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Surface chiral superconductivity in odd-parity nematic superconductors with magnetic impurities
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We study odd-parity nematic superconductivity in doped topological insulators in the presence of surface
magnetic impurities. The peculiar surface subgap spectrum, characterized by a Majorana flat band, nodal cones,
and the surface states of the parent topological insulator, gives rise to overall ferromagnetic RKKY interactions
between the surface impurities. An additional coupling between the impurities and a preemptive chiral order
parameter promote a surface time-reversal symmetry breaking solution at the surface of the system. We discuss
the relevant scenarios and suggest to engineer surface chiral superconductivity by properly choosing magnetic
adatoms with highly anisotropic exchange coupling.
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I. INTRODUCTION

Chiral superconductivity is a highly interesting and long
sought unconventional state of matter that spontaneously
breaks time-reversal symmetry through the development of
a Cooper pair finite angular momentum [1,2]. It represents
an instance of topological superconductivity [3–5] that has
attracted great interest thanks to its potential for hosting Majo-
rana fermions in vortex cores [6–8], and in topological quan-
tum computation [9–11]. Intrinsic chiral superconductivity is
an unstable state of matter and its occurrence has been sug-
gested in particular conditions, such as layered material like
UPt3 [12], Li2Pt3B [13], Sr2RuO4 [14,15], SrPtAs [16], and
4Hb-TaS2 [17]. However, its detection relies on observation
of spontaneous magnetization or generation of local magnetic
fields [18] that is usually hindered by Meissner screening, and
its unequivocal demonstration still remains controversial.

Quantum design has become a very attractive and promis-
ing way to attain unconventional and fascinating states of
matter. This is the case of engineered topological supercon-
ductors [3,6,7], where by bringing together materials with
different properties it is possible to engineer the resulting
compound at will. It is then natural to wonder whether chi-
ral superconductivity can be stabilized by suitable quantum
design. To this end the relevant ingredients that need to be
brought together are the quasi-two-dimensional character, a
time-reversal symmetry breaking (TRSB) phase trigger, and
a multicomponent order parameter (OP) [1]. A bulk two-
component OP can choose two solutions, either a rotation
symmetry breaking solution, the nematic state, or a chiral
TRSB solution. In three-dimensional Dirac materials with a
closed weakly anisotropic Fermi surface, the nematic solution
is more stable [19–22]. Nevertheless, C3 crystal symmetry
[22] and two dimensionality [23,24] help in stabilizing a chi-
ral solution, and magnetic fluctuations [21,25] can provide
a mechanism that triggers a TRSB phase. However, none of
them alone is sufficient nor fully practical.
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In this work we consider an odd-parity nematic supercon-
ductor in the presence of surface magnetic impurities. The
system is schematized in Fig. 1(a). We study the Ruderman-
Kittel-Kasuya-Yosida (RKKY) interaction mediated by the
surface gapless states. Three main actors contribute to the
interaction: (i) states close to the nodes of the gap, (ii) a flat
band of Majorana surface states extending between the nodes,
and (iii) the surface states of the parent TI. We find that for an
impurity ensemble dilute on the scale of the Fermi wavelength
a ferromagnetic interaction is mediated by the surface gapless
modes and the system, albeit disordered, is expected to show
ferromagnetic order. Close to the surface, a preemptive chiral
OP couples to the out-of-plane magnetization. For an in-plane
magnetic order, fluctuations of the out-of-plane magnetiza-
tions generated by the chiral OP itself promote a phase transi-
tion to a TRSB surface state for sufficiently strong coupling.
For an out-of-plane order, the chiral OP always condenses
at the surface. Due to the small scales provided by the SC
gap and in the dilute impurity ensemble approximation, the
RKKY mediated in-plane order scenario turns out to be quite
fragile and in general the out-of-plane order is realized. These
results open the way to engineering surface chiral supercon-
ductivity in bulk nematic odd-parity superconductors and pro-
vide a mechanism to stabilize the chiral phase in thin samples.

A promising platform for the realization of surface chiral
superconductivity is provided by doped Bi2Se3 [23,24]. Early
experiments [26–29] and recent measurements [30–39] have
by now established the odd-parity nematic character of the
superconducting state, characterized by a C2 symmetry. The
latter is consistent with the two-component Eu representation
of the D3d crystal point group of the material [20,40–42],
possibly triggered by odd-parity fluctuations [43,44], density
wave fluctuations [45], structural distortion [46], nematicity
above Tc [47], and ferroelectric fluctuations [48].

The results presented are generic of odd-parity nematic
superconductors, and can be extended to other systems such
as UPt3 [49,50], Sr2RuO4 [51–53], or topological semimetals
[54], rendering these systems an ideal platform for quantum
designing of unconventional physics.
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FIG. 1. (a) Schematics of the setup considered: a bulk odd-parity
nematic superconductor with surface magnetic disorder and chiral
surface solution. (b) Directional dependence of the RKKY interac-
tion experienced by magnetic impurities.

II. THE SYSTEM

We start the analysis considering the k · p unperturbed
Hamiltonian describing doped Bi2Se3. The latter is well
described by a 3D anisotropic massive Dirac equation
(h̄ = 1) [40]

H0
k = mσx + v(kxsy − kysx )σz + vzkzσy, (1)

where the Pauli matrices σi span a twofold orbital subspace
and si are spin Pauli matrices. Superconductivity is studied
by means of the Bogolyubov–deGennes (BdG) Hamiltonian
H = 1

2

∑
k ψ

†
kHkψk. In the Nambu basis ψk = (ck, isyc†

−k )T ,
with ck a vector of fermion operators in spin and orbital basis,
the BdG Hamiltonian reads

Hk = (
H0

k − μ
)
τz + �̂τ+ + �̂†τ−. (2)

In the Eu odd-parity channel the gap matrix reads
�̂ = −ψxσysy + ψyσysx, where ψ = (ψx, ψy) is the two-
component OP. The ground state admits two possible
solutions: (i) a TR invariant nodal nematic phase ψ ∝ (1, 0)
and (ii) a chiral phase ψ ∝ (1,±i) that breaks TR symmetry.
The chiral phase has Weyl nodes in 3D and is fully gapped in
2D systems. Consistently with experiments, we choose a bulk
nematic phase.

We assume the system to occupy the z > 0 region of space.
The full surface spectrum obtained by a tight-binding model
[55] is shown in Figs. 2(a) and 2(b) and nodes are present
in the spectrum. At the surface of the system, a topologically
protected, doubly degenerate Majorana flat band appears for
|kx| < kF =

√
μ2 − m2/v, extending between the surface pro-

jection of the bulk nodes at ±kF . Additional crossing takes
places at momentum ±μ/v. These states are gapless modes
originating from the TI surface states that cross the Fermi level
at finite momentum and are hybridized but not gapped by the
odd-parity OP [56].

We then place magnetic impurities on the z = 0 surface
of the system and assume coupling to the electrons via an
anisotropic exchange interaction

HZ = −1

n

∑
i

[
JzS

z
i sz + J‖

(
Sx

i sx + Sy
i sy

)]
, (3)

where Si is the spin of the impurity located at position ri,
s is the electronic spin operator, Jz and J‖ are out-of-plane
and in-plane exchange couplings, and n = N/V is the electron
density [57]. Impurities also induce scattering via the scalar
part of their potential. This typically has detrimental effects
of unconventional pairing due to momentum randomization.

(a) (b)

(c) (d)

FIG. 2. Surface spectrum of the system obtained with a tight-
binding model for a slab of 200 bilayers [55]. (a) and (b) The nematic
phase along the kx and ky, respectively. The color code represents
the charge (red electrons, blue holes). (c) and (d) The nematic phase
with surface chiral solution and finite magnetization 〈Sy〉 only on one
surface, along the kx and ky, respectively.

Nevertheless, for sufficiently diluted impurities, such that the
mean free path �mf is much larger than the Fermi wavelength
λF but comparable to the coherence length ξ , λF � �mf ∼ ξ ,
we neglect their effect.

III. RKKY INTERACTION

For relatively weak exchange coupling, we integrate away
the fermionic degrees of freedom and obtain the RKKY inter-
action experienced by the magnetic impurities [57],

χμν (r) = JμJν

n2
T

∑
iωn

Tr[sμGiωn (r)sνGiωn (−r)], (4)

where Giωn (r) = ∑
k eik·r(iωn − Hk )−1 is the Green’s func-

tion of the BdG Hamiltonian Eq. (2). Three main actors
mediate the interaction: (i) the states around the nodes,
(ii) the Majorana flat band, and (iii) the surface hybridized TI
modes. The TI states contribution can be estimated by neglect-
ing the hybridization induced by the gap. In this case, well
know results for doped TI surface states apply [58–64]. The
different terms that arise show oscillations at 2kF and decay
as 1/r2. In addition, above critical temperature, conduction
band electrons provide an additional term that oscillates at 2kF

and decays as 1/r3. We neglect fast decaying terms in a dilute
impurity ensemble approximation.

A. RKKY Majorana flat band

The effective Hamiltonian describing the Majorana flat
band is written as

hk = −vMkyα̂y, (5)

with vM = vm�/μ2 the velocity of the Majorana modes [56]
and α̂i a set of Pauli matrices spanning the subspace defined

by |φ±〉 = 1
2 ( 1

±i)s ⊗ ( 1
∓i)τ . The RKKY interaction mediated by

Majorana fermions has been discussed in Ref. [65] and it
represents a particular case of surface TI fermions, with two
peculiar differences: (i) the zero chemical potential condition
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is satisfied exactly and (ii) only one spin component, the sy

in this case, has nonzero projection on the Majorana wave
function |φ±〉, resulting in the Pauli matrix α̂z. This is the well
known Ising property of Majorana Kramers pairs [58]. The
flat-band-mediated RKKY interaction reads [55]

χFB
yy (x, y) = − J2

‖ ρ2D

2πvMn2

sin2(kF x)

(kF x)2

f (kF y)

y
, (6)

with f (x) = (2/π )
∫ x

0 dz1dz2 cos(z1 − z2)/(z1 + z2) and
ρ2D = k2

F /π2 the surface density. The flat band extending
between momenta ±kF along x generates a contact interaction
that dies on a scale 1/kF . Along the y direction, f → 1 for
large argument, so that for an ensemble dilute on the scale of
the Fermi wavelength λF = 1/kF , the interaction has a purely
ferromagnetic long range character. As for the case of TI,
magnetic order along the direction dictated by the relevant
Majorana operator opens a gap in the Majorana spectrum
[Figs. 2(c) and 2(d)]. The RKKY interaction survives also
in presence of a gap, self-consistently sustained by the
interaction itself [62,64]. Additionally, a magnetization along
y acts as a tilting field [66,67] on the TI surface modes
along kx.

B. RKKY nodes

We then consider the RKKY interaction generated by the
nodes at the surface. The BdG Hamiltonian Eq. (2), projected
onto the conduction band states {|ψ1

cb〉k, |ψ2
cb〉k} and expanded

around the nodal points at ±kF , reads [55]

H± =
( ±vxkx δ(kys̃z − kzs̃y)
δ(kys̃z − kzs̃y) ∓vxkx

)
, (7)

with vx = v2kF /μ, δ = �v/μ, and s̃i are Pauli matrices span-
ning the conduction band states. Introducing the rescaled
position ρ = μ[x/(kF ξ ), y, zv/vz]/v, the resulting spin sus-
ceptibilities are given by

χxx(ρ) = −χ0J2
‖
[
(m/μ)2A0(ρ) + Ax(ρ) cos(2kF x)

]
,

χyy(ρ) = −χ0J(1 − (m/μ)2Az(ρ) cos(2kF x),

χzz(ρ) = −χ0J2
z [1 − (m/μ)2]Ay(ρ),

where χ0 = 8ν2
F �(μ/kF v)4/n2 and νF = μkF /(2π2vvz ) is

the density of states at the Fermi level of the bulk Hamil-
tonian. The functions Ai(ρ) [55] carry a weak dependence
on the direction r̂ and are well approximated by Ai(ρ) =
sin3(ρ/2)/(3ρ3). The terms oscillating with frequency 2kF

originate from internode scattering, whereas the others come
from intranode scattering. Along the nodal direction x, the
length scale is provided by the superconducting coherence
length ξ = v/�, whereas along the other directions it is
given by λF . Assuming a bulk gap � ∼ 1 K and a velocity
v = 0.6 × 108 cm/s, we have ξ ∼ 5 μm. In turn, assuming
μ = 0.33 eV and m = 0.3 eV, we have λF ∼ 3 nm. This
way, for an impurity ensemble dilute on the scale of λF , the
RKKY interaction mediated by the nodes acts only along the
x direction and its character is mainly ferromagnetic.

IV. IMPURITY-CHIRAL ORDER PARAMETER COUPLING

As shown in Refs. [21,25], magnetic impurities couple to
the chiral OP iψ × ψ∗, that transforms as a pseudovector and
can be regarded as an electron spin polarization [68] or Cooper
pair spin. Although in the nematic state the chiral OP is zero,
a coupling to magnetic impurity can trigger a finite value
in proximity of the surface. Including the RKKY interaction
arising from the Majorana flat band and the nodes in a total
susceptibility χμμ, the free energy describing magnetic impu-
rities coupled to the order parameter reads

Fm =
∑

i j

χμμ(i, j)Sμ
i Sμ

j + i
Jzκ

n

∑
i

Sz
i (ψ0,i × ψ∗

0,i )z, (8)

where κ � μνF /T 2
c is calculated in the normal state [21].

The magnetic interaction is of XX and ZZ type along the
x direction and of YY type along the y direction (see Fig. 1)
and the chiral OP plays the role of an external field pointing
about the ẑ direction. Whereas the oscillations with frequency
2kF tend to randomize the XX and YY coupling, the ZZ cou-
pling is practically constant for x < ξ . The impurity ensemble
is in general disordered, so that the values of χμμ(i, j) can be
thought as random in magnitude, distributed about different
nonzero negative average values. The system belongs to the
widely studied class of spin glass models with ferromagnetic
random couplings [69,70]. The ground state is ferromagnetic
[71], with the total magnetization pointing about the direction
of largest average coupling χμμ. We study two cases: (i) non-
negligible interaction with in-plane order, for �mf � ξ and
(ii) negligible interaction for �mf � ξ or out-of-plane order.

For J‖ > Jz, in-plane ferromagnetic order is expected. The
preemptive chiral OP tends to destroy the in-plane order and
establish a nonzero expectation value of 〈Sz

i 〉, proportional to
the chiral OP itself, 〈Sz

i 〉 = (�κJz/n)|ψ0 × ψ∗
0|, where � is

the zero field susceptibility in the ferromagnetic phase. This
yields a second order correction to the superconductor free
energy

F = Fψ − �(κJz/n)2nimp|ψ0 × ψ∗
0|2, (9)

with nimp the impurity concentration. For a spin chain with
nearest neighbor coupling χ0J2

‖ , the susceptibility is � =
1/(2χ0J2

‖ ), and the interaction is ∝ (Jz/J‖)2.
For Jz > J‖ the ferromagnetic order is out-of-plane, the

ground state has already a finite 〈Sz
i 〉 and the correction to the

free energy is linear in the chiral OP,

F = Fψ − iκJz(nimp/n)ψ0 × ψ∗
0, (10)

where we assumed the ground state with all impurities point-
ing about the ẑ direction. This scenario also applies to the
experimentally relevant case in which the impurity can be
considered as noninteracting.

V. SURFACE CHIRAL SOLUTION

In a semi-infinite system it is natural to expect a TRSB
solution in proximity of the surface, so that ψ acquires a
position dependence that matches two asymptotic solutions, a
nematic one at infinity and a TRSB one at z = 0. We describe
the modulation of the OP via a Ginzburg-Landau (GL) free
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energy whose form is dictated by symmetry arguments,

Fψ =
∫

d3r
V

[
a|ψ|2 + b|ψ|4 + b′|ψ × ψ∗|2 + βz|∂zψ|2],

(11)
where V is the volume of the system and we neglect in-plane
gradients [68]. Below Tc, a becomes negative and a finite
b > 0 ensure a stable finite solution. The two possible nematic
and chiral solutions are favored by b′ > 0 and b′ < 0, respec-
tively. In the absence of TRSB perturbations, the condition
b′ > 0 is met for bulk 3D systems.

We then parametrize ψ in terms of real valued amplitude
ψ (z) and relative phase ϕ(z), ψ = ψ (e−iϕ/2, eiϕ/2)/

√
2 [72].

We rescale the amplitude by the bulk value ψ∞ ≡ √|a|/(2b),
the position by the GL coherence length ξ = √

βz/(2|a|), and
set η = b′/b. For η � 1 we assume constant amplitude and
the GL free energy is written as [55]

δF ∝
∫ ∞

0
dx[F (ϕ, ϕ′) − gU (ϕ)δ(x)], (12)

where F = (ϕ′)2/4 + ηU (ϕ). The potential U depends on the
boundary interaction.

A. J‖ > Jz

In case the magnetic order is in-plane, we have g =
χ (κJz )2nimp/(2|a|ψ2

∞n2) and U (ϕ) = sin2(ϕ)/4 that provide
the boundary condition ϕ′

0 = −g sin(2ϕ0)/4. The solution for
the phase reads

ϕ(x) = 2arctan
[
tan(ϕ0/2)e−√

ηx
]

(13)

that represents a kink that matches the solution ϕ0 at the
origin with the asymptotic one ϕ∞ = 0. The boundary con-
dition is solved by ϕ0 = arccos(2

√
η/g) and the associated

free energy reads δF = −g(1 − 2
√

η/g)/4. A critical line
gc = 2

√
η separates a nematic solution ϕ0 = 0 for g < gc and

a TRSB solution ϕ0 = arccos(2
√

η/g) for g > gc, as shown in
the phase diagram Fig. 3(a). This way, for sufficiently strong
coupling, a surface TRSB state occurs with surface solution
ψ0 ∝ (1, eiϕ0 ). We numerically solve the coupled equations
for amplitude and phase, and find an excellent agreement [55].
The critical coupling gc = 2

√
η is matched exactly. The solu-

tion for the phase is shown in Fig. 3(b) and closely matches
Eq. (13), especially for small η. The amplitude is shown
in Fig. 3(c) and as expected varies on the scale ξ , whereas
the phase varies on the scale ξ/

√
η � ξ . The purely chiral

solution ϕ0 = π/2 is asymptotically reached for large g. By
inspection of Fig. 3(c) we also conclude that for a quasi 2D
system satisfying ξ > L, ψ can be assumed constant and the
results of Ref. [21] apply.

B. Jz > J‖

In case the magnetic order is out-of-plane (or in the non-
interacting case) the boundary interaction is U (ϕ) = sin(ϕ)
and g = κJznimp/(2n|a|ψ2

∞). It is clear that the out-of-plane
magnetization favors a surface chiral OP and a TRSB so-
lution always exists, as long as g �= 0. The kink solution
Eq. (13) applies and the value of the surface phase ϕ0 is found
by the boundary conditions ϕ′

0 = −2gcos(ϕ0), so that ϕ0 =

(a) (b)

(c) (d)

FIG. 3. (a) Phase diagram for the onset of a surface TRSB phase.
The separatrix gc = 2

√
η, marked in black, divides the diagram in a

nematic phase for g < gc and a TRSB phase for g > gc. (b) Phase ϕ

and (c) amplitude ψ versus the transverse direction z for η = 0.09:
empty dots refer to the exact numerics and continuous lines in (b) to
Eq. (13). (d) Surface phase ϕ0 versus coupling for boundary condi-
tions Eqs. (9) and (10).

arctan(2g/
√

η), that is nonzero for every g > 0 and asymp-
totically reach the chiral solution ϕ0 = π/2. Furthermore,
comparison to the Jz < J‖ case shows that, for nominally
equal coupling g, the chiral solution is obtained for much
weaker coupling in the case Jz > J‖ [see Fig. 3(d)].

VI. DISCUSSION

For Cr adatoms an almost isotropic spin exchange is
predicted on Bi2Se3 [73]. Considering that magnetic adatoms
tend to sit on precise microscopic lattice sites, either substi-
tutional or interstitial, and that the nematic phase favors the
crystallographic directions, the RKKY interaction cannot be
completely ruled out on the basis of its peculiar directional
dependence. In this case, an interacting picture applies
and a minimum density is required to trigger a surface
TRSB solution if the order is in-plane. On the other hand,
for magnetic adatoms characterized by Jz � J‖, like Fe
on Bi2Te3 [74], a surface TRSB solution always arises
and a relatively high impurity concentration can also be
tolerated, owing to the predicted out-of-plane order. In this
case, g � μJznimp/T 2

c . Assuming Jz/a2 � 1 meV, we find
g � 10−2nimpξ

2. It is important to stress that when magnetic
impurities align no pair-breaking spin randomization takes
place. In conclusion, we show how magnetic impurities on the
surface of a nematic odd-parity superconductor can stabilize
a surface chiral solution.
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