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Quantitative understanding of negative thermal expansion in scandium trifluoride from neutron
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Negative thermal expansion (NTE)—the phenomenon where some materials shrink rather than expand when
heated—is both intriguing and useful but remains poorly understood. Current understanding hinges on the role of
specific vibrational modes, but in fact thermal expansion is a weighted sum of contributions from every possible
mode. Here we overcome this difficulty by deriving a real-space model of atomic motion in the prototypical
NTE material scandium trifluoride, ScF3, from total neutron scattering data. We show that NTE in this material
depends not only on rigid unit modes—the vibrations in which the scandium coordination octahedra remain
undistorted—but also on modes that distort these octahedra. Furthermore, in contrast with previous predictions,
we show that the quasiharmonic approximation coupled with renormalization through anharmonic interactions
describes this behavior well. Our results point the way towards a new understanding of how NTE is manifested
in real materials.
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I. INTRODUCTION

Almost all materials expand when heated, but some shrink
instead. This phenomenon of negative thermal expansion
(NTE) [1–4] is of fundamental interest from a structural
and thermodynamic point of view, and also commercially
important [5–7], for instance in preparing substrates resistant
to thermal shock. It is among the most widely studied of the
anomalous negative thermodynamic properties, others includ-
ing auxetics with negative Poisson’s ratio [8] and materials
which soften under pressure (negative derivative of the bulk
modulus with pressure) [9–11].

At the present time we only have a qualitative understand-
ing of the general principles underlying the origin of NTE
arising from vibrational rather than magnetic or electronic
reasons, based on an idea called the ‘tension effect’ [1,6,12].
We illustrate this idea in Fig. 1 for a linear arrangement
of octahedral groups of atoms. Rotations of neighboring
polyhedra will give rise to a transverse displacement of the
shared vertex atom. If the bonds between the central and
vertex atoms are strong, the transverse displacement of this
atom, u, will pull its neighbors inwards rather than stretching
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the bond. If these transverse motions arise from phonons of
angular frequency ω, classical harmonic phonon theory gives
〈u2〉 = kBT/mω2, where T is the temperature. By geometry,
if the bonds do not change their length, the thermal mo-
tion reduces the lattice parameter a from a value a0 at low
temperature to a � a0(1 − 〈u2〉/a2

0) = a0(1 + αT ), giving a
negative value of the coefficient of linear thermal expansion,
α = a−1∂a/∂T = −kB/ma2

0ω
2 [1].

This simple picture is far from a good explanation. For one
thing, we have to add to this the effects of all other phonons,
many of which (including the bond-stretching vibration) will
contribute towards positive thermal expansion. The tension
effect therefore requires that the associated phonons must
represent a sufficiently significant number of the total number
of phonons. Furthermore, the fragment of a structure shown
in isolation in Fig. 1 is part of a three-dimensional crystal
structure with the same type of connections in the other two
directions. The connections to the rest of the structure give
constraints that can significantly reduce the flexibility of the
fragment and hence reduce the contribution of the tension

FIG. 1. Representation of a linear arrangement of corner-linked
structural octahedra showing rotations. For clarity the upper atoms
are not shown.
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effect to thermal expansion. For example, the modulation
shown in Fig. 1 will require distortions of polyhedra linked
in other directions, and in fact in the plane of the diagram
there is only one modulation—the one in which neighboring
polyhedra rotate in opposite senses of equal magnitude—that
involves no distortions. The energy cost of polyhedral distor-
tions may reduce the effect of such tension-effect vibrations.
In view of this discussion, there is currently no physical
understanding of why our subject material, ScF3, shows NTE,
whereas almost every cubic perovskite material has positive
thermal expansion, even though they all have the same basic
network structure [13].

We present here an experimentally-based atomic-scale
analysis of NTE in the prototypical material ScF3 [14–16],
obtained from neutron total scattering measurements ana-
lyzed using the reverse Monte Carlo (RMC) method. This
approach is used to refine configurations of atoms so that both
their long-range and their local structure are consistent with
experimental data. While there have been a few reports of
total scattering measurements of NTE materials [15,17–26]—
including ScF3 itself [15,26–29]—in only one previous case,
namely that of ZrW2O8 [19,21], has the method been used
to generate an atomic model of the fluctuations associated
with NTE to provide a consistent examination of the tension
effect. From our analysis of the atomic configurations across
a wide range of temperatures generated in this study we show
that the fluctuations associated with the tension effect are a
mix of whole-body rotations and bond-bending distortions
of ScF6 octahedra. We have determined the relative balance
of these in ScF3 across the range of temperatures in our
experiment and evaluated how this balance leads to NTE in
ScF3, whereas similar materials such as SrTiO3 show positive
expansivity [30]. The picture that emerges here is consis-
tent across the whole range of temperatures and supported
by simulations using a model system. We also analyze the
effects of anharmonicity in ScF3 through the variation of the
distribution of atomic displacements with temperature, given
some recent calculations of single-model anharmonicity in
ScF3 [16], and our growing understanding that anharmonicity
has the effect of reducing NTE at high temperatures [31,32].
Total scattering data analyzed using the reverse Monte Carlo
method is the only way to obtain information about these
issues from experiment.

II. BACKGROUND: RECIPROCAL-SPACE MODEL OF
NEGATIVE THERMAL EXPANSION IN ScF3

Scandium trifluoride, ScF3, has the rhenium trioxide struc-
ture, equivalent to the perovskite structure with a vacant A site
(Fig. 2). It displays isotropic negative thermal expansion over
the range 0 to 1100 K—our data are shown in Fig. 3—with a
linear coefficient of thermal expansion of α = −10 MK−1 at
200 K [14].

Accurate calculations of the phonon dispersion curves
of ScF3 using the density functional theory (DFT) method
[16,32,33] show two important points. The first is that there
is a line in reciprocal space (together with the symmetrically
related lines) containing the lowest-energy phonons, namely
for the wave vectors ( 1

2 , 1
2 , ξ ) for − 1

2 � ξ � 1
2 ; the two

FIG. 2. Crystal structure of ScF3 at a temperature of 1200 K
obtained by Rietveld refinement of neutron powder diffraction data
reported in this paper. It has a primitive cubic structure (Struk-
turbericht symbol D09, space group Pm3m) with one formula unit
per unit cell). The ellipsoids (Sc pink, F green) represent the thermal
motion along different directions, with the volume enclosing 50% of
the total distribution of atom positions.

special points ξ = 0 and ξ = 1
2 have labels M and R, re-

spectively. The eigenvectors of these modes correspond to
transverse motions of the F atoms with whole-body rota-
tions of the ScF6 octahedra. Measurements of inelastic x-ray
scattering [33] and diffuse x-ray scattering [34] from single
crystals support this picture exactly. The second point is that
the frequencies of phonons away from the M−R line increase
rapidly with frequency, and these modes have low frequency
only for wave vectors near this line in reciprocal space. Again,
this point is consistent with the inelastic and diffuse scattering
measurements [33,34].

The low-frequency modes with wave vectors along the
M−R line and with eigenvectors corresponding to octahedral
rotations are what are called rigid unit modes (RUMs) [1,35–
38]. Their low energy is a consequence of the fact that the
force constants associated with bending the octahedral F–Sc–
F angles are much larger than those associated with bending
the linear Sc–F–Sc angles; our estimate discussed in the Sup-
plemental Material [39] is that the two force constants differ
by a factor of around 50. Such a large factor accounts for the
fact that the value of the frequency of the transverse acoustic
mode at wave vector ( 1

2 , 0, 0) is much larger than that of the
RUM frequency, seen in both the DFT calculations [16,32,33]
and inelastic x-ray scattering experiments [33]. The same
situation is seen in the experimental phonon dispersion curves
of the cubic perovskite phase of SrTiO3 [40]. The existence of
RUMs provides a natural mechanism for the tension effect in
NTE materials since the rotations give rise to a shrinkage of
the crystal structure and these modes have the necessary low
energy [1,37,38]. Indeed, the DFT calculations show that the
RUMs have a considerably larger contribution to NTE than all
other individual phonons, by two orders of magnitude [41].

As we have noted, pure RUMs exist along lines of wave
vectors. A line of wave vectors of RUMs in ScF3 occupies
only a tiny—effectively infinitesimal—fraction of reciprocal
space, and virtually all phonons must necessarily involve
distortions of the ScF6 octahedra. In particular, even though
the pure RUM motions have the highest contribution to NTE
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FIG. 3. Comparison of the temperature dependence of half the
lattice parameter, a/2 (black squares, filled squares representing
data from longer measurements and open squares representing
data from shorter measurements), half of the average instantaneous
nearest-neighbor Sc–Sc distance obtained from analysis of the RMC
configurations (gray filled circles), the average instantaneous nearest-
neighbor F–F distance obtained from analysis of the RMC con-
figurations scaled by 1/

√
2 (open black circles), and the average

instantaneous nearest-neighbor Sc–F distance also obtained from
analysis of the RMC configurations (black filled circles. In each plot
statistical error bars are smaller than the sizes of the data symbols.
The scaling means that each data set should converge to a value of
a/2 at low temperature. The lines are guides to the eye; the guides for
the F–F and Sc–F distances were obtained by fitting functions of the
form d = d0 + α coth(θ/T ), and the guides for the lattice parameter
and Sc–Sc distances were obtained by fitting functions of the form
d = d0 − γ T + α coth(θ/T ), where the parameters d0, α, γ , and θ

were variables in the fitting process.

of any phonon, their tiny weighting in reciprocal space means
that any tension effect model must involve such distortions.
The finite, as opposed to infinite, stiffness associated with
distortions of the polyhedra are in fact an important part of
the RUM model [38]; we return to this point in Sec. VIII.
In fact, the DFT phonon calculations [16,32,33] show that
in reciprocal space the tension effect will ‘bleed into’ the
phonons whose wave vectors are close to, but not exactly
on, the line M−R. These modes have a large component of
rotation but an increasing component of polyhedral distortion
on moving away from the M−R line in reciprocal space.
They are, in effect, what we would call quasi-RUMs [36].
The extent to which the spectrum of quasi-RUMs can give
rise to an overall NTE will depend on the extent to which the
polyhedra can easily be distorted, a question that is analyzed
in detail in this paper. This will give us a new perspective of
the role of RUMs in the tension effect that will be applicable
to many NTE materials and will enable us to understand why
NTE can exist in some materials but not in other materials
with close structural similarity.

At this point we note that the authors of Ref. [26] have
proposed a radically different model. Their central idea is
that the ScF6 octahedra have no internal rigidity in terms of
bending of the bonds and that the Sc–F bonds can rotate in

an uncorrelated way as independent Einstein oscillators. In
part this idea is based on a misleading interpretation of the
first three peaks in the pair distribution function because of
the use of inappropriate integration limits coupled with the
effects of noise associated with the Fourier transforms. The
idea of the Sc–F bonds being able to rotate in an uncorrelated
motion implies the absence of a force constant associated with
bending of the octahedral F–Sc–F bond, which is directly the
opposite of the RUM model. This type of model would surely
give rise to a significant tension effect. However, it would lead
to an excitation spectrum with six low-frequency modes for
all wave vectors and an additional two low-frequency shear
acoustic modes along the (ξ, 0, 0) direction and one along
the (ξ, ξ , 0) direction. While this model of uncorrelated Sc–F
motion is appealing as an intuitive interpretation of the tension
effect, it is completely inconsistent with our knowledge of
the phonon dispersion curves by both ab initio calculation
[16,32,33] and inelastic x-ray scattering measurements [33].
A recent paper based on new x-ray total scattering mea-
surements [29] supports the interpretation presented here,
based on an earlier preprint of this paper, over the model of
uncorrelated F-atom motions proposed in Ref. [26].

The RUM model with infinite stiffness and the uncorrelated
model of Ref. [26] represent two opposite ends of a spectrum.
We would argue that the calculated [16,32,33] and measured
[33] phonon dispersion curves actually mean that the balance
is more towards a RUM model with more polyhedral flexibil-
ity than found in corresponding oxides. Where ScF3 actually
sits in this balance is explored in detail in this paper.

III. METHODS

Neutron total scattering and diffraction experiments were
performed on the Polaris diffractometer at the UK ISIS spal-
lation neutron facility. The sample was obtained commer-
cially, and x-ray and neutron powder diffraction measure-
ments showed that the sample is of single phase within the
limits of detection. The sample was packed into a cylindrical
vanadium can of diameter 8 mm. Measurements for 750 μA h
were obtained over the temperature range 10–1200 K, with
shorter runs at intermediate temperatures performed for crys-
tal structure analysis. The POLARIS instrument can measure
down to a wavelength of 0.1 Å [42], which gives a maximum
energy transfer far in excess of the upper limit of 85 meV
required from the DFT phonon calculations on ScF3 [16], and
therefore the experiments and subsequent analysis capture the
full range of phonon excitations.

Rietveld refinement was carried out using the GSAS soft-
ware [43] with the EXPGUI interface [44]. Data were pre-
pared for Rietveld analysis using the MANTID software [45].

The RMC simulations were performed using the RMCpro-
file code [46]. The data sets used were the total scattering
function after correction and subtraction of the self term, i(Q),
the pair distribution function (PDF) D(r) obtained as Fourier
transform of the function Qi(Q) (the corrections to form i(Q)
and conversion to the PDF D(r) were performed using the
GUDRUN package [47]), and the Bragg scattering profile.
Key equations and data are given in the Supplemental Material
[39], showing the high quality of the fitting we were able to
achieve. In addition to references cited in the main text here,
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the Supplemental Material [39] also includes a citation of
Ref. [48], which discusses and compares different formalisms
for total scattering and pair distribution functions, including
the definitions of our functions i(Q) and D(r).

Molecular dynamics simulations were performed using the
DL_POLY code [49], using a model developed by fitting the
calculated dispersion curves to the DFT results of Ref. [16]
using the GULP lattice simulation code [50,51]. The model
is described in more detail in Sec. VI, in the Supplemental
Material [39], and in the parallel Ref. [11]. The Supple-
mental Material also includes a citation of Ref. [52], which
discusses the method used for calculating and displaying
mode Grüneisen parameters in calculated phonon dispersion
curves.

IV. REAL-SPACE ANALYSIS OF NEGATIVE THERMAL
EXPANSION

We collected total neutron scattering data from a powder
sample of scandium trifluoride, measuring both the Bragg
scattering—sensitive to the long-range order—and the diffuse
scattering. Although several previous pair distribution func-
tion studies of ScF3 have used x-rays [15,27–29], for our
analysis neutron radiation was a more appropriate choice, for
three reasons. First, the accessible range of scattering vector
Q, and hence the resolution of the pair distribution function
derived from it, is much greater: we were able to measure
up to a maximum value of Qmax = 50 Å−1, while with x rays
the maximum achievable value of Q with a short-wavelength
silver anode is 22.5 Å−1 and is usually practically up to around
30 Å−1 with synchrotron radiation measurements. Second, the
x-ray atomic form factor decays rapidly with scattering vector
Q, which further limits the Q range in which useful data can
be collected: even if we were somehow able to measure x-ray
scattering at 50 Å−1, the scattering factor of Sc would be only
0.7% of its value at low Q. Finally, because this Q-dependence
differs between atoms, calculating a scattering-weighted pair
distribution function from a trial configuration of atoms is
necessarily approximate.

Thus our neutron data enabled us to calculate high-
resolution, bias-free pair distribution functions D(r) (see
Sec. III), which are effectively histograms of instantaneous
interatomic distances. We then used the reverse Monte Carlo
(RMC) method [46,53–55] to obtain a set of atomic configura-
tions consistent with these data, each of which can be regarded
as a plausible snapshot of the instantaneous atomic positions
in this material.

The experimental lattice parameter is shown in Fig. 3,
plotted as a/2, showing the NTE over the temperature range
0–1100 K and positive expansion at higher temperatures con-
sistent with previous data [14]. In this figure we also compare
the mean nearest-neighbor Sc–F and F–F distances, and half
the mean Sc–Sc distance, all three obtained from analysis of
the RMC configurations. The Sc–F and F–F distances are fully
consistent with the positions of the peaks in the PDF data, but
in the case of the Sc–Sc distance, the peak in the PDF overlaps
with that from the second-neighbor F–F distribution and thus
we cannot extract this directly from the raw data. The predic-
tion from the tension effect is that the distance between mean
positions of two bonded atoms should be shorter than the ac-

tual mean bond length, and indeed as expected the Sc–F bond
and F–F distances show normal positive thermal expansion
(Sc–F expansion coefficient α = +15 MK−1), whereas a/2
decreases on heating defining the negative thermal expansion.
This result for the Sc–F bond is consistent with two recent
measurements of the PDF [15,26,56].

Figure 3 also shows the temperature dependence of the
mean distance between neighboring Sc atoms. One might
expect, given the locations of the Sc atoms, for this distance to
reflect exactly the lattice parameter. However, although slight,
we see a difference between these two quantities that grows
on heating, with the Sc–Sc distance showing a slightly weaker
dependence on temperature than for the linear dimensions of
the crystal and a change to positive expansivity at a lower
temperature. A similar effect was seen in Zn(CN)2, where the
(negative) expansivity of the Zn–Zn distance is less negative
than the linear expansivity of the crystal [20]. In that case
the difference is due to the fact that the primary mechanism
for NTE is from the acoustic modes [57]. This is of course
different to ScF3, where the main NTE modes are rotational
modes of optic character that lie along the edges of the
Brillouin zone. However, by symmetry these modes transform
into transverse acoustic modes as the wave vectors changes
from the M−R line to zero, as seen in the dispersion curves
reported in Refs. [16,58]. We propose that the behavior of the
Sc–Sc distance may be associated with the growing acoustic
mode character of the NTE phonons moving away from the
M−R line; indeed, the bending of the F–Sc–F right angle can
be associated with the transverse acoustic (shear) mode.

V. LOCAL STRUCTURAL DISTORTIONS FROM REVERSE
MONTE CARLO ANALYSIS

We now consider the local atomic motions that are asso-
ciated with NTE. The fact that the Sc–F bond shows positive
thermal expansion implies that the tension effect will provide
the mechanism. Thus we need to consider effects associated
with transverse motions of the F atom and the extent to which
this is correlated with the ScF6 octahedra moving as nearly-
rigid objects or distorting. Figure 4(a) shows the behavior of
three angles with temperature: first the variance of Sc–F–Sc
angles as they distort from the value of 180◦, second the
variance of the F–Sc–F angles as they distort from the ideal
octahedral angle of 90◦, and third the mean-square rotations
of the ScF6 octahedra (calculated using the GASP tool; see
below). The largest fluctuation, by a significant margin, is
for the Sc–F–Sc angle, which is primarily associated with the
transverse motions of the F anion and is consistent with both
the thermal ellipsoids seen in Fig. 2 and the role of the tension
effect. The other two angles, namely of the ScF6 octahedral
rotations and the bending of the F–Sc–F bond, are actually
very similar to each other. Thus the transverse motions of
the F atoms as reflected in the Sc–F–Sc angles are achieved
by both rotations and bond-bending deformations of the ScF6

octahedra.
In Fig. 4(b) we show the details of an analysis performed

using the GASP method, based on using geometric algebra to
represent the rotations of polyhedral groups of atoms [59–61].
Given a set of bond vectors for an octahedron, ri, where i runs
over all the centroid-vertex bonds, we can compare the vectors
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FIG. 4. (a) Comparison of the variances of three angles associated with local motions taken from the RMC configurations. The black
points show the departure of the Sc–F–Sc angle from its nominal value of 180◦, the green points show the variance of the F–Sc–F angle as it
fluctuates from its nominal value of 90◦, and the red points show the mean-square angle of rotation of the ScF6 octahedra as a whole body.
(b) Breakdown of the total motion (excluding overall polyhedral displacements) of the atoms in the ScF3 crystal from the GASP analysis of
the RMC configurations, where the red, green, and blue points and guides to the eye represent the fraction of the motion that is associated with
whole-body rotations of the ScF6 octahedra, deformations of the F–Sc–F right angles, and stretching of the Sc–F bonds, respectively. In both
plots statistical error bars are smaller than the sizes of the data symbols, and the lines/curves are given as guides to the eye.

in one configuration with those in another (here, the ideal
average structure), which we denote as r′. The difference,
which we call the mismatch, is ei = ri − r′

i. GASP uses a
least-squares algorithm to find the rotation of each octahedron
that minimizes M = ∑

i |ei|2, where we sum over all bonds
in the polyhedron. The residual value of M per polyhedron
is then decomposed into contributions from bending of bond
angles and stretching of bonds, thereby accounting for the
total motion involving nonuniform displacements of the F
atoms. The results in Fig. 4(b) compare the extent to which
the sum of the atomic motions of the F atoms in each ScF6

octahedron can be separated into whole-body rotations of
the octahedron, flexing of the F–Sc–F 90◦ bond angle, and
stretching/shrinking of the Sc–F bonds [62]. This partition,
which barely changes with temperature, is compared in sum-
mary form with corresponding results from a similar study of

TABLE I. The percentage mismatch between different atomic
configurations of a network of MX6 octahedra and the ideal structure,
decomposed by GASP into X−M−X bending, M−X stretching, and
MX6 rotation components. We compare three systems: the RMC
configurations of ScF3, a hypothetical perovskite structure in the
limit where the octahedra have flexible bond angles, and SrTiO3 as
also analyzed by RMC and taken from Ref. [63]. The hypothetical
structure is an important comparison because, even if there are
no rigidity constraints applied to the bond angles within the ScF3

octahedra, some fraction of their random distortion will always be
mathematically attributable to a rigid-body rotation.

Material Bend Stretch Rotation

ScF3 70% 10% 20%
Flexible model 75% 5% 20%
SrTiO3 44% 19% 37%

the TiO6 octahedra in the perovskite SrTiO3 [63] in Table I,
together with results from a molecular-dynamics simulation
on a model system (described in the Supplemental Material
[39]) in which the energy penalty for bending the X−M−X
angle tends to zero. Our results show that ScF3 is quite close
to that limiting case [64]. The analysis suggests, therefore, that
the ScF6 octahedra in ScF3 are significantly more flexible with
regard to bending the anion-cation-anion angles than are the
TiO6 octahedra in SrTiO3; we will argue below that this is
the key difference that gives rise to NTE in ScF3 but not in
the cubic oxide perovskites [65].

Comparing absolute values of the fluctuations for ScF3

and SrTiO3 at a single temperature, say 300 K, we find
that in SrTiO3 the linear Ti–O–Ti angle fluctuates by an
average of around 5◦ and the TiO6 octahedra orientation
fluctuates by around 2◦ [63], while the corresponding sizes of
the fluctuations in ScF3 are around 14◦ and 7◦, respectively
[Fig. 4(a)]. On the other hand, the coefficient of thermal
expansion of the Ti–O bond, 10 MK−1, is comparable to
that of the Sc–F bond cited above, with similar Sc–F and
Ti–O bond lengths.

We can also compare this analysis with the phonon dis-
persion curves for ScF3 calculated using ab initio methods
[16] and calculated for SrTiO3 using a shell model fitted to
inelastic neutron scattering and infrared spectroscopy [40].
We see that the octahedral cation-anion stretching frequencies
are very similar (20 THz in ScF3 and 22 THz in SrTiO3),
suggesting (given the similar masses of O and F) that the
bonds in ScF3 and SrTiO3 are of similar stiffness. In both
ScF3 and SrTiO3 the octahedral rigid-body rotational phonons
between the R and M wave vectors are of very low frequency
compared to the stretching mode in both materials, namely
between 0.6 to 1.2 THz in ScF3 and between 1.3 to 2.5 THz
in SrTiO3 at a temperature of 200 K. However, the bending
frequencies are different. If we take, for example, the trans-
verse acoustic mode frequency at X , ( 1

2 , 0, 0), which is a
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shear mode that reflects bending distortions of the octahedra,
we find that it is lower in frequency by around a factor of
2 in ScF3 than in SrTiO3, meaning the corresponding force
constants are four times smaller. This is consistent with our
finding that the ScF6 octahedra are rather more flexible than
the TiO6 octahedra. But care is needed not to go to the
extreme viewpoint and imagine that there is no force con-
stant associated with the bending of the F–Sc–F right angle.
There is, and it directly gives rise to a nonzero shear elastic
constant [66].

VI. MOLECULAR DYNAMICS SIMULATIONS WITH A
SIMPLIFIED MODEL

Simulation methods can often give insights into the rela-
tionship between the properties of materials and their atomic
structure. For ScF3 there have been a number of simulation
studies using the molecular dynamics (MD) method with
classical force fields or ab initio methods [67–69]. What is
less useful about such methods is that it is not easy to change
parameters that directly affect one type of structure flexibility
alone. Any change in some aspect of the model will affect
everything. To address the question of the relative roles of the
forces associated with the bending of the octahedral F–Sc–F
bond angle or linear Sc–F–Sc bond angle we need to work
with a simpler idealized model, and we explore this now.

The model introduced briefly in the previous section, and in
our parallel paper on pressure-induced softening in ScF3 [11],
is described in more detail in the Supplemental Material [39].
The model has been designed and analyzed to see the effect
of various independent parameters on the NTE. There are two
parameters that are of interest (a third parameter controls the
bond stretching, which is tuned to a high stiffness by compari-
son with the DFT phonon calculations). The first, with symbol
A, controls flexing of the linear Sc–F–Sc bond and determines
the frequency of the RUM along the M−R wave vectors. The
value of this parameter was tuned directly by comparison of
the calculated RUM frequencies with those given by the DFT
phonon calculations. The second, with symbol k, controls
flexing of the F–Sc–F right-angle, and its value was tuned to
reflect the frequencies of the shear acoustic modes from the
DFT dispersion curves. Increasing both of these parameters
will reduce the flexibility of the structure in their respective
ways and hence change the thermal expansion. We explicitly
do not include ionic charges in the model because Coulomb
interactions will affect the flexibilities of both the linear Sc–
F–Sc bond and right-angle F–Sc–F bond. Nevertheless, the
simple three-parameter model does a surprisingly good job
of reproducing the phonon dispersion curves, comparing Fig.
S11 with the results, say, of Ref. [16].

Figure 5 shows the results of varying both force constants
starting from the model that best reproduces the DFT phonon
dispersion curves. The first result from the data shown in
Fig. 5 is that increasing both force constants will reduce the
negative thermal expansion and eventually drive it positive.
Increasing the F–Sc–F force constant k will increase the fre-
quencies of the modes close to the RUM M−R line, which will
reduce the number of phonons contributing significantly to the
overall NTE and hence leading to a reduction and eventual
elimination of NTE. This is consistent with the narrative

developed based on the RMC results presented above. On
the other hand, the force constant associated with the linear
Sc–F–Sc bond, A, plays a role in increasing the frequencies of
the RUMs but less of a role in shaping the dispersion curves,
so will have a gradual effect in changing the NTE as the mode
frequencies increase. The increased frequency of the RUMs
will lead to a reduced transverse amplitude of the F atoms. In
some ways, this is similar to the effects of the forces imparted
in the analogous perovskites with an atom in the A site (such
as Sr in SrTiO3). There is, however, one significant difference
with regard to changing the two force constants. In the case of
the F–Sc–F right angle, NTE vanishes by increasing the force
constant value by a factor of 3.3, whereas in the case of the
Sc–F–Sc angle, NTE vanishes by increasing the force constant
value by around a factor of 40. Looking at dispersion curves
in perovskites, for example in SrTiO3 [40], suggests that in
perovskites the size of this factor is not reached. On the other
hand, the factor of 3.3 increase in the bending force constant
is exactly consistent with the difference between ScF3 and
SrTiO3 discussed in the previous section. Thus the difference
strongly suggests that key effect in determining NTE is indeed
the bond-bending flexibility of the ScF3 octahedra.

VII. ANHARMONICITY

There is a lot of current interest in the role of anharmonic
phonon interactions in NTE. Typically the most important
ones are those involving fourth-order interactions, which have
the effect of changing phonon frequencies. Several recent
papers have studied anharmonicity in ScF3 in various ways
[16,32,33,70].

In renormalized phonon theory [71] the temperature de-
pendence of a phonon angular frequency ω(k, j) ( j labels the
mode for any k) in the high-T limit varies as [32,72]

ω2(k, j) = ω2
0(k, j) + 1

2
kBT

∑

k′, j′

α4(k, k′, j, j′)
ω2

0(k′, j′)
,

where ω2
0 is the square of the harmonic angular frequency,

and the interactions characterized by the fourth-order an-
harmonic parameters α4 couple the phonon (±k, j) to all
other phonons (±k′, j′). This summation includes the case
(k, j) = (−k′, j′); when this case is taken alone, it represents
the independent-mode approximation. It is this approximation
only that is probed in a frozen-phonon calculation [16], and it
will give just a small part of the overall picture. That is, the
contributions from the modes (k, j) �= (k′, j′) are normally
much more important than only the modes (k, j) = (−k′, j′)
in determining how phonon frequencies change with tem-
perature. The DFT calculations of Li et al. [16] suggested
that for the R-point mode the independent-mode anharmonic
potential is quite large compared to the harmonic potential,
but the summation over all modes may still mean that the
primary anharmonic effects come instead from interactions
across the Brillouin zone. Van Roekeghem et al. [70] recently
studied the anharmonicity using both x-ray inelastic scattering
and through calculations of the phonon frequencies via a
renormalized phonon method. They showed, consistent with
most perovskites, that the low frequency branch along the
line M−R and the three lowest-frequency optic modes at zero
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FIG. 5. (a) and (b) show the variation of volume of one unit cell of ScF3 with the interoctahedral Sc–F–Sc and intraoctahedral F–Sc–F
angle force constants, respectively, A and k (see Supplemental Material [39] for the equations). (c) and (d) show the corresponding coefficients
of volumetric thermal expansivity for the cases k = 1.2 eV and A = 0.025 eV respectively, corresponding to the values that give best match to
the DFT dispersion curves [16] as discussed in the Supplemental Material [39].

wave vector soften on cooling, consistent with renormalized
phonon theory, whereas the higher-frequency modes harden
on cooling. Similar results were obtained by Oba et al.
[32]. The softening on cooling arises from direct anharmonic
interactions via renormalized phonon theory as described
here, whereas the hardening of the high-frequency modes
arises primarily from thermal expansion of the Sc–F bond.
In this model, the renormalized phonons continue to look
like phonons with well-defined frequencies, with lifetimes
substantially larger than the phonon frequency (see Fig. 3 of
Ref. [70]). Separately, in Ref. [31] we showed from simple
considerations that anharmonic renormalization of phonon
frequencies will cause NTE to shift towards positive expansiv-
ity at higher temperatures; the same result is obtained by more
detailed renormalized phonon theory calculations [32,70].

We have analyzed our RMC configurations to look for
any effects of anharmonicity in the distributions of transverse
displacements of fluorine atoms. This particular atomic dis-
placement was chosen since it is active in the R-point RUM
previously identified as having a dominant fourth-order term.

Figure 6 shows the distribution of these displacements of
F atoms away from the Sc–Sc line as a function of tem-
perature. Two features of these data are noteworthy. First,
the distributions are well fitted by Gaussian functions at all
temperatures. In particular, we find no evidence for a toroidal
distribution of fluorine atoms, as conjectured in a recent PDF
study [26,73]. Second, the fitted variance of these Gaussian
distributions increases linearly with temperature, exactly as
one would expect for a harmonic oscillator. We conclude
that, to the extent to which anharmonicity is important in this
material, it is completely described within the renormalized
phonon approximation taken to fourth order. In other words,
although fourth-order interactions seen by individual phonon
modes may limit their amplitude at high temperature, there is
an insufficient number of such modes with near-zero harmonic
terms to make an appreciable difference to the distribution of
atomic positions. Thus overall the most important anharmonic
interactions involve couplings between different phonons, as
described by the renormalized phonon approximation taken to
fourth order rather than the independent mode approximation.
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FIG. 6. (a) and (b) show histograms of the lateral displacements of the F atoms at the different temperatures (circles). At all temperatures
the distributions are well described by Gaussian functions (thin lines). (c) shows the variance of the Gaussian fits as a function of temperature.
The data follow a linear dependence on temperature throughout the range studied, as indicated by the fitted straight line, demonstrating that a
renormalized phonon model is sufficient to describe the anharmonic effects in ScF3.

Furthermore, our results also rule out the significance of
higher-order terms because they too would lead to a different
temperature dependence.

It is worth making a general comment here. It is very
tempting to assume that because high temperatures lead to
large-amplitude motions, they also lead to significant and
unusual anharmonic effects. Actually this need not be so,
given that large amplitudes are perfectly possible within the
harmonic approximation. Our analysis here shows that high
temperature does not necessarily produce unusual behavior,
such as envisaged in Ref. [26] for example. Instead, at high
temperature ScF3 behaves as a typical harmonic crystal, or
at least as one whose behavior is only weakly perturbed by
anharmonic effects. A similar conclusion was obtained from
an RMC study of BiFeO3 based on neutron total scattering
data; in spite of very large atomic motions at high temperature,
the average structure remains robustly constant across a wide
range of temperatures and there are no unusual changes in
atom distributions [74].

VIII. DISCUSSION AND CONCLUSIONS

Our two key conclusions from the analysis of the RMC
configurations discussed above are that the NTE arises from a
set of phonons with wave vectors around the lines of RUMs in
reciprocal space and which are sufficiently extensive because
of the relatively lower force constants associated with bending
the bonds within the ScF6 coordination octahedra than in
related systems, and that the transverse displacement of the
F atoms, although associated with a quartic mode, can be
well described by a Gaussian distribution whose width varies
linearly with temperature, consistent with a renormalized har-
monic phonon model. These results are closely related, since
the RUMs are exactly the modes that will have small quadratic
terms and in which the quartic terms are thus expected to be
dominant. What they show is that the quasi-RUM vibrations
make dominant contributions to the thermal expansion, and
in particular to the NTE, of ScF3. A similar conclusion was
reached by the authors of Ref. [29] by a different type of
analysis.

We need to state clearly that the deformations of the ScF6

octahedra allowed within the quasi-RUMs do not in any way
repudiate the importance of RUMs. It is a common miscon-
ception that the RUM model requires the octahedra to be very
rigid (a mistake propagated in Ref. [26]), but in fact quite
the opposite is true, as has been discussed in detail recently
in Ref. [38]. The basic RUM model has always considered
the structural polyhedra to have finite, rather than infinite,
rigidity, which in the original application of the RUM model
to displacive phase transitions is directly associated with the
phase transition temperature [75–79]. In the same vein, the
RUM model itself does not presuppose that any rigidity of
the polyhedra arises only from covalent bonding. Polyhedral
rigidity certainly can arise from Coulomb interactions or
steric hindrance effects between anions within the structural
polyhedra. In this sense our work here is also consistent
with the viewpoint of Ref. [80], which discusses RUMs and
quasi-RUMs in the context of a model with ionic forces.

The point is this: the fact that the RUMs are restricted to
wave vectors lying on lines in reciprocal space means that
they are a vanishingly small fraction of the total number of
phonon modes and therefore alone they cannot give overall
NTE. Instead, to get overall NTE it is necessary that there
is a sufficiently-large number of low-frequency RUM-like
phonon modes—quasi-RUMs—close to the wave vectors of
the RUMs. This is possible if the polyhedra (in this case
the ScF6 octahedra) have some flexibility. Thus we propose
firstly that the existence of the RUMs gives a set of phonons
with the necessary low frequencies and appropriate mode
eigenvectors for the tension effect to give NTE, and secondly
that the flexibility of the polyhedra allows the contribution
from the quasi-RUMs to spread across a sufficiently large
volume in reciprocal space to have enough thermodynamic
weighting to give an overall NTE. This explains concisely
why there is NTE in ScF3 but only positive thermal expansion
in other perovskites such as SrTiO3; both materials have stiff
cation-anion (Sc–F or Ti–O) bonds, but the TiO6 octahedra are
more resistant to bond-bending distortion than the ScF6 octa-
hedra. This interpretation provides a plausible and reasonable
explanation of the origin of NTE in ScF3: one that is predic-
tive, that is based on standard concepts in condensed matter
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physics, and that is consistent with previous experimental data
and simulations.

In conclusion, our real-space analysis of ScF3, based on
using the reverse Monte Carlo method with neutron total
scattering data to generate configurations of atoms over a
wide range of temperatures, has allowed us to establish a
quantitative view of the structural fluctuations associated with
NTE. Comparison with a similar study of SrTiO3, together
with comparisons of published phonon dispersion curves,
shows the importance of RUMs in giving rise to NTE, but
that it is also necessary to have some degree of polyhedral
distortion to spread the contributions to NTE across a wider
range of wave vectors than those associated with the pure
RUMs. Fluorinated octahedra have bonds that are as stiff as
in their oxygenated counterparts but have more bond-bending
flexibility. On this basis we suggest that in the search for
materials with large negative coefficients of thermal expan-
sion, fluorinated analogues of other oxides with NTE—one
example being ZnF2 as an analog of the rutile phase of TiO2

[81]—might prove to be particularly fertile [82].

Original data sets are available directly from ISIS with
Digital Object Identifier 10.5286/ISIS.E.RB1510519 [83].
Corrected data and atomic configurations are available on
request from the corresponding author.
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