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Molecular dynamics study on magnesium hydride nanoclusters with machine-learning
interatomic potential
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We introduce a machine-learning (ML) interatomic potential for Mg-H system based on Behler-Parrinello
approach. In order to fit the complex bonding conditions in the cluster structure, we combine multiple sampling
strategies to obtain training samples that contain a variety of local atomic environments. First-principles
calculations based on density functional theory (DFT) are employed to get reference energies and forces for
training the ML potential. For the calculation of bulk properties, phonon dispersion, gas-phase H2 interactions,
and the potential energy surface (PES) for H2 dissociative adsorption on Mg(0001) surfaces, our ML potential
has reached DFT accuracy at the level of GGA-PBE, and can be extended by combining the DFT-D3 method to
describe van der Waals interaction. Moreover, through molecular dynamics (MD) simulations based on the ML
potential, we find that for MgnHm clusters, Mg/MgHx phase separation occurs when m < 2n, and for a cluster
with a diameter of about 4 nm, the Mg part of the cluster forms a hexagonal close-packed (hcp) nanocrystalline
structure at low temperature. Also, the calculated diffusion coefficients reproduce the experimental values and
confirm an Arrhenius type temperature dependence in the range of 400 to 700 K.
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I. INTRODUCTION

With the rapid development of industry and changes in
our lifestyle, global energy consumption has increases dra-
matically, leading to the depletion of fossil energies. In
recent years, finding alternative energy sources has become
increasingly urgent. Because of its abundant reserves, high
energy density, and zero emission behavior, hydrogen has
been regarded as an ideal fuel to solve both energy crisis and
greenhouse effect [1,2]. However, gaseous storage of hydro-
gen requires extremely high-strength pressure vessels, but still
has a relatively low volumetric hydrogen storage density of
30 gH/L. The density of liquid hydrogen can reach 70 gH/L,
but the hydrogen liquefaction process costs too much energy
[1,3]. Hydrogen storage using porous materials such as porous
carbons and zeolites has excellent reversibility, but their vol-
umetric hydrogen storage capacities are still low since they
require large surface areas [4]. Ahmed et al. studied nearly
half a million metal-organic frameworks (MOFs) and found a
volumetric ceiling at about 40 gH/L [5], barely meeting the
standards for on-board applications.

Metal hydrides have been studied extensively for mobile
applications due to their safety and high volumetric hydrogen
storage capacities [6]. Considering that heavy metals reduce
the gravimetric hydrogen storage density, the lightweight
MgH2 possesses both excellent volumetric and gravimet-
ric hydrogen storage capacities of 110 gH/L and 7.6 wt%
[7], and thus attracts more attention. However, a high des-
orption temperature of about 300 ◦C is required due to the
high thermodynamic stability of MgH2, and its hydrogen up-
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take and release kinetics are not favorable, which restricts
its application [8,9]. Efforts have been made to improve
the adsorption/desorption characteristics of MgH2, includ-
ing catalyst doping, alloying, and nanostructuring [10–13].
In the meantime, an in-depth understanding of the hydro-
gen adsorption/desorption mechanism is urgently required
to guide the modification of the Mg-based hydrogen storage
materials.

Using fast-growing computational simulation techniques,
we can theoretically study the adsorption and desorption
process. First-principles calculations, especially density func-
tional theory (DFT) methods, are widely used these years.
However, when the simulation system contains hundreds or
thousands of atoms, or when dealing with properties involv-
ing excessive timescales, the first-principles methods will no
longer be adequate due to their high computational cost.
Molecular dynamics (MD) is one of the efficient ways to
study the mechanisms of certain microscopic processes. For
magnesium hydrides, when MD is performed to simulate large
systems or long timescales, the required computational effi-
ciency is difficult to achieve using first-principles methods.
Therefore many interatomic potentials have been developed
for the Mg-H system, including an embedded atom method
(EAM) potential developed by Tanguy and Magnin [14], a
reactive force field (ReaxFF) from Cheung et al. [15], an
angular-dependent potential (ADP) developed by Smirnova
et al. [16], and a bond order potential (BOP) proposed by
Zhou and co-workers [17]. Among these potentials, EAM
employs the simplest formalism and is therefore easy to fit,
but research has confirmed that it is not suitable for the Mg-H
system, since it is mainly designed for close-packed metals
[17]. The formalism of BOP is extremely complicated, a well-
parameterized BOP is very accurate for structures similar to
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the target samples, but it requires quite a lot of effort to expand
its applicability.

Machine-learning methods provide novel solutions for
building interatomic potentials. Unlike classical potentials
that use fixed analytical functions based on physical insights,
machine-learning (ML) potentials originate from mathemat-
ical models, using forms such as artificial neural network
(ANN) [18–21] and Gaussian approximation potential (GAP)
framework [22–24], it can achieve both high accuracy and
high flexibility, without being limited by the forms of an-
alytical functions. The parametrization of machine-learning
model is relatively easier than fitting classical potential func-
tions, and the applicability of the machine-learning potential
can simply be increased by adding new samples into the
training database, without considering manually adjusting
the constraints on parameters. In recent years, numerous
machine-learning potentials have been developed, covering
metals [25–28], alloys [29–31], metal oxides [32,33], organic
compounds [34–36], and so forth, and can be applied to
various types of structures such as bulks [37,38], surfaces
[25,38,39], and clusters [26,27,30,38].

In this work, we developed a machine-learning interatomic
potential for Mg-H system, mainly focusing on the behav-
ior of MgnHm clusters. The rest of this paper is organized
as follows. In Sec. II, we describe the construction of our
machine-learning potential, including model architecture, ref-
erence sampling strategy, training method and computational
details. Section III gives the validation on the accuracy and
capability of our potential from different aspects. Molecular
dynamics simulations are performed in Sec. IV, the struc-
tural properties and diffusion behavior of magnesium hydride
clusters are discussed. Finally, in Sec. V, we summarize the
main conclusions of this paper and share some perspectives
on future work.

II. MODEL CONSTRUCTION

A. Machine-learning potential

Artificial neural network is one of the widely used
machine-learning models describing molecular systems. To
obtain the input vector of ANN, the atomic coordinates are
first converted into a set of variables, called descriptors or
symmetry functions [19,21,40]. These symmetry functions
contain information about the local chemical environment of
each atom, and must be numerically invariant with respect
to a translation or rotation of the system, or an exchange
of the atomic positions of any two atoms of the same ele-
ment. Next, taking the aforementioned symmetry functions
as inputs, atomic energy contribution Ei is calculated from a
well-trained neural network. Finally, for an N-atom system,
the total energy of the system can be obtained through sum-
ming Ei over the number of atoms as below

E =
N∑

i=1

Ei. (1)

In this work, we use a modified version of Behler-Parrinello
symmetry functions [19,41], for each atom the radial and
angular environments are taken into account.

To ensure that atomic forces can be calculated using
analytic derivatives, the symmetry functions need to be con-
tinuous and differentiable. To make their values and slopes
smoothly vanish at a proper cutoff radius Rc, a cutoff function
fc is introduced [19,42], which commonly formulated as

fc(Ri j ) =

⎧⎪⎨
⎪⎩

1

2

[
cos

(πRi j

Rc

)
+ 1

]
for Ri j � Rc,

0 for Ri j > Rc,

(2)

where Ri j is the distance between a central atom i and one of
its neighbor j.

For the two-body term, the radial symmetry function used
here follows the identical form as proposed by Behler and
Parrinello [21,25,41,42],

GRad
i,m =

all∑
j �=i

e−ηr (Ri j−Rs )2
fc(Ri j ), (3)

which is a sum of Gaussians multiplied by cutoff functions.
The values of ηr and Rs affect the width and peak position
of the Gaussian functions, respectively. A fixed value of ηr is
used in this work, and a set of Rs parameters makes up the
radial part of symmetry functions.

As for the angular symmetry function describing the three-
body relation, we use a modified version of Behler-Parrinello
symmetry function, inspired by the work of Smith et al. in
Ref. [41]. Compared with Behler’s original function, a param-
eter Rs is added to the exponential term. It helps to make the
radial part of the angular symmetry function more sensitive to
different atomic distances, and metal hydride systems benefit
from it because the distances between H-H, Mg-H and Mg-
Mg vary greatly. Centered on atom i, the angular symmetry
function take the form

GAng
i,m = 21−ζ

all∑
j,k �=i

(1 + λ cos θi jk )ζ

× e−ηa[(1/2)(Ri j+Rik )−Rs]2
fc(Ri j ) fc(Rik ), (4)

where j and k are two neighboring atoms of atom i, θi jk is the
angle formed by atom i, j and k. Two values +1 and −1 can
be assigned to parameter λ, which changes the peak position
of the cosine function. The width of the angular and radial
part of the function are controlled by parameters ζ and ηa,
respectively.

In the present study, same cutoff radius Rc = 4.5 Å is
set for both radial and angular symmetry functions, which
is around two times of the first nearest neighbor distance
between Mg and H atoms in MgH2 crystal. Increasing Rc

from 4.5 to 6.0 Å results in little change of the training error,
therefore we choose the smaller cutoff radius to reduce the
computational complexity. In total, 64 symmetry functions are
employed for each element. Eight radial functions are used for
both neighboring Mg or H atom, with ηr fixed to 1.0 Å−2, and
8 different values of Rs that equally spaced from 0 to 7Rc/8,
so as to give 16 radial symmetry functions. As for angular
functions, centering at atom i, two neighboring atoms ( j, k)
can be (Mg, Mg), (Mg, H), or (H, H), with ηa = 0.1 Å−2,
ζ = 1.0, λ = ±1, and Rs use the same 8 values equally spaced
from 0 to 7Rc/8, yielding 48 angular symmetry functions.
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The ANN used in this research is based on a typical mul-
tilayer feed-forward neural network architecture [19,25]. We
use the hyperbolic tangent function as the activation function
in the hidden layer. For the output layer, only one neuron is
placed to perform a linear combination of the values from the
last hidden layer, and then a linear activation function y = x is
used instead of a nonlinear one, thus ensuring that the output
atomic energy is not limited by the range of function values.

Obviously, when atoms of different elements are placed
in the center of the same chemical environment, the atomic
energies are different, which means a separate ANN for each
element is required [21,42,43]. For the magnesium hydride
system, two independent ANNs are trained for Mg and H
separately, both of which contain same hyperparameters with
manipulated weights.

In MD simulations, forces acting on atoms are required
for updating the velocities and atomic positions, they can be
calculated through the negative analytic gradients of the total
energy. Using the chain rule, the force component Fi,α acting
on atom i in direction α = {x, y, z} with respect to atomic
coordinate Ri,α is given by [20,21,42,43]

Fi,α = − ∂E

∂Ri,α

= −
N∑

i=1

∂Ei

∂Ri,α

= −
N∑

i=1

Mi∑
j=1

∂Ei

∂Gi, j

∂Gi, j

∂Ri,α
, (5)

where E is the total energy, Ei is the atomic energy of atom
i, N is the number of atoms, Mi is the number of symmetry
functions for atom i, and Gi, j is the jth symmetry function for
atom i.

B. DFT reference samples

Our machine-learning potential is trained from DFT re-
sults. It has been theoretically proven that a multilayer
feed-forward ANN can approximate any function with arbi-
trary precision [44], the chemical space that an ANN could
handle, however, is governed by the reference samples at
input. Different from empirical potential functions, the ANN
architecture is not generalized from specific physical models,
as a form of interatomic potential, it could only recognize
the atomic chemical environment within its training sample
spaces, therefore it intrinsically demands a diversified set of
reference data covering all regions relevant to its designated
applications.

Plenty of methods have been proposed for sampling
reference structures, including ab initio MD simulations
[45–47], metadynamics procedures [48], normal mode sam-
pling (NMS) [41], or adopting global optimization method
such as evolutionary algorithm [31,49], stochastic surface
walking (SSW) [50–52], and minima hopping method [53].
In this research, we combine the global minimum searching
algorithm coalescence kick (CK) [54–57], ab initio MD simu-
lations, and an adaptive sampling scheme [20,58] to generate
the reference samples. Table I lists the composition of struc-
tures contained in the reference databese.

TABLE I. Composition of the reference database. Ns is the num-
ber of structures for each type, NMg and NH represent total number of
Mg and H atoms of a given structure type, respectively.

Structure type Ns NMg NH

Clusters:
Mgn 1581 29 582 0
Hn 979 0 6302
MgnHm 9888 273 460 297 388

Scaled clusters:
Mgn 725 8861 0
MgnHm 1292 15 956 32 182

Crystals:
hcp-Mg 750 48 000 0
α-MgH2 1250 30 000 60 000
β-MgH2 1250 40 000 80 000
γ -MgH2 750 24 000 48 000

Stressed crystals:
hcp-Mg 500 60 800 0
α-MgH2 1000 24 000 48 000
β-MgH2 1000 32 000 64 000
γ -MgH2 1000 32 000 64 000

H2 gas 1000 0 102000
Total 22 965 618 659 801 872

It should be pointed out that similar structures appeared
in the sampling process, which provided redundant struc-
tural information, and it was necessary to introduce screening
procedures to improve training efficiency. In the literature,
geometric comparisons can be measured by defining distance
descriptors between structures, such as methods based on
the smooth overlap of atomic positions (SOAP) [23,59–62],
and methods based on the fingerprint functions [63]. In this
work, the similarity check was based on a sorted list Di of all
interatomic distances for sample i. Two samples i and j with
the same elemental compositions will be considered similar if∑

k |Di(k) − Dj (k)|
1
2

∑
k (Di(k) + Dj (k))

< δrel (6)

and

max
k

(|Di(k) − Dj (k)|) < dmax, (7)

where k represents each interatomic distance in the list Di.
Two criteria δrel and dmax stand for the relative accumulated
difference and maximum difference for distances between two
samples, respectively. For samples containing both H and Mg
atoms, the above two criteria were calculated for each element
separately, and the weighted sums were calculated as the final
criteria based on the total number of distances counted in
each element. We used relatively tight thresholds δrel = 0.01
and dmax = 0.1 Å here, because force is more sensitive to
structural changes, and a better description of force can be
beneficial to the ANN potential to perform MD simulation.

Since our interest in this study is mainly in magnesium
hydride nanoclusters, at the initial stage a set of small MgnHm

(n � 28, m = 0 or 2n) nanoclusters were generated to train
a preliminary ANN. CK method [54–57] was employed in
this process to create initial cluster structures scattered on the
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potential energy surface (PES). This method initially places
all atoms randomly in a sufficiently large box, then analyzes
the connectivity of atom pairs based on the sum of the covalent
radii between the atoms. Next, push all atoms towards the
center of mass until there are no fragments in the system.
Finally, perform DFT local optimization on the generated
structure. A major advantage of the CK method is that it
can avoid the generation of fragmented structures as much as
possible, which is what we expect during the sampling pro-
cess. Because the fragmented structure provides information
about the atomic chemical environment similar to the smaller
clusters that make up the system, it cannot satisfy our origi-
nal intention of adding larger cluster samples. Although CK
method is effective in sampling small clusters with n � 20,
as the size of the magnesium hydride cluster increases, free
H2 molecules inevitably appear, preventing the determination
of the structures of fully hydrogenated clusters. It should be
noted that the structures containing free H2 molecules are also
useful for the training of ANN. On one hand, they carry the
structural information of the partially hydrogenated clusters,
on the other hand, they also provide free H2 molecule samples,
and have information about the interaction between MgnHm

clusters and H2 molecules. However, the lack of samples of
fully hydrogenated clusters is unacceptable. Therefore, since
the previous report has shown that the CK method is less
efficient for clusters with a mixed pattern of delocalized and
strongly covalent bonding [55], as in the Mg-H system, we
added ab initio MD simulations to enhance the data sampling.

Clusters of MgnH2n were extracted from α-, β-, and
γ -MgH2 crystal lattice by cutting out spheres centered at
random coordinates. In the next step, a random selection pro-
cedure was performed, removing hydrogen atoms out of the
clusters to generate MgnHm (n � 28, m = 0, n/2, n, 3n/2, 2n)
clusters. Ab initio MD simulations were performed on all these
clusters, starting from a heating process of a smooth temper-
ature ramping from 300 to 1000 K, followed by a structure
relaxation at 1000 K for 1 ps, the system was then cooled
back to 300 K, ended up with another 1 ps MD relaxation
at 300 K. Samples were collected from different stages of the
MD trajectories, and the heating and cooling processes en-
abled a more continuous sampling toward different chemical
environments.

In order to improve the universality of our potential, MgH2

crystal structures were included in the reference dataset,
which is also beneficial for describing the bulk-like inter-
nal structure of large clusters. Tetragonal TiO2-rutile-type
α-MgH2, cubic β-MgH2, orthorhombic γ -MgH2, and hexago-
nal close-packed (hcp) hcp-Mg were taken into consideration.
Supercells were created to ensure each side of the simula-
tion box larger than 9.0 Å (2Rc), and then ab initio MD
simulations under NVT ensemble were performed on each
crystal structure, with temperatures ranging from 100 to
1800 K. Structures at low temperatures as well as highly
distorted structures at high temperatures were both accepted
to increase the diversity of sampling environments. Also, sam-
ples with purely hydrogen gases were considered as well.

Nevertheless, the ANN trained with the aforementioned
samples was not good enough, unreasonably small atomic
distances were detected during the MD simulation driven by
such potential, and more than two hydrogen atoms tended to

aggregate with each other, which should not happen. This is
commonly seen during the training processes of the previ-
ously reported machine-learning potentials [64], mainly due
to the lack of descriptions of these extreme bonding condi-
tions, although these unreasonable structures are not supposed
to be visited in MD simulations, they should be fed to the
ANN, and force the ANN learning to avoid leading the simu-
lation systems toward these situations.

Two additional sampling procedures were introduced to
improve the overall performance of our machine-learning
potential. First, clusters with scaled coordinates and crystals
under compressive or tensile strain were calculated using DFT
and added to the reference samples. Scaling operation was
applied on the selected ones among CK and MD generated
clusters. Multiplying all the atomic coordinates in the cluster
by a scaling factor, we shorten the atomic distances in the
structures. The scaling factor was chosen randomly for each
cluster in the range from 0.75 to 1.0, avoiding very small
values which produce structures with unnecessary high en-
ergies. Single point DFT calculations were then carried out
to get the reference energies and atomic forces. Ab initio
MD simulations on different types of MgH2 and Mg crystals
with reduced or expanded lattices were performed. We applied
−5%, −2%, 2%, and 5% triaxial compressive or tensile strain
to the supercells of the crystals, similar MD simulations were
carried out with fixed cell parameters. These measures pro-
vided additional atomic environments to the ANN.

Second, a self-consistent sampling method was introduced
to expand the reference data. Manually designed samples
are always limited and barely span all relevant regions, it
is therefore better to make ANN explore uncovered areas
and improve themselves. A direct way is to use the trained
preliminary ANN to perform MD simulations on magnesium
hydride clusters, and then recalculate the trajectories by using
DFT to obtain the reference energies and forces, choose those
structures with large deviations and add them into the refer-
ence database. This method works well but is time consuming,
for those structures that ANN can accurately calculate, ad-
ditional DFT calculations are not necessary. In this research,
a more effective procedure called adaptive sampling scheme
[20,58] was employed. This procedure uses an active learning
technique based on the query by committee (QBC) approach
[65,66]. The idea of the QBC algorithm is to train different
models on the same dataset, and use the disagreement in
prediction of new candidates by different models to mea-
sure the performance. It is helpful to explore the missing
structural information and minimize the DFT computational
cost. The adaptive sampling method here used a simplified
QBC algorithm, only two different models were trained, and
the determination of candidate inclusion criteria was based
only on experience rather than statistical deviation. Based on
the reference samples collected so far, a secondary machine-
learning potential was trained with different ANN architecture
compared to the previous one. For the local atomic environ-
ments included in the reference samples, both ANNs should
be able to reproduce accurate energies and forces with min-
imal variations in between. However, for those regions that
ANNs have not learned from, the results calculated from two
trained potentials will be different. Initial structures of MgnHm

(n � 50, m = 0, n/2, n, 3n/2, 2n) clusters were generated the
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same way as previously mentioned except that larger clusters
are included. For each adaptive sampling cycle, part of those
clusters were selected to perform MD simulations using our
initial ANN potential. Temperature was kept constant at 300 K
during the MD run, 20 ps simulation with a time step of
1.0 fs produced a trajectory with 20 000 configurations for
each cluster. All these configurations were recomputed by
the secondary ANN, structures with energy differences larger
than a certain threshold were selected for DFT calculations,
and were then added to the reference dataset. The threshold
was initially set to 50 meV/atom, and gradually reduced to
25 meV/atom. After updating the reference samples, both
ANNs were refined by training with the augmented dataset, a
new group of clusters were selected from the generated initial
structures, entering the next sampling cycle.

Finally, almost a million reference samples were gener-
ated, we used the following rules to pick a part from each
kind of samples. For structures generated by ab initio MD
simulations, a snapshot was selected from every 100 steps
of each trajectory for clusters, and every 20 steps for crys-
tals. All the local minima obtained by CK optimization that
passed the similarity check were selected. As for the clusters
with scaled coordinates and the structures generated by the
adaptive sampling processes, all the samples that passed the
similarity check were added to the final dataset. In the end, a
total of 22965 samples were selected, 90% of them made up
the training set to train the ANN, the other 10% were treated
as test set, or validation set, which kept independent during
the training process and used to evaluate the capability of the
potential dealing with unknown structures. It is worth noting
that in this work, the adaptive sampling procedure mainly
served as a method to supplement the missing chemical in-
formation, so we used a relatively simple selection strategy.
Meanwhile, in the literature, more systematic selection meth-
ods adopt algorithms such as CUR matrix decompositions to
select relevant and diverse structures [67,68], which can help
to perform automatic sampling and active learning processes
from the beginning.

C. Potential training

After testing different combinations of the number of hid-
den layers and the number of neurons, a 64-40-40-1 neural
network architecture was chosen, which contains two hidden
layers with 40 neurons in each. The ANN was trained to fit
both target energies and forces [69,70] by minimizing the
following loss function:

L = 1

M

M∑
i=1

[(�Ei

Ni

)2

+ γ

3Ni

Ni∑
j=1

3∑
α=1

�Fi, j,α
2

]
, (8)

where M is the number of samples, Ni is the number of atoms
in sample i, �Ei = EDFT

i − EANN
i is the energy difference

between the DFT and ANN results, �Fi, j,α = F DFT
i, j,α − F ANN

i, j,α
is the error in force acting on atom j in direction α = {x, y, z}
calculated by DFT and ANN, here F ANN

i, j,α is obtained by taking
the gradient of EANN

i with respect to the atomic coordinates,
as described in Eq. (5). This loss function combines the mean
square errors (MSE) of both energies and forces, using pa-
rameter γ to control the contribution of forces to the total

loss with respect to energies. In this study, γ = 0.3 was
employed. The inclusion of forces in the loss function sig-
nificantly improved the performance of the machine-learning
potential in MD simulations. Limited-memory Broyden-
Fletcher-Goldfarb-Shanno (L-BFGS) method was employed
to optimize the weights of the ANN. L2 regularization was
used to prevent overfitting.

Comparisons between the DFT and our ANN results on
energy and force calculations are plotted in Fig. 1. The root
mean square errors (RMSEs) of the energies are 30.91 and
31.25 meV/atom for the training and test sets, respectively.
As for forces, the RMSE values are 195.9 and 189.9 meV/Å
for training and test sets. The very closed values of training
and test errors represent a good flexibility of the potential and
no overfitting during the training process. Besides, for training
and test set, the mean absolute errors (MAEs) of energeis are
18.15 and 18.23 meV/atom, while MAEs of forces are 96.10
and 95.48 meV/Å, respectively. It is known that the values of
MAE are usually smaller than RMSEs, but the relatively large
differences between those values shows that a few samples
with large deviations have a significant impact on the eval-
uation of errors. Considering that we added structures under
extreme conditions, such as clusters with scaled coordinates
and crystals under compressive or tensile strain, the energies
and forces of these samples are beyond the usual range in
normal simulation conditions, so we calculated the errors of
the training and test set again using the same potential, includ-
ing those structures generated by CK method and ab initio
MD simulations only. As a result, the RMSEs of energies
of the new training and test set reduced to 18.64 and 18.43
meV/atom, and the RMSEs of forces decreased to 106.6
and 105.6 meV/Å. Note that the outliers in Figs. 1(a) and
1(b) correspond to the added unphysical structures, mainly
the structures of H atoms aggregated in the gas phase. These
samples play a role in avoiding the appearance of unphysical
structures in the simulation, and since they will not be visited
under normal simulation conditions, these outliers will not
impair the performance of our ANN potential.

Admittedly, the energy errors we obtained is greater than
typical values of the reported ML based potentials for other
nanosystems [26,27,30,43,71–76], mainly due to the high
complexity of the magnesium hydride system and our pursuit
of versatility of the potential. The atomic radius of H atom is
much smaller than that of Mg atom, which allows H atoms to
exist in magnesium hydrides in various forms. Researches on
the dehydrogenation process show that the crystalline mag-
nesium hydrides undergo a phase transformation into solid
solutions [77,78], in which H atoms can exist at the interstitial
sites of Mg atoms and diffuse therein. From this perspective
alone, the model of magnesium hydride is much more compli-
cated than those previously reported mainly for metal clusters
and nanoalloy systems, which makes it difficult to construct
accurate potentials.

Another factor that affects accuracy is the diversity of
training samples. The typical energy errors of the ML
based potentials reported for nanosystems are around 5–10
meV/atom. For example, Chiriki et al. constructed an ANN
potential by fitting DFT data for Aun nanoparticles with 17 �
n � 58, and reached an average RMSE of 9 meV/atom for
energies [27]. Jindal et al. trained an ANN potential with
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FIG. 1. Comparisons of the ANN results with respect to the references calculated by DFT. (a) and (b) show the comparisons of energies
per atom for training and test set, respectively. (c) and (d) exhibit force correlations for training and test set, 2D histogram plots are adopted
to illustrate the density distribution of errors. To highlight the main part of the force comparisons, the ranges shown here are limited from
−10 to 10 eV/Å, still, 99.93% of the statistical data in the training set and 99.94% of the test data are included. (e) and (f) display the error
distributions for energies and forces, blue bars denote the training set, and orange bars represent the test set.

an RMSE of 5 meV/atom by fitting the PES of Au30–Au147

clusters [72]. Restricting training samples to specific types of
structures can greatly improve accuracy. As another example
of Au clusters, Ouyang and co-workers developed a neural
network potential specifically for Au58, the RMSE for the
training set was only 0.60 meV/atom [71]. Such a small error
was obtained because the number of Au atoms in the training
set was fixed at 58, meanwhile, the obtained potential was
limited to deal with Au58 only. On the contrary, increasing
the diversity of samples may causes a decrease in accuracy.
The ANN potential trained for 55-atom Ag-Au nanoalloys
[30], as well as the ANN potential developed for icosahedral
Pt-Cu-Ni nanoparticles with 147, 309 and 561 atoms [75] have
both reached the accuracy within 10 meV/atom. However, for
the ANN potential of the Cu-Pd-Ag trimetallic system using
nonequilibrium bulk structures, clusters with 30–80 atoms and
alloys with 55 atoms as training samples, although the overall
RMSE of energies reached 3–10 meV/atom, the error when
dealing with cluster structures was around 12–16 meV/atom
[76]. In our work, as described in the sampling section, our
training set contained bulk and cluster structures of different
types, sizes and hydrogen content. In order to increase the
versatility of our ANN potential, we have greatly enriched
the diversity of our training samples, which may lead to a
reduction in accuracy.

In addition, we noticed that for the ANN potential of Au58

developed by Ouyang [71], the energy span of the training
samples was 0.17 eV/atom, another potential trained for Na
clusters by Chiriki et al. used samples with energy span of

0.21 eV/atom from the lowest energy structure [26]. For
our case, the energy span in the training set was nearly
3.5 eV/atom, which was much larger than reported above.
A comparable situation was reported in Ref. [64], where
Deringer et al. constructed a ML potential for amorphous
carbon. The energy span in their training samples was about
3 eV/atom, and their RMSEs of energies were in the range of
tens of meV/atom, which was similar to our results.

Most previously developed ML potentials were not de-
signed to be universal for simulating all kinds of structures,
but our aim in this work was to try to improve the versatility
of our Mg-H ANN potential as much as possible to make
it suitable for different types of structures and simulation
processes. The validations and calculations in the following
sections will prove that our potential is capable of dealing
with magnesium hydride bulks and clusters of different sizes
and hydrogen content, capable of capturing the diffusion of
H atoms on the surface or inside of magnesium hydrides, and
even capable of simulating the gaseous H2 systems and com-
puting the dissociation of H2 on the surface of Mg. Therefore
we believe a certain sacrifice in accuracy is acceptable here.
Moreover, the error of force in our calculation has reached the
typical standard.

D. Computational details

All DFT calculations were performed using Vienna
ab initio simulation package (VASP) [79] within the
projector-augmented-wave (PAW) approach [80]. The
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Perdew-Burke-Ernzerhof (PBE) exchange-correlation
functional within the generalized gradient approximation
(GGA) [81] was adopted for all the computations, and
a plane-wave cutoff energy of 500 eV was used. The
self-consistent field (SCF) convergence criterion was set to
be 10−5 eV for the total energy change, and the convergence
threshold for local optimization was set at 0.02 eV/Å for
the maximum force on atoms. Samples of nanoclusters were
located in cubic simulation boxes, vacuum spaces of at
least 10 Å were applied in all three directions to prevent
interactions between periodic images. The van der Waals
interactions were not included in the calculation of training
samples, because Morawietz et al. have concluded that for
situations involving intermolecular interactions, the van der
Waals corrections can be added directly to the ML potential
derived from plain GGA-PBE results [82]. In the subsequent
sections, we used Grimme’s DFT-D3 method [83,84] in the
simulation of H-H interactions and H2 dissociation PES on
Mg(0001) surface where van der Waals corrections were
required.

An in-house modified version of TENSORMOL program
[85] was utilized to construct the machine-learning poten-
tial. This modified TENSORMOL code was connected to the
atomic simulation environment (ASE) framework [86,87] as a
computing module, through which structural optimization and
MD simulations based on the ANN potential can be achieved.
Phonon dispersion was calculated using the finite displace-
ment method interfaced with the PHONOPY code [88,89]. The
effects of van der Waals interactions on energies and forces
were implemented in conjunction with Grimme’s DFTD3 pro-
gram through ASE framework.

III. VALIDATION

A. Bulk properties

Basic bulk properties calculated from our ANN potential
and DFT are listed in Table II, including lattice parameters,
cohesive energies and bulk moduli. Meanwhile, previously
reported experimental data and theoretical results are also
listed for comparison. Except for the cohesive energy of
β-MgH2, for all the MgH2 and Mg crystals considered, the
lattice parameters and cohesive energies calculated by ANN
potential are in good agreement with those obtained from our
DFT calculations as well as those reported [90–93]. Based on
the cohesive energies calculated by ANN, α-MgH2 and hcp-
Mg are the most stable crystalline forms, respectively, which
is consistent with the experimental observations. There is a
relatively large deviation of 66 meV/atom when calculating
the cohesive energy of β-MgH2. It was found that the sample
with lowest overall energy show the lowest fitting error in the
previous training of ML potential [64]. Due to the high overall
energy of β-MgH2, a large fitting error occurs. However,
since β-MgH2 only exists under high pressure, the transition
pressure from α-MgH2 to β-MgH2 is as high as 9.7 GPa [94],
so β-MgH2 will not appear in general simulation conditions.
Therefore the large error in the calculation of β-MgH2 co-
hesive energy does not affect the performance of our ANN
potential in the subsequent simulations.

TABLE II. Comparison of lattice parameters (a0, b0, and c0),
cohesive energies (Ecoh) and bulk moduli (B) of various crystal struc-
tures of MgH2 and Mg calculated from ANN, DFT, or obtained from
previous reports. Values in the second column are calculated using
our ANN potential, the third column shows our DFT calculation
results, and the forth column lists some experimental and theoretical
results.

Properties ANN DFT References

α-MgH2

a0 (Å) 4.511 4.509 4.485a, 4.517c

c0 (Å) 3.042 3.012 2.999a, 3.021c

Ecoh (eV/f.u.) −6.580 −6.595 −6.676d

B (GPa) 53.837 52.712 51a, 51.963b, 45 ± 2c

β-MgH2

a0 (Å) 4.743 4.741 4.790a, 4.666c

Ecoh (eV/f.u.) −6.463 −6.265 −6.348d

B (GPa) 62.575 60.840 56a, 56.260b, 47.41 ± 4c

γ -MgH2

a0 (Å) 4.540 4.500 4.486a, 4.525c

b0 (Å) 4.953 4.901 4.898a, 4.928c

c0 (Å) 5.407 5.410 5.402a, 5.444c

Ecoh (eV/f.u.) −6.574 −6.592 −6.675d

B (GPa) 55.969 53.558 48a, 47.833b, 44.0 ± 2c

hcp-Mg

a0 (Å) 3.161 3.163 3.184d

c0 (Å) 5.152 5.268 5.249d

Ecoh (eV/f.u.) −1.505 −1.499 −1.593d

B (GPa) 42.723 35.139 37d

fcc-Mg

a0 (Å) 4.467 4.518 4.506d

Ecoh (eV/f.u.) −1.505 −1.490 −1.481d

B (GPa) 42.705 34.566 –

bcc-Mg

a0 (Å) 3.550 3.581 3.579d

Ecoh (eV/f.u.) −1.490 −1.471 −1.564d

B (GPa) 45.724 34.191 36d

aTheoretical value from Ref. [90].
bTheoretical value from Ref. [91].
cExperimental value from Ref. [92].
dTheoretical value from Ref. [93], available online at Materials
Project (https://www.materialsproject.org).

Bulk moduli were obtained by fitting the Birch-Murnaghan
equation of state (EOS) [95–97]. It is known that the PBE
functional overestimates the value of bulk modulus, which
gives an explanation for the calculated value of ANN being
larger than the experiments. Nevertheless, the bulk modulus
of MgH2 calculated by ANN can perfectly reproduce the DFT
results, which is enough to validate the accuracy of our ANN
potential.

All atomic environments required to calculate the listed
properties for MgH2 and hcp-Mg crystals are covered in the
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FIG. 2. Phonon dispersions calculated by ANN potential (black
solid lines) and DFT (red dashed lines) for (a) α-MgH2 and
(b) hcp-Mg.

training data through our sampling strategy, which guaran-
tees its consistency with the DFT results. Interestingly, the
face-centered cubic (fcc) fcc-Mg and body-centered cubic
(bcc) bcc-Mg structures were not included in the training sam-
ples, their bulk properties calculated by ANN, however, are
still similar to DFT values. This further proves the flexibility
and universality of the ANN potential we have trained.

B. Phonon dispersion

The capability of a potential to describe the lattice dy-
namics depends on the accuracy of calculating the forces
acting on atoms. Because of the sensitivity to the change
of force, phonon dispersion has become a good method for
evaluating force calculations. We employed the finite dis-
placement method as implemented in PHONOPY [88,89] to
calculate phonon dispersions for α-MgH2 and hcp-Mg crys-
tals. Same models and settings were used in ANN and DFT
calculations where 3 × 3 × 3 supercells were adopted con-
taining 162 atoms for α-MgH2 and 54 atoms for hcp-Mg,
respectively, and the displacement distance was set to 0.01 Å.
Figure 2 illustrates the phonon dispersion for α-MgH2 and
hcp-Mg, making comparisons between ANN and DFT results.

The high-symmetry points were chosen according to Refs.
[98,99].

Overall, the phonon dispersions obtained with the
machine-learning potential reproduce the DFT results well.
For α-MgH2 shown in Fig. 2(a), the acoustic modes calculated
by the two methods are perfectly overlapped, with only small
disagreements present for some optical modes. The optical
modes are related to the electric dipole moments of the ions in
the crystal, note that the atomic charges are not considered in
our machine-learning potential model, which may causes the
small discrepancies. Moreover, no mode with imaginary fre-
quency is detected from ANN calculations for both structures,
which is in consistent with the stability of the two crystals.

C. H-H interactions

Through comparing bulk properties and phonon disper-
sions, the accuracy of our machine-learning potential for
Mg-H and Mg-Mg interactions are validated. We next ex-
amine the ability of the potential to handle H-H interactions.
Hydrogen exists in gaseous form at room temperature, in this
situation the methods mentioned above for bulk systems are
no longer adequate. We chose a method used by Zhou et al.
in Ref. [100], performing MD simulations on an artificially
built crystalline form of hydrogen to observe the evolution
of its structure. First, 1000 hydrogen atoms were constructed
in a diamond-cubic crystal structure, as shown in Fig. 3(a),
with the H-H distance of 1.359 Å, placed in the center of
a periodic cubic simulation box with a side length of 50 Å.
MD simulation was then carried out at a temperature of 300 K
with a timestep of 1 fs. Since we expected it to be a gaseous
state, van der Waals correction using DFT-D3 method was
applied during the simulation to properly account for the in-
termolecular interactions. As a result, the crystalline structure
fell apart from the beginning of the simulation, with hydrogen
atoms paired up to form H2 molecules. A snapshot of the
system after 20 ps of simulation is demonstrated in Fig. 3(b),
from which we can clearly see the gaseous behavior of the
hydrogen that 97.0% of the atoms are in the molecular H2

form, and are spread out in the space. Figure 3(c) plots the
per-frame averaged distribution of H-H distances in the MD
trajectory of the last 5 ps, most of which are in the range of
0.7 to 0.8 Å, well-reproduce the equilibrium bond length of H2

molecule at 300 K. By the way, without DFT-D3 correction,
we still observed the gaseous behavior of H2, and got al-
most identical distribution of H-H distances. The results prove
that our machine-learning potential is suitable for computing
H2 molecules and gaseous hydrogen systems. Moreover, it
provides the possibility for simulation under hydrogen atmo-
sphere and calculation of surface hydrogen adsorption.

D. H2 dissociation PES on Mg(0001) surface

As a hydrogen storage material, the dissociative adsorption
of H2 at the surface is an important subject to study. To this
end, the ANN is expected to predict potential energies in the
reactive channel. It is not our original intention here to design
a machine-learning potential for surface reactions, we there-
fore did not create reference samples related to the breaking
of chemical bonds on purpose. Nevertheless, with the help
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(a) (b) (c)

FIG. 3. (a) Initial diamond-cubic crystal structures of 1000 hydrogen atoms. (b) Snapshot of the final structure after 20 ps MD simulation
at 300 K. (c) The per-frame averaged distribution of H-H distances in the MD trajectory of the last 5 ps.

of high-temperature MD simulation and adaptive sampling
strategy, samples containing information on the dissociation
of hydrogen molecules were automatically generated, which
prompted us to study the performance of our ANN in charac-
terizing the H2 dissociation PES on Mg surface.

As shown in Fig. 4, Mg(0001) surface is modeled using
a four-layer slab in a 4 × 4 supercell, an additional 20 Å
vacuum space is placed in the Z-direction between slabs to
avoid layer-to-layer interactions. All Mg atoms are held fixed
during the PES calculation, and hydrogen atom pairs with

FIG. 4. Two-dimensional contour plots of the machine-learning PES as a function of Z and d, where Z is the vertical distance of the H2

molecule above the frozen Mg(0001) surface, d is the distance between two H atoms. (a) H2 center of mass fixed at top site, H atoms moving
toward hcp and fcc hollow sites; (b) H2 center of mass fixed at fcc hollow site, H atoms moving toward adjacent hcp hollow sites; (c) H2 center
of mass fixed at bridge site, H atoms moving toward adjacent top sites; (d) H2 center of mass fixed at bridge site, H atoms moving toward
adjacent hcp and fcc hollow sites. Orange balls denote Mg atoms, white balls denote H atoms, black arrows indicate the directions in which
hydrogen atoms are moving.
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different H-H distances approach the surface from different
sites. There are four types of high-symmetry sites on the
Mg(0001) surface, which are top site, bridge site, hcp hollow
site, and fcc hollow site. Since our purpose is to verify the
performance of our ANN potential, we have made some sim-
plifications. Hydrogen atom pairs are all kept parallel to the
surface, with their center of mass fixed at top site as shown
in Fig. 4(a), fixed at fcc hollow site as shown in Fig. 4(b),
and fixed at bridge site as shown in Figs. 4(c) and 4(d), the
directions in which the hydrogen atoms are separated from
each other are indicated by arrows.

The results show that hydrogen prefers to dissociate at the
bridge site, and move towards two neighboring hollow sites
(one hcp site, and one fcc site), as shown in Fig. 4(d). Under
this condition, the activation energy is 1.12 eV, which is con-
sistent with previously reported 1.15 eV [101] calculated by
DFT using the RPBE exchange-correlation functional [102]
within the GGA. The hydrogen pair in the transition state is
1.15 Å above the Mg(0001) surface with a H-H bond length
of 1.08 Å, also similar to the reported values calculated us-
ing the GGA-PBE functional [103]. In addition, studies have
shown that the configuration with two separated hydrogen
atoms occupying adjacent hcp and fcc hollow sites is not the
most stable one, H atom can easily move from an hcp site
to an fcc site [101,103]. To this end, we first optimized the
surface adsorption model with two H atoms in neighboring
hcp and fcc sites, then optimized the structure with two H
atoms in two nearest fcc sites, comparison of the two models
shows that the energy of the latter is 0.134 eV lower than the
former, which is also in good agreement with the previous
calculation [101].

It should be noted that during the H2 adsorption and dis-
sociation processes, the van der Waals interaction between
H2 molecule and the surface of Mg has an influence on the
calculation. However, in this article, the purpose of calculating
the H2 dissociation PES is to verify the accuracy of our ANN
potential. Since the reference values in the literature were
calculated by GGA-PBE and GGA-RPBE methods without
considering the van der Waals correction, we did not add van
der Waals correction in the above calculations. In fact, van
der Waals interaction will have a certain impact on the energy
of the dissociation process. After adding DFT-D3 correction
to the ANN calculation, the contour of the PES does not
change much. The dissociation of H2 still prefers to occur
at the bridge site as shown in Fig. 4(d), and move towards
two neighboring hollow sites. In the transition state of bridge-
site dissociation, the hydrogen pair is still 1.15 Å above the
Mg(0001) surface, and the H-H distance is 1.07 Å, which are
almost the same as the results without DFT-D3 correction. As
for the activation energy, after adding DFT-D3 correction, the
activation energy of the bridge-site dissociation is 1.00 eV,
which is 0.12 eV lower than that without DFT-D3 correction.
From the perspective of verifying the potential, the above
calculations show that our ANN potential can describe the
surface dissociation of H2. At the same time, by comparing
the results before and after van der Waals correction, it can
be seen that our ANN potential is capable of considering the
intermolecular interactions by combining with the DFT-D3
method when calculating weakly bound systems.

Although other variables such as H2 molecular tilt angle on
the Mg(0001) surface are not considered when characterizing
PES, this calculation proves that our ANN potential can deal
with the surface H2 dissociation.

IV. APPLICATIONS

A. MD simulations

In order to understand the effect of cluster size, temperature
and composition on the structural properties and hydrogen
diffusion properties of magnesium hydride clusters, we per-
formed canonical MD simulations on clusters with diameters
ranging from 1.6 to 4.0 nm using our machine-learning po-
tential. Four different sizes of magnesium hydride clusters
were considered, with diameters of 1.6, 2.4, 3.0, and 4.0 nm,
containing 80, 248, 458, and 1098 Mg atoms, respectively.
For each size of the cluster, we studied four different compo-
sitions with (NMg : NH) = (2 : 1), (1 : 1), (2 : 3), and (1 : 2),
where NMg and NH represent numbers of Mg and H atoms,
respectively. Hydrogen diffusion was simulated at five differ-
ent temperatures, ranging from 300 to 700 K with an interval
of 100 K. The initial atomic configurations of MgnH2n (n =
80, 248, 458, 1098) clusters were generated by cutting out
spheres from α-MgH2 crystal lattice, and the initial structures
of MgnHm clusters with m < 2n were obtained by randomly
removing part of the hydrogen atoms from the corresponding
MgnH2n clusters. In all cases, the starting configurations were
firstly relaxed for 0.2 ns at 700 K using the NVT ensemble,
and then gradually cooled to 300 K in 0.4 ns to get the
well-equilibrated structures. For each temperature considered,
a further equilibration of 0.1 ns was performed, followed
by another 0.1 ns simulations to produce MD trajectories
for subsequent analysis. The time step was 1.0 fs for each
step, and the temperature was controlled using the Langevin
thermostats [104]. During our MD simulations, since the
dissociation of H2 and the decomposition of clusters never
occurred, the influence of the intermolecular interaction was
very small, so van der Waals correction was not added in
the calculation. Nevertheless, we still tested and compared
the simulation results with or without DFT-D3 correction,
and found that considering the van der Waals interaction did
not change the qualitative picture of the simulation, and all
subsequent research conclusions remained the same, which
further proved the rationality of our calculations.

B. MgnH2n clusters

The snapshots of MD equilibrated geometries of MgnH2n

(n = 80, 248, 458, 1098) nanoclusters at 300 K are shown
in Fig. 5. With this stoichiometric composition, the MgnH2n

clusters are approximately spherical, with no hydrogen
molecules formed and released during the MD processes.
Hydrogen atoms on the surface of the clusters prefer to bond
to two Mg atoms, rather than occupying the fcc hollow sites
adjacent to three Mg atoms on the Mg(0001) surface. This is
consistent with the conclusions drawn in our previous research
that hydrogen atoms tend to occupy two-fold coordinated
bridge sites on the surface of Mg55 clusters [105]. To explore
the atomic local structure in the core region of clusters, we
calculated the average coordination numbers (CNs) of Mg and
H atoms, the last 50 000 MD trajectories at 300 K for each
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(a) (b)

(c) (d)

FIG. 5. Equilibrated geometries of MgnH2n nanoclusters at
300 K after 0.1 ns MD simulations. (a) Mg80H160, (b) Mg248H496, (c)
Mg458H916, and (d) Mg1098H2196. Orange balls represent Mg atoms,
white balls represent H atoms.

cluster were taken into account. For the four MgnH2n clusters
studied, the Mg coordination numbers for H atoms inside the
clusters are in the range of 3.22 to 3.26, and the H coordination
numbers for Mg atoms inside the clusters are in the range of
6.02 to 6.32, indicating that most of the internal H atoms are
bonded to three Mg atoms, a small part is bonded to four
Mg atoms, and the Mg atoms inside the clusters tend to be
bonded to six H atoms. From the perspective of CN, these val-
ues are similar to the case of threefold coordination of H atoms
and sixfold coordination of Mg atoms in α-MgH2, yet signif-
icant deformation can be seen in the equilibrated structures.

To further study the structural characteristics, we calcu-
lated the radial distribution functions (RDFs) of MgnH2n

clusters. The RDFs of Mg1098H2196 at 300 K are shown in
Fig. 6, together with the RDFs for the crystals of α-MgH2

at 300 and 600 K for comparison. It should be pointed out
that size dependence is not detected in the RDF curves of four
considered MgnH2n clusters, so here we take Mg1098H2196 as a
representative to discuss the structural properties. In Fig. 6(a),
for Mg-Mg pairs, the doublet peaks positioned in the range
of 2.8 to 4.0 Å for α-MgH2 crystal are degenerated into a
broad single peak for Mg1098H2196, and the peaks beyond
4.0 Å are almost vanished for the cluster. In Fig. 6(b), the
vanishing of peaks beyond 2.9 Å in the Mg-H partial RDFs
of Mg1098H2196 is also observed. All these changes indicate
that in the magnesium hydride clusters with a diameter of less
than 4 nm at 300 K, the atoms are arranged in a liquid-like
disordered manner. Nevertheless, as shown in Fig. 6(c), in the
case of H-H partial RDFs, although the peaks for cluster are
still degenerated compared to the MgH2 crystal, they catch
some features of the crystal RDF, such as the small peak at
3.9 Å, and the shape of the curve for Mg1098H2196 cluster
within 6.0 Å is almost identical with that of the α-MgH2

crystal at 600 K. Combined with the results of CN discussed
above, it can be found that the hydrogen atoms retain the
bonding style in the α-MgH2 crystal to a certain extent.

Figure 7 demonstrates the temperature dependence of
H-H partial RDFs of Mg1098H2196 cluster. As the temperature

(a)

(b)

(c)

FIG. 6. Comparison of the radial distribution functions (RDFs)
of Mg1098H2196 at 300 K and RDFs for the crystal of α-MgH2 at 300
and 600 K. (a) The Mg-Mg partial RDFs, (b) the Mg-H partial RDFs,
(c) the H-H partial RDFs. Blue lines denote Mg1098H2196 cluster at
300 K, red lines denote α-MgH2 at 600 K, and black lines denote
α-MgH2 at 300K.

increases from 300 to 700 K, the small peak at 3.9 Å gradu-
ally disappears, and other peaks also widen and flatten. This
result further confirms the existence of short-range order in
low-temperature MgnH2n clusters.

C. MgnHm (m < 2n) clusters

The snapshots of MD equilibrated geometries of MgnHm

(m = n/2, n, 3n/2) nanoclusters at 300 K are shown in Fig. 8.
Here we use balls to show the Mg atoms that are not bonded to
H atoms, and use sticks representing Mg-H bonds to show the
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FIG. 7. The temperature dependence of H-H partial RDFs of
Mg1098H2196 cluster.

hydrogenated parts of the clusters. This way, the segregation
of Mg phase and MgHx phase is clearly seen for each cluster.
Since the MD initial structures of these clusters were gener-
ated by randomly removing H atoms from MgnH2n clusters, at
beginning the remaining H atoms were randomly distributed
in the clusters, after MD processes, Mg atoms aggregated
spontaneously, forming Mg clusters without H atoms inside.

Except that H atoms in Mg80H40 and Mg248H124 are abun-
dant on the surface of the Mg part due to the small number,
H atoms in other clusters mainly exist in the MgHx part. It
is found that the Mg : H atomic ratio in MgHx part of each
cluster is approximately 1 : 2, and this part of the cluster has
the same structural characteristics as MgnH2n. In this subsec-
tion, we mainly focus on the Mg part of the cluster. As can
be seen from Fig. 8, in the Mg part of the Mg1098H548 and
Mg1098H1098 clusters, Mg atoms exist in an ordered manner.
To confirm this observation, we calculated Mg-Mg RDFs for
atoms in the Mg part of each cluster, and some representative
results are shown in Fig. 9.

For MgnHn clusters simulated at 300 K, Fig. 9(a) shows
the size dependence of structural order in the Mg phase. The
Mg-Mg partial RDF of hcp-Mg crystal is plotted in black
at the bottom. As the cluster size increases, the size of the
corresponding Mg phase also becomes larger, and more peaks
appear in the RDF curve. Except for the single peak locating
at 3.2 Å, no significant peaks are observed for Mg80H80 and
Mg248H248 clusters. In Mg458H458, signal appears near 4.5 Å,
and a tendency of double peaks can be seen in the range of
5.0 to 6.8 Å. When the cluster size is up to Mg1098H1098,
more intense peaks appear, and it reproduces the RDF curve
of hcp-Mg crystal very well. The peak showing the second
nearest neighboring Mg atoms at 4.5 Å and the doublet peaks
between 5.0 and 6.8 Å are almost identical to those in hcp-Mg.
Obviously, with the increase of the cluster size, the structural
ordering of the Mg phase increases significantly, and the
nanocrystalline structure is clearly detected when the average
diameter of the Mg part of the cluster reaches about 2.5 nm as
in Mg1098H1098.

Another factor affecting the structure of the Mg phase is
temperature. The Mg-Mg partial RDF curves of the Mg phase
in the Mg1098H1098 cluster at different temperatures are com-
pared in Fig. 9(b). Similarly, the RDF curve of hcp-Mg crystal

at 300 K is plotted at the bottom for reference. Below 500 K,
the RDF curves of the clusters basically match the curve of
hcp-Mg crystal. As the temperature increases, the outline of
the RDF curve becomes smoother, and the peak representing
the second nearest neighboring Mg atoms at 4.5 Å gradually
disappears, also the doublet peaks between 5.0 and 6.8 Å
degenerate to a single broad peak, and the two peaks between
6.8 and 8.0 Å are flattened. When it reaches 700 K, all the
peaks beyond 4.0 Å basically disappear, and the Mg phase
adopts a liquidlike structure.

With the help of RDF, it is possible to distinguish clusters
with crystalline and liquid-like structures. To further deter-
mine the type of crystal structures for solid-like clusters, the
Steinhardt bond-orientational order (BOO) parameters [106]
are employed. For atom i, the vector qlm(i) is defined as

qlm(i) = 1

Ni

Ni∑
0

Ylm(θ (ri j ), φ(ri j )), (9)

where the Ylm(θ (ri j ), φ(ri j )) are spherical harmonics, l is an
integer with l � 0, m is an integer with −l � m � l , Ni is
the number of bonds of atom i. To improve the accuracy
of structure discrimination, the averaged form of the local
BOO parameters proposed by Lechner and Dellago [107] is
introduced:

Qlm(i) = 1

Ni + 1

(
qlm(i) +

Ni∑
j=0

qlm( j)

)
, (10)

where the sum of qlm over all neighbors of central atom
i plus the atom i itself are considered, and therefore contains
the structural information of the second shell of neighboring
atoms. In this work, the BOO parameters were calcu-
lated using the PYBOO code developed by Leocmach [108],
the detailed description of the algorithm can be found in
Ref. [109].

The BOO parameters are sensitive to different types of
crystals with different values of l . For Mg phase in the MgnHm

clusters, l = 4 and 6 are chosen. Figure 10 shows the corre-
lation maps of Q4-Q6 for different sizes of MgnHn clusters
at 300 K. The BOO parameters for perfect crystal structures
are pointed out with their names, the (Q4, Q6) pairs for hcp,
fcc and bcc crystals are (0.0972, 0.4848), (0.1909, 0.5745),
and (0.0364, 0.5107), respectively. For small clusters like
Mg80H80, the Q6 parameter for each atom is smaller than 0.3.
A larger value of BOO parameter indicates higher ordering
of the local atomic structure. From Fig. 10(a), the BOO pa-
rameters for atoms in both Mg phase and MgHx phase are
very small, indicating that there is no obvious order in the
small clusters at 300 K. For Mg248H248 as shown in Fig. 10(b),
Q6 values are getting larger, and some atoms are classified as
surface atoms. Note that through the BOO calculations, a bond
can be determined as either crystalline or noncrystalline, and
the type of an atom is then classified according to the number
of crystalline bonds it has. An atom needs to have at least
10 crystalline bonds to be identified as a crystal atom, one
with 4 to 9 crystalline bonds is considered a surface atom. The
results shown in Fig. 10(b) reveal an increasing trend of the
structure ordering. In Figs. 10(c) and 10(d), more atoms have
higher values of Q6, for Mg1098H1098, noticeable portion of
crystal atoms are detected, indicating the existence of a highly
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Mg1098H548

Mg1098H1098

Mg1098H1646

Mg458H228

Mg458H458

Mg458H686

Mg248H124

Mg248H248

Mg248H372

Mg80H40

Mg80H80

Mg80H120

FIG. 8. Equilibrated geometries of MgnHm (m < 2n) nanoclusters at 300 K after 0.1 ns MD simulations. Orange balls represent Mg atoms
that are not bonded to H atoms, and sticks represent Mg-H bonds, where the end near the Mg atom is orange and the end near the H atom
is white.

ordered crystalline structure. Combining with the models of
the cluster demonstrated in Figs. 10(e) and 10(f), the MgHx

part still shows no ordering, but the Mg part of the cluster
has a nanocrystalline structure, which is consistent with the
RDF results. A clear boundary can be seen between the two
phases of Mg and MgHx. Figure 10(d) shows that most of the
ordered Mg atoms have the signature of hcp crystal structure,
and a small part of Mg atoms have the characteristics of
fcc structure.

Next, the effect of temperature on the cluster structure is
shown in Fig. 11. When the temperature increases to 400
or 500 K, the distribution of atomic BOO parameters in the
Q4-Q6 correlation map does not change much compared to
300 K, and the Mg phase retains nanocrystalline structure.
Continue to increase the temperature to 600 K, the number of
atoms with crystal characteristics decreases, although the Mg
phase is still recognized as an hcp-type nanocrystal, the disor-
dered features gradually emerge, which are consistent with the
results shown by the aforementioned RDF analysis. Finally at
700 K, the Q6 values of atoms in the Mg phase decrease, and

the crystalline structure disappears completely, with both Mg
and MgHx phases showing liquid-like structures.

Approximately, the effect of atomic composition on the
structure of clusters and the effect of size are related. The or-
der of the cluster structure in the Mg phase is mainly affected
by the size of the Mg side of the cluster. Because of phase
separation, for clusters with the same number of Mg atoms,
the size of the Mg phase is larger in clusters containing fewer
H atoms. As shown in Fig. 12, for Mg1098Hm, as the number
of hydrogen atoms decreases, the number of crystalline atoms
increases, and the degree of structural ordering improves.

The nucleation and growth of Mg have been observed for
bulk and nanocrystalline MgH2 in the experiments [110,111].
Although the growth of Mg cluster was not detected in the
beginning of the dehydrogenation process reported by Gan-
grade and co-workers [111], due to the high vapor pressure
of Mg, the sintering and growth of the Mg nanocrystallites is
expected to happen over time, leading to a segregated structure
similar to our modeled case. Furthermore, it has been found in
experiments that high-density grain boundaries in clusters can
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(a)

(b)

FIG. 9. (a) The Mg-Mg partial RDFs for atoms in the Mg part
of different size of MgnHn clusters at 300 K. (b) The Mg-Mg partial
RDFs for atoms in the Mg part of Mg1098H1098 cluster at different
temperatures. The Mg-Mg partial RDF of hcp-Mg crystal is plotted
in black at the bottom of each panel for comparison.

improve the hydrogen storage kinetics of Mg [112], because
H atoms diffuse mainly through the grain boundaries between
Mg and MgH2, or through the interfaces or defects inside
the hydride phase [113]. In this study, the calculated phase
separation of the clusters and crystallization of the Mg phase
theoretically support the experimental conclusions above.

D. Diffusion coefficient

Poor hydrogen absorption and desorption kinetics are
major bottlenecks in restricting the practical application of
MgH2. The diffusion rate of hydrogen in Mg and MgH2 is
an important factor affecting the hydrogen absorption and
desorption performance. To evaluate the diffusion properties
of hydrogen atoms in the clusters, we calculated the diffusion
coefficients (D) of hydrogen atoms in magnesium hydride
clusters of different sizes and compositions at different tem-
peratures.

Trajectories from the last 0.1 ns MD simulation were used
to calculate the mean-squared displacement (MSD) of hydro-
gen atoms in the clusters. The MSD is defined as

MSD(t ) = 〈[r(t0 + t ) − r(t0)]2〉

= 1

NM

N∑
i=1

M∑
j=1

[ri(t j + t ) − ri(t j )]
2, (11)

)b()a(

)d()c(

)f()e(

FIG. 10. Correlation maps of BOO parameters Q4-Q6 for
(a) Mg80H80, (b) Mg248H248, (c) Mg458H458, and (d) Mg1098H1098 at
300 K. The (e) external and (f) cutaway views of Mg1098H1098 cluster
are shown, with the atoms colored with respect to their types of
local atomic structures. Green balls represent Mg atoms with crystal
structure characteristics, orange balls represents the atoms identified
as being on the surface, and other atoms are represented by blue balls.

where N is the number of hydrogen atoms in the cluster, ri

runs over all the positions of those hydrogen atoms. For each
time interval t , M nonoverlapping displacements from the po-
sition at t j to t j + t are calculated. In this work, t = 1.0 fs and
M = 50000 were adopted. For diffusion in three dimensions,

)b()a(

)d()c(

FIG. 11. Correlation maps of BOO parameters Q4-Q6 for
Mg1098H1098 at (a) 400, (b) 500, (c) 600, and (d) 700 K.
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)b()a(

)d()c(

FIG. 12. Correlation maps of BOO parameters Q4-Q6 for
(a) Mg1098H2196, (b) Mg1098H1646, (c) Mg1098H1098, and (d)
Mg1098H548 at 300 K.

the diffusion coefficient D can be calculated according to the
Einstein equation

D = 1

6
lim

t→∞
d MSD(t )

dt
. (12)

Figure 13(a) demonstrates that the MSD of hydrogen
atoms increases linearly with time, which satisfies the condi-
tion of applying Eq. (12) to calculate the diffusion coefficient.
For Mg1098H2196 at 600 K, the calculated diffusion coefficient
is 2.47 × 10−9m2/s, which is comparable with the experi-
mental value of 1.25 × 10−9 m2/s at the same temperature
reported by Renner and Grabke [114].

The temperature dependence of diffusion coefficient can be
interpreted by Arrhenius equation

D = D0 exp
(−Ea

kBT

)
, (13)

where Ea is the activation energy for hydrogen diffusion,
kB is the Boltzmann constant. The equation indicates a lin-
ear relationship between ln(D) and 1/kBT . The Arrhenius
plots for Mg1098Hm (m = 548, 1098, 1646, 2196) are shown
in Fig. 13(b), with the temperature ranging from 400 to 700 K.
As illustrated, the temperature dependence of the diffusion

coefficient is pronounced in this range that D scales directly
with increasing temperature. For each cluster considered, the
values of ln(D) and 1/kBT retain a perfect linear relationship,
with a correlation coefficient R2 greater than 0.997. By fitting
the results to the Arrhenius equation, the activation energies of
hydrogen diffusion in Mg1098H548, Mg1098H1098, Mg1098H1646,
and Mg1098H2196 are 0.254, 0.248, 0.248 and 0.219 eV, re-
spectively. The difference in activation energy among clusters
with different hydrogen contents is small, which explains the
experimental observation that D is independent of the applied
hydrogen pressure [115].

It is worth noting that at low temperatures, such as 300 K,
the results deviate from the linear function obtained by fitting
the Arrhenius equation. The number of hydrogen atoms mi-
grating between different positions is low at low temperatures,
rendering the MSD mainly coming from the local vibration of
hydrogen atoms. This explains the Arrhenius equation only
holds within a certain temperature range.

The size of the cluster also affects the diffusion coef-
ficient of H atoms. As shown in Fig. 13(c), at 500 K, D
increases as the cluster size decreases. In general, the clusters
we calculated conform to this rule, however, with several
exceptions. For example, at 500 K, the diffusion coefficient
in Mg458H686 is D = 1.63 × 10−9 m2/s, which is greater than
D = 1.23 × 10−9 m2/s in Mg248H372. First, for clusters at
high temperatures, the energy barriers for hydrogen diffusion
decrease dramatically, reducing the differences in activation
energies among clusters of different sizes. This makes the
values of D to be almost the same in clusters of different sizes,
hence the comparison becomes meaningless. Second, the dif-
fusion of hydrogen atoms in clusters exhibited complicated
process. Hydrogen atoms can diffuse on the surface, between
the surface and the inner layer, among different inner layers,
and so forth. The size effect is not limited to the influence of
the diameter of the cluster. Other factors, such as specific sur-
face area and surface structure, which originate from different
diameters, also affect the diffusion process. Therefore more
detailed study is required to get a deeper understanding of the
size effect.

V. CONCLUSIONS AND OUTLOOK

In the present work, we developed a machine-learning
interatomic potential based on the artificial neural network
architecture for Mg-H system. Modified Behler-Parrinello

)c()b()a(

FIG. 13. (a) Mean-squared displacement as a function of time for Mg1098H2196 at temperatures from 400 to 700 K. (b) The Arrhenius plots
for Mg1098Hm (m = 548, 1098, 1646, 2196). (c) Diffusion coefficients for different sizes of MgnH2n (n = 80, 248, 458, 1098) clusters at 500 K.
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symmetry functions were adopted to describe the local atomic
environments. In order to train a relatively general ANN
potential suitable for as many conditions as possible, we com-
bined multiple sampling procedures to increase the diversity
of the reference samples, including coalescence kick method,
ab initio MD simulations, and an adaptive sampling strategy.
The energies and forces computed by the developed ANN
potential can accurately match the DFT calculations of crystal,
surface, and cluster structure at any Mg : H ratio. The correct
results of bulk properties and phonon dispersions confirm the
ability of our ANN potential for calculating crystal structures.
The reasonable simulation of H2 molecules shows the feasibil-
ity of our potential to deal with the low-coordinated gas-phase
structure. Moreover, the capture of H2 dissociative adsorption
properties on Mg surface proves that our potential is suitable
for computing surface structures, and has the prospect of
simulating heterogeneous catalytic reactions.

Using the well-trained machine-learning potential, the MD
simulations show that phase separation occurs for MgnHm

clusters with m < 2n. The atomic ratio of Mg : H in the hy-
dride phase is nearly 1 : 2, and the structural properties of
the hydride phase is similar to the stoichiometric MgnH2n

clusters. Ordered geometries are detected in the Mg phase for
clusters with a diameter of about 4 nm at temperatures below
600 K. The MD simulation results reveal that the structural
properties of the Mg phase are strongly dependent on tem-
perature and cluster size. The spontaneous phase separation
of magnesium hydride clusters being observed by theoretical
simulations, confirms the rationality of the dehydrogenation

mechanism obtained from the experimental results. Through
the calculation of diffusion coefficient, we analyzed the dif-
fusion behavior of hydrogen in the cluster using the MD
trajectories. The computed values of D is in good agreement
with experimental results, an Arrhenius type temperature de-
pendence is observed in the range of 400 to 700 K. The
hydrogen diffusion is independent of the hydrogen contents.
As for the effect of cluster size, more detailed calculations
are needed, and in general hydrogen atoms diffuse faster in
smaller clusters.

Frankly speaking, at about 700 K, the magnesium hydride
clusters should start decomposing. However, in our simula-
tions, H2 releasing was not observed. On one hand, because
of the slow kinetics of the MgH2, the simulation time we run
may not long enough for the decomposing process to happen.
Note that the ANN potential is still 2 to 3 orders of magnitude
slower than the empirical interatomic potentials, which limits
our simulation time. On the other hand, although our potential
successfully reproduces the H2 dissociation PES on Mg(0001)
surface, the surface complexity of the nanoclusters is much
higher, which requires more information about bonding and
bond breaking under different surface conditions. Efforts to
improve our ANN potential are ongoing in our group, and will
be discussed in the future.
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