and normalized data of EP
′′(T ) are shown

in Figs. 4 and 5. Although EP
′′(T/Tα,P )/EP,max

′′ shows the JG
β relaxation as a broad shoulder and not a resolved peak,
this isochronal spectrum covering both the α and the JG
β relaxations is invariant to change of pressure at constant
τα (Tα,P, P) = tp for all P. Therefore EP

′′(T/Tα,P )/EP,max
′′ also

verifies the invariance property in Zr50Cu50. To clarify the
correlation between the loss modulus and the non-Gaussian
parameter, we plot the data of E ′′ as a function of α2P,max

in Fig. 7(a) and the scaled data in Fig. 7(b); the collapse of
the data indicates the intrinsic correlation between the loss
modulus and the non-Gaussian parameter which had been
proposed in Ref. [20].
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FIG. 6. The panel on top shows the loss modulus E ′′ as a function
of temperature T for samples prepared at different cooling rates of
0.1, and 10 K/ps respectively. The bottom panel shows the non-
Gaussian parameter α2 vs temperature T for samples prepared at the
different cooling rates as in the upper panel.

The results collected in Figs. 4 and 5 showing the invari-
ance property are important because invariance holds despite
pronounced changes of atomic structure and density on vary-
ing pressure. Thus, the finding from this study in metallic
glasses is the strong connection of the JG β relaxation to the
structural α relaxation independent of P and T, like that found
generally in molecular glass formers [3,4,36–46].

B. Ni80P20

In support of the results from Zr50Cu50 obtained and re-
ported in the previous subsection are general, we performed

MD simulations and MD-DMS independently to obtain
EP

′′(T ) and α2P(T ) of a different metallic glass, Ni80P20,
where the JG β relaxation exhibits a more prominent broad
shoulder on the low-temperature side of the α-loss peak than
that of Zr50Cu50. The samples of Ni80P20 were prepared at
drastically different cooling rates than those of Zr50Cu50 and
tp is set at 100 ns instead of 100 ps. The loss modulus EP

′′(T )
and the non-Gaussian parameter α2P(T ) were calculated for
several samples all cooled at 0.1 ns/K at five different pres-
sures P = −10, −4, 0, 5, and 10 GPa. The results of EP

′′(T )
presented in Fig. 8 show α-loss peaks at temperatures Tα,P,
which increases with P. The β relaxation is not resolved but
its presence is indeed suggested by the broad shoulder on
the low-temperature side of the α-loss peak. After EP

′′(T ) is
normalized by the α-loss peak value E ′′

P,max and temperature
is scaled by Tα,P, the result E ′′

P (T/Ta,P )/E ′′
P,max as a func-

tion of T/Tα,P is shown in Fig. 9. Despite some scattering
of the data, the shoulder representing the β relaxation in
EP

′′(T/Ta,P )/E ′′
P,max seems unchanged for different pressures

like that found in Figs. 4 and 5 for Zr50Cu50.
The α2P(T ) data of Ni80P20 in Fig. 10(a) exhibit a peak

at T = Tα2,P. From the fact that Tα2,P is appreciably lower
than Tα,P, it follows the α2P(T ) peak at T = Tα2,P is asso-
ciated with the JG β relaxation. Like Tα,P, the value of Tα2,P

also increases with P. In Fig. 10(b), the α2P(T ) data were
normalized by the peak heights and temperature was scaled
by Tα2,P to show that the shape is independent of P and T
within the scatters of the data. The link of α2P(T ) to EP

′′(T )
is demonstrated in Fig. 11, where temperature of all the data
in Figs. 8 and 10(a) were scaled by Tα,P of the α relaxation.
Found again in the figure is invariance of the ratio, Tα2,P/Tα,P

to changes of pressure as well as the Tα,P-scaled temperature
dependence of α2P(T/Tα,P ) covering both the α and the β

relaxations.
Done independently and differently, the results of MD

simulations of dynamical mechanical spectroscopy of Ni80P20

confirms those of Zr50Cu50. The scaled EP
′′(T/Tα,P ) data of

Ni80P20 in Fig. 11, exhibit a shoulder on the low-temperature
side of the α-loss peak, which can be identified as the contri-
bution from the JG β relaxation. The location on the T/Tα,P

axis of the shoulder does not depend on pressure. This result
from EP

′′(T/Tα,P ) also can be taken as direct evidence of

FIG. 7. (a) The data of α2P(T ) vs EP
′′(T ) for Zr50Cu50 metallic glass. (b) The normalized α2P(T ) vs normalized EP

′′(T ) for Zr50Cu50

metallic glass.
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FIG. 8. The loss modulus EP
′′(T ) at five different pressures of

P = −10, −4, 0, 5, and 10 GPa of Ni80P20 metallic glass prepared
by the cooling rate of 0.1 K/ns.

invariance of the relation between Tβ,P and Tα,P, the JG β and
α relaxation temperatures, in the metallic glasses.

IV. DISCUSSION AND CONCLUSION

In the sections presented above we report the results
of MD simulations of dynamical mechanical spectroscopy
(MD-DMS) in two different metallic glasses Zr50Cu50 and
Ni80P20 performed independently on samples prepared un-
der different conditions. The Zr50Cu50 is composed of two
metallic elements, while Ni80P20 is formed from a metal
and a metalloid. The objective of the work is to investigate
whether the JG β relaxation in metallic glasses is strongly
related to the α-relaxation in properties, like the invariance
of τα (T, P)/τβ (T, P) to P and T at constant τα (T, P) found
in other molecular and polymeric glass formers [3,4,36–46].
The JG β relaxation of Zr50Cu50 and Ni80P20 is not fully

FIG. 9. The data of EP
′′(T ) at P = −10, −4, 0, 5, and 10 GPa of

Ni80P20 metallic glass from Fig. 5 are normalized by the respective
peak values. Temperature is scaled by Tα,P.

FIG. 10. (a) The non-Gaussian parameter α2P(T ) at P = −10,
−4, 0, 5, and 10 GPa of Ni80P20 metallic glass. (b) The data of
α2P(T ) from (a) are normalized by the respective peak values. Tem-
perature is scaled by Tα2,P.

FIG. 11. The temperature dependence of EP
′′(T ) and α2P(T ) at

P = −10, −4, 0, 5, and 10 GPa of Ni80P20 metallic glass is scaled by
Tα,P.
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resolved in the isochronal loss modulus EP
′′(T ) and appears as

a shoulder. The isochronal EP
′′(T ) data alone at different pres-

sures do support that the relation between the JG β relaxation
to the α relaxation is invariant to change in thermodynamic
condition. Notwithstanding we study also the isochronal non-
Gaussian parameter α2P(T ) in which the JG β relaxation is
fully resolved to appear as a peak at Tα2,P. The fact that Tα2,P

is much lower than Tα,P is testimony that the peak of α2P(T )
is contributed by the JG β relaxation.

The link of the non-Gaussian parameter to the JG β re-
laxation is general and shared by nonmetallic glass formers.
An example is the study of colloidal particles by confocal
microscopy [1]. Elucidated in Fig. S3 of the Supplemental
Material [10], α2(t ) computed from the mean-square displace-
ment exhibits a broad peak covering the entire time range
from caged dynamics, JG β relaxation, and α relaxation. The
peak of α2(t ) occurs in the β-relaxation regimes at time tx2

somewhat longer than the primitive relaxation time τ0 of the
coupling model, which is approximately equal to τβ [4]. This
is illustrated in Fig. S3 by collecting several sets of data of
colloidal particles suspension at volume fraction φ = 0.56
from confocal microscopy [10]. The value of tx2 in Fig. S3 is
no more than a factor of 2 longer than τ0 = 500 s, and hence
the relation between tx2 and τ0 is like the approximate relation
between τ0 and the β-relaxation time τβ found in many glass
formers [3,4,36–46]. It is written as tx2 ≈ τβ to stand for this
fact. The same results from colloidal particles suspension [10]
was found by simulation in other systems including binary
Lennard-Jones particles [12], and Li ions in the metasilicate
glass Li2SiO3 [52]. Therefore, the peak time tx2 of α2(t ) in
isothermal data or alternatively the peak temperature Tα2,P of
α2(t ) in isochronal data of Zr50Cu50 and Ni80P20 can be taken
as associated with the JG β-relaxation time τβ .

In the glassy state of Zr50Cu50 and Ni80P20 under
isochronal condition, e.g., tp = 100 ps and 100 ns, respec-
tively, we can see clearly from Figs. 2–11 and Fig. S2 in
the SM that the α2P(T ) peaks at the temperature Tα2,P lower
than Tα,P. From the discussion given above, Tα2,P is identifi-
able with the temperature of the isochronal β-relaxation time
τβ (Tα2,p, P). Additional support of this identification comes
from the fact that Tα2,P falls inside the temperature range of
excess loss of EP

′′(T ) of Zr50Cu50 on the low-temperature side

of the α-loss peak, and is contributed by the β relaxation. The
latter is even clearer in the case of Ni80P20, where the more
prominent shoulder of EP

′′(T ) represents that the not fully
resolved β-relaxation is overlapping the α2P(T ) peak. Thus
we are led to the conclusion that the α2P(T ) peak pertains to
the JG β relaxation, and the invariance of Tα2,P/Tα,P to pres-
sure reflects the invariance of Tβ,P/Tα,P in isochronal spectrum
to change of pressure, despite changes in atomic structure,
and density. We have shown that the ratio of the two peak
temperatures, Tα2,P/Tα,P, is independent of P, and obtained
the important result of metallic glasses that the relation of the
caged dynamics and the JG β relaxation to the α relaxation
in the two metallic glasses is also invariant to change of
pressure at constant τα (Tα,P, P) = tp for all P. This property
from isochronal data is the analog of the invariance of the
ratio, τα (T, P)/τβ (T, P), to changes of T and P while τα (T, P)
is kept constant found in many molecular and polymeric glass
formers. The fundamental importance of the JG β relaxation
has been clearly brought out by the property in molecular
and polymeric glass formers. From the results presented in
this paper, we show that the property applies also to metallic
glasses.

The two binary metallic glasses chosen to study, Zr50Cu50

and Ni80P20, all have the JG β relaxation not fully resolved as
a peak in the isochronal loss modulus EP

′′(T ). Naturally one
can ask why we did not choose metallic glasses having fully
resolved JG β relaxation such as Pd40Cu30Ni10P20 [53] and
La60Ni15Al25 [35]. The answer is that application of the MD
simulations and MD-DMS to the multicomponent metallic
glasses becomes more difficult than binary metallic glasses,
and the results can be less clear. Notwithstanding, studies of
the JG β and α relaxations in multicomponent metallic glasses
by MD simulations and MD-DMS will be the next challenge
for anyone to undertake.
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