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Thermal effects on the electronic properties of sodium electride under high pressures
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Sodium is a simple metal at ambient conditions, while it transits to an electride phase at pressures above
∼160 GPa along the room-temperature isotherm. We explore the thermal effects on the electronic properties
of the hP4 phase of sodium along the ρ = 5.872 g/cm3 isochore. We quantitatively classify this phase as an
insulator based on the criterion of nearsightedness of the one-particle density matrix. Ab initio calculations
suggest that the band gap of this insulator decreases with increasing temperature along the isochore, primarily
because of ionic distortions, culminating in an insulator-to-metal transition upon melting at Tm ≈ 2100 K. This
transition is accompanied by residual electronic localization (in d orbitals) in the form of dynamic electron
bubbles and a change in hybridization from p-d to s-p upon melting. This transition is explored by tracking the
electronic and electro-optical properties along the isochore under consideration.
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I. INTRODUCTION

Despite being one of the simplest alkali metals at am-
bient pressure and temperature conditions, sodium exhibits
a remarkably complex behavior under compression. The
first prediction pertaining to such behavior, in Neaton and
Ashcroft’s seminal work [1], demonstrated the possibility of
electron localization in interstitial crystal lattice sites at pres-
sures exceeding 800 GPa, where sodium was predicted to
attain a structure with the Cmce space-group symmetry. Con-
sequently, diamond-anvil cell (DAC) experiments performed
along the room-temperature isotherm [2] have demonstrated
the existence of a six-coordinated phase, hP4, in which in-
creased core electron overlap decreases the symmetry of
the valence electron charge distributions. The transition to
hP4 commences at approximately 160 GPa from the tI19
phase. This phase is structurally similar to a double hexagonal
close-packed (dhcp) structure and has a higher compression
along the c axis (c/a = 1.391) compared to the ideal dhcp
(c/a = 3.266) at 320 GPa [2]. Due to the existence of a
band gap, this phase has been described as a transparent
“insulator,” deviating from the reflective metallic behavior
observed at lower pressures. Additional experiments and cal-
culations exploring the Raman spectra in great detail [3]
have pinned down the melt and solid-solid transitions beyond
180 GPa and delved into the evolution of electron localiza-
tion function (ELF) attractors with pressure. Prior to both
of these experiments, a combined theoretical-experimental
study used synchrotron infrared (IR) spectroscopy to inves-
tigate the evolution of optical properties of electronic origin
[4]. Its conclusion was that a pseudogap opens up in the
electronic density of states of the orthorhombic oP8 phase
above 118 GPa, accompanied by a decrease in IR reflectivity.
One insightful calculation [5] explored the optical excitonic
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properties of the hP4 phase using the Bethe-Salpeter equa-
tion. They reported anisotropy to be a major feature of this
particular phase, whereby the absorption coefficient greatly
differs depending on whether the direction of incidence is
perpendicular to the c (transparent up to hν = 3 eV) or ab
(transparent up to hν = 4.5 eV) plane. However, all of these
calculations were performed for static, nonthermalized crys-
tals whereas DAC experiments have been along the T =
300 K isotherm. To the best of our knowledge, there is a lack
of systematic studies for the effects of thermal excitations on
the electronic and electro-optical properties of solid electride
sodium.

In this paper, we have used a variety of ab initio meth-
ods to explore the finite-temperature electronic properties of
hP4-sodium by looking at the density of states-derived band
gap, electron localization function, and electro-optical prop-
erties calculated using the Kubo-Greenwood formula. To this
end, we have also extended the phase diagram of sodium
up to ∼500 GPa. However, the possible existence of high-
temperature solid phases other than hP4 beyond 320 GPa has
not been addressed in this paper.

The remainder of the paper is organized in three sec-
tions. Section II discusses the first-principles simulation
details, the Kubo-Greenwood formulation, the quasiharmonic
free-energy calculation method, and the thermal band-gap
evaluation used later in this paper. Section III presents the
results from such simulations and discusses these results with
an emphasis on quantitative and analytic arguments. Finally,
Sec. IV summarizes the paper and discusses the future scope
of research on this topic.

II. METHOD AND FORMULATION

A. Density functional theory-based calculations

Ground-state Kohn-Sham density functional theory (DFT)
[6,7] calculations were performed using the plane-wave
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implementation of DFT in the Vienna Ab initio Simula-
tion Package (VASP) [8–10], with exchange-correlation (XC)
functionals based on the generalized gradient approximation
(GGA) [11] and meta-GGA [12]. For the sake of compar-
ison of melt curve data and optics calculations, we mostly
resorted to using the SCAN-L [12] XC functional, which is
a deorbitalized version of the meta-GGA strongly constrained
and appropriately normed (SCAN) [13] functional. However,
Perdew-Burke-Ernzerhof (PBE) [14], and PBEsol [15], which
is a version of PBE customized for the solid state, were
also used for the comparison of the melt point and band-gap
data. For determining solid-solid phase boundaries, phonon
density-of-state (DOS) calculations were carried out in order
to obtain phonon free energies. These were performed using
PHONOPY [16,17] and VASP at the level of density-functional
perturbation theory [18]. Finite-temperature electronic con-
tributions to the free energy were also included using
Mermin’s extension of Kohn-Sham DFT [19], with static
ionic configurations and introducing electronic temperature
via Fermi-Dirac smearing. For calculating optical properties,
six snapshots from a quantum molecular-dynamics (QMD)
trajectory were used to calculate the frequency-dependent di-
electric response in the independent-particle approximation,
with the Kubo-Greenwood formalism [20,21] for interband
transitions, which we concisely discuss later. QMD simula-
tions were performed with VASP using supercells with periodic
boundary conditions as follows: 6 × 6 × 6 primitive unit
cells for bcc and fcc, 2 × 2 × 4 primitive unit cells for
tI19, and 4 × 4 × 4 primitive unit cells for hP4. However,
due to the incommensurate host-guest nature of the tI19 unit
cell, an approximate tI20 unit cell was used instead, which
is an I4/mcm host lattice with sodium guest atoms at the
2b Wyckoff sites. Such a unit cell has been shown previ-
ously [4] to be nearly equivalent electronically to tI19. The
resulting supercells have 216 atoms for bcc and fcc, 320
for tI19, and 256 for hP4. In the QMD simulations, the
reciprocal space was sampled using both the � point and
the Baldereschi mean-value 2π/a× ( 1

4 , 1
4 , 1

4 ) [22] k point
(a being the lattice constant). For the density of states and
electro-optical calculations, denser 5 × 5 × 5 and 2 × 2 × 2
Monkhorst-Pack [23] k meshes were used, respectively. In
the QMD simulations, the k resolution, being restricted by
the imposition of periodic boundary conditions, ranged from
0.397 Å−1 (for bcc at 2.097 g/cm3) to 0.564 Å–1 (for hP4
at 5.872 g/cm3). For static calculations, the smallest such
vector accessible was always � 0.15 Å−1. Ionic time-step
size was 0.5 or 1.0 fs over approximately 6000 or 4000
steps, yielding a total atomistic simulation time of 3 to 4
ps. Projector augmented wave pseudopotentials [24,25] with
a 1.20 Å cutoff of core radius were used with the semicore
2s22p63s1 electrons being treated as valence electrons, cor-
responding to a kinetic energy cutoff of 1000 eV for the
plane-wave basis set. Electrons were populated according to
Fermi-Dirac statistics and all electronic self-consistent field
calculations were converged to a precision of 10−5 eV/atom
for the free energies. The details of method used in the
electro-optical calculations and solid-solid phase-boundary
determination have been elaborated upon in the Supplemental
Material [26].

B. Thermal evolution of electronic band gap

Using the Allen-Cardona approach [27,28], a shift in elec-
tronic energy for a band n and wave vector k, due to finite
displacements of Na atoms from equilibrium, can be expressed
using a Taylor series expansion as

�En,k = x.
∂En,k

∂x
+ 1

2
x · H · x + · · · , (1)

where x is a vector of 3Na displacements and H is a Hessian
matrix with 3Na × 3Na elements. For displacements along the
normal mode, x can be written as

xα =
∑

j

(
h̄

2mωj

)1/2

Pα, j (a j + a†
j ), (2)

where α denotes direction, a j and a†
j denote the creation and

annihilation operators, respectively, and Pα, j is the polariza-
tion vector. Substituting Eq. (2) into Eq. (1) in the harmonic
approximation, after truncating at the second-order term, re-
sults in the linear term vanishing and the resulting expression
being

�En,k =
∑

j

∂En,k

∂nB, j

(
1

2
+ nB, j

)
≡ �Eg,harmonic (3)

with nB, j being the Bose-Einstein distribution factor for
phonon mode j containing the implicit thermal dependence,
and ∂En,k/∂nB, j being the phonon-electron coupling coeffi-
cient.

III. RESULTS AND DISCUSSION

For all intents and purposes, studying the solid phase
at near-melt temperatures necessitates establishing an upper
bound for the solid state, i.e., a melt curve. The melt curve
was formally established by performing QMD simulations in
VASP using a canonical (constant-NVT) ensemble. Such NVT
simulations were performed along an isochoric path while
gradually increasing the ensemble temperature. This is termed
as the heat until melt method and the temperature regulation
was attained using a Nosé-Hoover thermostat [29]. The melt
curve for the tI19- and hP4-to-liquid transition demonstrates
a monotonically increasing behavior as pressure increases, as
can be seen in Fig. 1. This is true even for the isochore starting
at P = 1000 GPa along the cold curve (not shown in Fig. 1),
for which we evaluated the melt point to be in between 6000
and 7000 K, implying the melt curve has a positive slope up
to at least ∼1 TPa. We used NVT simulations and tracked
the changes in pressure and the radial distribution function,
with temperature, to determine the melt point (Tm) along each
isochore. This method has also been used to determine the
melt curve of silicon under high pressures [31,32], which gave
reasonable agreement with experiments. In general, PBE and
PBEsol were observed to agree within 100 K once a proper
fit is introduced. However, the melt curve calculated using
SCAN-L substantially differs from the former two. We used
the Kechin fit [33],

Tmelt (P) = T0

(
1 + Pmelt − P0

a

)b

e−c(Pmelt−P0 ) (4)
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FIG. 1. The T-P phase diagram of sodium from literature [30]
combined with our work, with the existing melt curve data plotted.
The t l19 − hP4 phase boundary was constructed by comparing the
Gibbs free energy computed by combining DFT and quasiharmonic
approximated (QHA) calculations. The T-P melt points from DFT
calculations using SCAN-L exchange-correlation functional have
been fitted with a Kechin equation as described in the text. The
uncertainty for the six isochoric melt data points, calculated using
SCAN-L, are 20, 35, 90, 115, 145, and 140 K, respectively, cal-
culated using five separate sets of MD calculations, with differing
starting solid geometry, for each isochore.

on the SCAN-L data, with a = 7.1535, b = 0.5465, and c =
–0.000 084 64, and show it in Fig. 1 since our electro-optical
calculations also use the SCAN-L exchange-correlation func-
tional. In addition to the heat until melt method mentioned
above, two-phase coexistence simulations were also per-
formed along the ρ = 5.011 and 5.872 g/cm3 isochores using
512 atoms in a supercell. Of these 512 atoms, 256 were
arranged in hP4 symmetry (solid) and the remaining 256
were randomly arranged (liquid). NVT simulations, using
the SCAN-L exchange-correlation functional, with a Nosé-
Hoover thermostat were performed using a temperature step
size of 100 K. The resulting Tm obtained were 1350 and 2050
K for the ρ = 5.011- and 5.872-g/cm3 isochores, respectively
(see sec. III of the Supplemental Material [26]). This would
imply that at least within the range of the isochores starting in
between 260 and 320 GPa along the T = 0 K isotherm, the Tm

measured using the heat until melt method is higher than that
obtained from the two-phase coexistence simulations by 100
to 200 K.

The tI19-hP4 phase boundary obtained from Gibbs
free-energy comparison, including the electronic-thermal
Helmholtz free energy, ionic zero-point Helmholtz free en-
ergy, the quasiharmonic ionic-thermal Helmholtz free energy
sans any anharmonic corrections, and the thermal pressure-
volume work, exhibit a negative slope in T-P space (see
Fig. 1). For the purpose of all isochoric analyses to follow, we
used a particular isochore corresponding to ρ = 5.872 g/cm3,
which starts at P = 320 GPa along the T = 0 K isotherm.
Since the starting pressure is far away from the tI19-hP4

transition pressure along the cold curve, even if anharmonic-
ity completely changes the transition boundary between the
tI19 and hP4 phases, the isochore under consideration would
still be expected to be in the hP4 phase. In terms of the
higher-pressure transition along the cold curve, it has already
been predicted that the hP4 phase reverts back to the or-
thorhombic oP8 phase at ∼1.75 TPa [34]. One feature worth
pointing out is that the c/a axial ratio of hP4 decreases with
increasing pressures from 1.5482 (P = 180 GPa) to 1.3908
(P = 320 GPa) to 1.3385 (P = 500 GPa), according to our
calculations. This implies higher compressibility along the
c axis, indicating the higher compaction along the CACB …
stacking planes even at lower pressures. This is the geomet-
ric feature responsible for the anisotropy in the absorption
spectra of hP4 [5]. Correspondingly, the volume per atom (in
Å3/atom) varies from 8.27 (P = 180 GPa) to 6.52 (P = 320
GPa) to 5.43 (P = 500 GPa).

The existence of a high-temperature solid phase different
from hP4 was also explored using NPT-QMD calculations.
First, we used 128-, 162-, 192-, 216-, 256-, and 320-atom
supercells and induced melting in each by incrementally in-
creasing the temperature by steps of 100 K along the P =
320 GPa isobar while allowing cell relaxation. This ensures
that all unit cells with 1 to 6 atoms or multiples are cov-
ered. Upon obtaining the molten liquid-phase supercell at T =
2300 K, we froze the supercell using NPT-QMD by 100 K
steps using a cooling rate of 5 × 1012 K/s. The resulting
most-stable (energetically) supercell was still the hP4-derived
one. However, this does not rule out the existence of different
high-temperature phases at higher pressures. Preliminary cal-
culations along the P = 400 GPa isobar suggests the existence
of a distorted hexagonal structure at high temperatures which
is a subject of future work, while the current focus is on the
thermal effects on the electronic and optical properties of hP4
only.

Formally, the orthonormalized single-particle Kohn-Sham
orbitals |	KS

n 〉 can be used to construct the one-particle den-
sity operator ρ̂1 = ∑

n fFD,n|	KS
n 〉〈	KS

n |, where fFD,n is the
Fermi-Dirac weight of the nth orbital, which in turn can be
used to create the one-particle density matrix

ρ1(r, r′) = 〈r|ρ̂1|r′〉 =
∑

n

fFD,n|	KS,n(r)〉〈	KS,n(r′)|

≡ N
∫

dr2...drN	∗
KS,n(r′, r2, ..., rN )

× 	KS,n(r, r2, ..., rN ), (5)

such that trρ1(r, r′) = ∫
ρ1(r, r′)dr = N. This one-particle

density matrix can be constructed from the three-dimensional
E versus k data of the system. Integration of the band-
structure points g(Ej , ki) with respect to k along a special path
(i.e.,

∮
i g(E , ki )dk) leads to the electronic density of states,

whereas integration with respect to E [i.e.,
∫

j g(Ej, k)dE ]
yields normalized on-site occupancies in the form of a
diagonalized matrix ρ1(k, k′) as a function of k eigen-
states, since the off-diagonal (coherence) terms are zero
after completion of electronic optimization. For our case,
a 2 × 2 × 2 k mesh results in an 8 × 8 diagonalized

094103-3



PAUL, HU, KARASIEV, BONEV, AND POLSIN PHYSICAL REVIEW B 102, 094103 (2020)

reciprocal-space, one-particle density matrix. The corre-
sponding real-space, one-particle symmetric density matrix
ρ1(r, r′) can be obtained by Fourier back-transformation of
ρ1(k, k′) as ρ1(r, r′) = (1/
)

∑
k,k′ eik.r〈k|ρ̂1|k′〉eik′.r′

Using
nearsightedness as a metric for quantitatively differentiat-
ing insulators from semiconductors, we use the formulation
ρ1(r, r′) ∼ 〈exp(−γ |r − r′|)〉, with γ ∝ E1/2

g for normal in-
sulators and γ ∝ Eg for semiconductors, where Eg is the
band gap [35,36]. Along the ρ = 5.872 g/cm3 isochore, our
analyses indicate that γ varies with a (decreasing) band-gap
exponent η (in Eη

g ) of 0.460, 0.438, 0.421, and 0.414 at T =
300, 700, 1200, and 1800 K, respectively. While we expected
the value of η ≈ 0.5, the obtained values of η < 0.5 may be a
result from using a noncubic supercell in our simulations. De-
spite this approximation, it is safe to state that the hP4 phase
of sodium behaves like an insulator and not a semiconductor.

The band gap obtained from the electronic DOS calcula-
tions shows a gradual decrease with increasing temperatures
along the ρ = 5.872 g/cm3 isochore until it abruptly de-
creases to zero upon melting, as shown by Fig. 2. Technically
speaking, the abrupt drop still is not a step-function-like
fall, mainly because of finite-size effects. This can be seen
in Fig. 2(a), which also shows a comparison of the val-
ues calculated using PBE, PBEsol, SCAN, and SCAN-L
exchange-correlation functionals. The band-gap values were
obtained by averaging the electronic DOS of six atomic
configuration snapshots taken from the molecular-dynamics
trajectory and separated by at least 100 fs from each other. The
total simulation time for this analysis was 1.6 to 2.0 ps, after
1.4 to 2.0 ps of thermal equilibration. Surprisingly, the PBE
and SCAN results are closer to the experimental band gap be-
cause the experimental values are most likely higher than the
calculated value using DFT, where it is worth mentioning that
GW calculations are more accurate than single-particle mean-
field DFT calculations [2]. At T = 300 K, the calculated band
gap was in the range of 1.54 eV (SCAN-L) to 1.84 eV (PBE),
which corresponds to a photon wavelength of 673.83 nm
(PBE) to 805.09 nm (SCAN-L). For wavelengths shorter than
this threshold, hP4 sodium would exhibit reflectivity resem-
bling that of an optical insulator. Selected electronic density
of states at 300, 1800, and 2500 K, shown in Fig. 2(b), clearly
demonstrate the closing of the band gap and depression of the
DOS peaks on either side of the Fermi level once the band gap
closes. For this particular isochore under consideration, since
the melt point is between 2100 and 2200 K irrespective of the
exchange-correlation functional used, it is clear that there is
an abrupt insulator-to-metal transition upon melting.

A detailed analysis of the band gap Eg involves break-
ing it up into components arising from the ionic thermal
displacements (�Eg,i−th), the thermal modifications to the
Fermi-Dirac distribution function (�Eg,e−th), and the phonon-
electron coupling (�Eg,ph−e). The first and second terms
are included in the band gap as calculated from DFT-QMD
calculations. The third term, however, requires knowledge
of �Eg,harmonic from Eq. (3) and has to be explicitly calcu-
lated. Note that contributions originating from lattice thermal
distortions can be neglected because the off-diagonal stress
components (σxy, σyz, and σxz) are approximately within
±1.5% of the normal stress (σxx, σyy, and σzz) values, as can
be seen in Table I. The aforementioned contributions to Eg can

FIG. 2. (a) The evolution of the band gap with temperature dur-
ing heating along the ρ = 5.872 g/m3 isochore demonstrates the
abrupt closing of the band gap on melting at Tm ≈ 2100 to 2200 K,
corresponding to an insulator-to-metal transition. Four sets of data
corresponding to different exchange-correlation functionals: PBE,
PBEsol, SCAN, and SCAN-L. (b) Sample normalized electronic
DOS along the ρ = 5.872 g/m3 isochore, where the absence of the
band gap can be seen in the liquid phase DOS at T = 5000 K. Here
EF denotes the Fermi energy.

be evaluated using the following:

�Eg,e − th(V, T )

= Eg,DFT(�;V, Te = T ) − Eg,DFT(�;V, Te = 0), (6)

�Eg,i−th(V, T )

= Eg,DFT(�;V, Te = 0) − Eg,DFT(�0;V, Te = 0), (7)

�Eg,ph−e(V, T ) = [�Eg,harmonic(�0;V, Te = 0, Ti = T )

+ Eg,DFT(�0;V, Te = 0)]

− Eg,DFT(�;V, Te = T ), (8)
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TABLE I. Lattice stress anisotropy in NVT-QMD simulations along the ρ = 5.872 g/cm3 isochore. All σ are in units of GPa.

Temperature (K) σxx σyy σzz σxy σyz σxz

300 330.746 331.941 329.327 0.4169 −0.1847 −0.0762
700 333.639 335.764 333.436 0.9134 −0.4712 −0.1945
1200 337.214 340.407 338.783 1.4981 −0.8275 −0.3106
1800 345.497 350.320 347.667 1.9165 −1.2334 −2.2185
2500 372.835 371.765 330.872 0.4414 −0.0324 −1.9032

where � is a frozen-ionic configuration obtained from an
NVT-QMD trajectory with electronic temperature Te = T and
ionic temperature Ti = T , �0 is the zero Kelvin static config-
uration, and Eg(�0 : V, Te = 0) is the band gap at T = 0 K.
The phonon-electron coupling constant was calculated using
EPW [37]. The results are shown in Fig. 3, where it can be
seen that �Eg,i−th is the principal driver in the reduction in
band gap with increasing temperatures along the isochore,
and not the altered electronic distribution itself. The contri-
bution of �Eg,ph−e initially increases with temperature and
then decreases towards zero upon approaching melting. This
implies that the electronic band-gap reduction is a purely ion
dynamics-mediated process.

Taking a closer look into the electronic charge distri-
butions, it can be seen that one exceptional feature of
high-pressure electrides is the localization of electrons in the
interstices between ions, which leads to the formation of
pockets with an ELF [38] value of near unity, existing as the
pseudoanions mentioned earlier in Sec. I. Similar behavior
has also been observed in the case of liquid lithium [39].
The hP4 phase of sodium exhibits such features resulting in
an insulating behavior owing to the band gap that develops

FIG. 3. The contributions of the different components of the
electronic band gap illustrating the role played by ionic thermal
displacements, �Eg,i−th, in gap reduction relative to the zero Kelvin
static gap, Eg,static. The component with a positive contribution is
electronic thermal in nature due to temperature-dependent alterations
to the Fermi-Dirac distribution function, �Eg,e−th. The component
due to phonon-electron coupling, �Eg,ph−e, has a negative contribu-
tion but decreases to zero near the melt curve.

from such an electronic distribution. This is true all the way
up to the melt point, beyond which the system is expected
to transform into a near free electron (NFE)-type liquid, with
ELF values predominantly close to 0.5. While bulk electronic
properties, such as the band-gap calculations shown in Fig. 2,
indicate this to be the case, there is more nuance that can be
understood by examining spatially localized properties, e.g.,
as revealed by the ELFs, as is evidenced by the planar ELF
from Fig. 4. The (001) planar ELF along the ρ = 5.872 g/cm3

isochore clearly exhibits localized clusters of paired electrons,
in the form of electron bubbles of ELF values between 0.8 and
1.0, that persist even beyond the melt point, as can be seen in
Fig. 4(a). Rough estimation of the total number of electrons
in certain pseudoanionic attractor regions yields a value of
1.91 to 2.0 in the solid phase and 1.77 to 1.94 in the liquid
phase. This implies that the ELF attractors in the liquid phase
are paired as well. A different route of observation, along
the T = 2500 K isotherm [Fig. 4(b)] shows that this behavior
gradually develops with increasing pressure.

To further examine the electron localization, we calcu-
lated all-volume charge-weighted ELF histograms, which are
shown in Fig. 5. The left-hand side plots are histograms of the
ELF values calculated at the three-dimensional fast Fourier
transformation grids of the DFT calculations, normalized with
the size of the grid. The plots in the center show the integrated
ELF histograms (cumulative number of valence electrons per
atom with ELF below a given value), and the right-hand side
plots are the charge-weighted version of the left-hand side
plots. The first peak in the left- and right-hand side plots
(ELF ≈ 0.1) correspond to the space surrounding the core
electrons owing to Coulombic repulsion, whereas the second
peak (0.7 < ELF < 0.8) originates from the core electrons
themselves. It is the features other than these two that are
of interest to us. In Fig. 5(a), the suppression of the peak
at around an ELF value of 0.5 with increasing pressures is
evident, which demonstrates the shift from highly metallic
NFE behavior to gradual electron localization. This is ac-
companied by the formation of a tail in the ELF histogram
with values between 0.75 and 0.90. Along the T = 300 K
isotherm, this tail feature becomes very prominent in the hP4
phase, which is characterized by a sharp peak near ELF ≈ 1.
Using a priori knowledge from the band gap, one would
expect this sharp peak to almost completely disappear upon
melting-induced metallization. However, this is not seen to
be the case and even though the liquid phase is metallic,
electron bubbles with paired localization exist in tandem with
a NFE distribution. While such localized electronic behavior
in the solid state manifests itself in the form of development
of the band gap, the liquid phase is metallic. This implies
that either these electron bubbles are coalescent in the bands
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FIG. 4. (a) Planar static ELF on the (001) plane along the ρ =
5.872 g/cm3 isochore, which shows the existence of paired inter-
stitial electrons (red) even beyond the melt point (Tm ≈ 2100 to
2200 K). (b) ELF along the T = 2500 K isotherm shows the de-
velopment of paired interstitial electrons (red) with pressure but
NFE-type electronic distribution is also present. The green/yellow
spheres correspond to the ions cut along planes that do not pass
through their centers.

close to the Fermi level, or despite the decreasing free-electron
behavior of the nonbubble electrons at these pressures (rel-
ative to liquid sodium at lower pressures), they effectively
contribute to the metallization too. However, such electron
bubbles ultimately dissipate with increasing temperatures, as
can be seen in Fig. 6, where the sharp spike in the ELF
histogram tail becomes similar to the behavior of liquid in
the ∼80 to ∼140 GPa range along the T = 2500 K isotherm.
This leads to the conclusion that even though the liquid metal
is metallic throughout the pressure domain up to ∼500 GPa,
there are regions in the liquid phase above the hP4-liquid por-
tion of the melt curve where there exists electron bubbles with
ELF ≈ 1, originating from the delayed dissipation of the lo-
calized paired electrons upon melting. Whether these electron
bubbles have an effect on the electro-optical properties or not

is explored in the ensuing discussion. In addition, it also needs
to be pointed out that the end result of the molecular-dynamics
simulations should not depend on the starting symmetry if the
target temperature is beyond the melt temperature, and if the
simulations are run for a long enough time such that target
parameters (P and T) equilibrate. For the purpose of validating
that, we did simulations starting with supercells built using
bcc and tI19 unit cells. In all such cases, we always observed
the formation of the electron bubbles with ELF ≈ 1.

For a better understanding of this conundrum, the angular
momentum (l)-decomposed electronic density of states are
analyzed. Figures 7(a)–7(e) show the evolution of the s, p,
and d components of the electronic DOS with increasing
pressure along the T = 2500 K isotherm. Since all of these
plots are normalized with respect to the number of atoms
in the respective supercell, they can be quantitatively com-
pared. Also, the radius of the projection sphere for computing
the partial DOS was set at 65% of the minimum ion-ion
neighbor distance at each density. This value was selected
after examining the variation of the l-decomposed DOS when
changing the projection sphere radius from 40 to 75% of the
minimum neighbor distance and ensuring that the sum of the
individual partial DOS was the total DOS. As is evident, the
relative contribution of the s orbitals below the Fermi level
gradually decreases with increasing pressure. However, there
is a corresponding increase in the contributions of both of
the p- and d states, manifested as p-d hybridization in the
solid phase [2,4]. Therefore, compressed sodium, whether in
the solid or liquid phase, behaves like a transition metal with
d-like electrons. The solid-phase electronic DOS is shown
in Fig. 7(f), which shows the d orbitals becoming dominant
in the solid phase. Such d orbitals contain the bulk of the
localized electron pairs in the solid phase and the electron
bubbles in the liquid phase, as we will show later. There is
also a noticeable increase in the share of p-orbital electrons
in the liquid-phase, as seen in Fig. 7(e), which is a result of
the delocalization of the p electrons in the ELF attractors.
The liquid-phase DOS in Fig. 7(e) shows the development
of a pseudogap, which implies that bonding exists in the
liquid phase. A pseudogap indicates hybridization between
the electronic orbitals and, therefore, corresponds to a splitting
between bonding and antibonding orbitals on either side of the
dip. This is in contrast to lower-pressure liquids which exhibit
NFE behavior with no bonding. Using post hoc rationalization
to determine the hybridization in the liquid phase by compar-
ing the slopes of the l-decomposed DOS, we conclude that
there is s-p hybridization in liquid sodium.

As a further proof of metallization, Fig. 8 shows the evolu-
tion of ac conductivity and reflectivity along (a), (c) the ρ =
5.872 g/cm3 isochore and (b),(d) the T = 2500 K isotherm.
All electro-optical calculations were performed with a Gaus-
sian width of 0.1 eV (convergence tests shown in sec. IV
of the Supplemental Material [26]) and anisotropy was not
considered. While moving along the isochore, there is a
marked change in the behavior of both reflectivity and ac
conductivity once melting takes place. The solid phase plots
in Figs. 8(a) and 8(c) have two prominent peaks, in which
the first one at ∼5 eV corresponds to the peak-peak interband
transition in the electronic density of states, as can be seen
in Fig. 2(b). This peak is characteristic for all insulators and
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FIG. 5. (a) All-volume ELF histogram, cumulative number of electrons, and charge-weighted all-volume ELF histogram along the T =
300 K isotherm shows the existence of a peak near ELF ≈ 1, corresponding to paired and localized interstitial electrons in the hP4 phase. The
peak near ELF ≈ 0.75 corresponds to the core electrons. (b) The same plots along the T = 2500 K isotherm, i.e., in the liquid phase, show a
similar trend, although the absolute charge value near the ELF ≈ 1 peak is lower than the corresponding isochoric solid-state point.

semiconductors with bound charges responding to an impulse
from an external electric field. However, all liquid-phase plots
in Figs. 8(a)–8(d) exhibit progressively more Drude-like be-
havior with increasing pressure, as is expected from NFE
metallic liquids. While observing the changes along the T =

2500 K isotherm in Figs. 8(b) and 8(d), it can be seen that
the dc conductivity (corresponding to E = 0 eV) decreases
with increasing pressure along an isotherm. Therefore, from
an electro-optical point of view, there is no evidence for a
first-order liquid-liquid transition arising out of abrupt

FIG. 6. All-volume ELF histogram, cumulative number of electrons, and charge-weighted ELF histogram along the ρ = 5.872 g/cm3

isochore at temperatures far higher than the melt point, demonstrating the dissipation of the localized electron pairs.
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FIG. 7. Evolution of calculated l-decomposed electronic density of states along the (a)−(e) T = 2500 K isotherm, compared to the (f) hP4
case at T = 300 K. The gray line is the Fermi-Dirac distribution function at the corresponding temperature.

changes in reflectivity and ac conductivity, at least along the
liquid isotherm under consideration.

In order to understand the relative contributions of elec-
trons in different orbitals to the dc conductivity, we rewrite
the Kubo-Greenwood formula (see Sec. I of the Supplemental
Material [26]) in its continuous form as

σ1(ω) ∼
∫

|∇(εi, ε j )|2 fFD(εi ) − fFD(ε j )

ε j − εi
g(εi )g(ε j )dε, (9)

where g(ε) is used to represent the electronic density of states.
From the equation above, we argue that the full width at half
maximum (FWHM) of the (−∂ fFD/∂ε) curve can be used
as a metric to estimate the range of ±(ε–EF ) values that
dominantly determines contribution to dc conductivity, which
in the case of the ρ = 5.872 g/cm3 and T = 2500 K point

corresponds to ωFWHM. The effective number of electrons neff

that contribute to the dc conductivity has been estimated using

neff = 2me

πe2N

∫ ωFWHM

0
σ (ω)dω (10)

to be 0.4585, out of which s, p, and d electrons in the 0 �
ω < ωFWHM region amount to 0.1569, 0.2232, and 0.0785,
respectively. The comparison clearly implies that the s-p hy-
bridized orbitals contribute predominantly (∼83%) to the dc
conductivity.

In order to better understand this differentiation between
s-p and d electrons, we resort to an analytic model. Here, we
consider one electron moving though a distribution of ions,
that populate the system with density ρ → ∞, as a source
of electronic localization. First, we use the Green function
for the Schrödinger equation in the Feynman path integral
representation [40]:

〈G(
r(0), 
r(t ); t )〉 =
∫∫∫




∫ 
r(t )


r(0)
exp

[
− i

h̄

∫ t

τ=0

{
1

2
m∗
̇r(τ )2 +

∑
j

U (
r(τ ) − 
Rj )

}
dτ

]
δ
r(τ )

∏
j

(
d 
Rj




)
, (11)

where m∗ is the effective mass of the electron; r and Rj represent the coordinate of the electron and ions, respectively; and 


represents the volume of the system. In the limit 
 → ∞, with density being finite, the integral over ionic positions can be
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computed. This leads to

〈G(
⇀

r (0),
⇀

r (t ); t )〉 =
∫ ⇀

r (t )

⇀
r (0)

exp

[
− i

h̄

∫ t

τ=0

1

2
m∗⇀̇

r (τ )2dτ + ρ

∫∫∫



d3
⇀

R

{
exp

[
− i

h̄

∫ t

τ=0
U (

⇀

r (τ ) − ⇀

R)

]
− 1

}]
δ

⇀

r (τ ). (12)

The electronic density of states g(E ) can thereby be obtained using r = r′ and performing a Fourier transform:

g(E ) =
∫ ∞

−∞
eiEt 〈G(0, t )〉dt . (13)

Here, 〈G(0, t )〉 is analytically continued for negative time and the integral can be evaluated using a Laplace transform with
t → it̃ as

g(E ) =
∫ c+i∞

c−i∞
e−Et̃ζ (t̃ )dt̃, (14)

where

ζ (t̃ ) =
∫ 
r(t̃ )


r(0)
exp

[
−1

h̄

∫ t̃

τ=0

1

2
m∗
̇r(τ )2dτ + ρ

∫∫∫



d3 
R
{

exp

[
−1

h̄

∫ t̃

0
U (
r(τ ) − 
R)

]
− 1

}]
δ
r(τ ). (15)

Now, in the limit ρ → ∞, 
r(t̃ ) can be approximated as
being extremely close to 
r(0), which implies electronic local-
ization. Then, the integrand of the second term in the above

expression can be rewritten as exp [ρ
∫∫∫



d3 
R exp {− t̃ U ( 
R)

h̄ }].

FIG. 8. All-direction averaged electro-optical properties along
the (a), (b) ρ = 5.872 g/cm3 isochore and the (c), (d) T = 2500 K
isotherm demonstrating Drude-like behavior with respect to both
reflectivity and ac conductivity in the liquid phase. The insulator-
to-metal transition is evident from (a) and (c), which demonstrates a
distinct qualitative change upon melting at Tm ≈ 2100 K that mani-
fests in the form of an abrupt jump in reflectivity along ν = 532 nm
(see inset).

The above equation, thus, can be expanded in
⇀

r (τ ) as

ζ (t̃ ) =
∫ 
r(t̃ )


r(0)
exp

[
−m∗

2h̄

∫ t̃

τ=0

̇r(τ )2 − ρUt̃

h̄
+ ρU 2t̃2

h̄2

− ρ

h̄2 U 2
g

∫ t̃

τ=0

∫ t̃

τ ′=0

1

3
{r(τ ) − r(τ ′)2dτdτ ′

]
δ
r(τ ),

(16)

where U = ∫
Ud3⇀

r , U 2 = ∫
U 2d3⇀

r , and U 2
g = ∫

(∇U )2d3
r.
This integral was evaluated with MATHEMATICA yielding the
following result:

g(E ) =
∫ c+i∞

c−i∞
exp

{
−

(
E − ρU

h̄

)
t̃ + ρU 2t̃2

h̄2

}

×
⎡
⎣sinh

⎧⎨
⎩
(

2ρU 2
g

3h̄m∗

)1/2

t̃
3
2

⎫⎬
⎭

(
3h̄m∗

2ρU 2
g

)1/2(
2π h̄

m∗

)⎤
⎦

−(3/2)

dt̃ .

(17)

Figure 9 depicts the electronic DOS of a free-electron gas
for two cases with effective mass of the conduction electron,
being the actual mass of the electron me and twice me, using
a model potential U (r) ∝ exp(−g(r)/kBT ), constructed from
the radial distribution function g(r) calculated from QMD at
T = 2500 K. It can be seen that in the case of localization
a depression occurs in the electronic DOS deviating from
the free-electron parabola. This depression has been referred
to as the plasmon onset for conduction electrons [41]. More
intense localization, corresponding to higher effective mass,
increases the density of states along with delaying the plasmon
onset and reduces the chance of hybridization. This will lead
to lower contribution of the said electrons to electro-optical
properties.

Whereas in the solid state, interstitial electrons are pre-
dominantly p-d hybridized, two separate phenomena take
place upon melting: (a) the thermal disorder in the ionic
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FIG. 9. Electronic density of states derived from our analytic
model using a potential obtained from NVT-QMD simulations
demonstrating the delay of the plasmon onset [39] with increasing
effective electron mass. The solid black line corresponds to the
free-electron parabola g(E ) = 1

2π2 ( 2m
h̄2 )3/2

√
E for spherical surfaces

of constant energy with radius in the k space of
√

2mE
h̄ .

configuration in liquids, vis-à-vis solids, leads to delocaliza-
tion [42] of the p electrons from the p-d hybridized ELF
attractors, alongside drastically increasing the s character; (b)
delayed plasmon onset for d electrons, beyond 6 eV, as can be
seen in Fig. 7(e) compared to s and p electrons, due to higher
effective mass caused by more localization. The combination
of these two effects reduces the contribution of the localized
d electrons in the liquid-phase electron bubbles, despite being
coalescent, to conductivity and prevents such electrons from
hybridizing.

IV. CONCLUSIONS

We have shown that sodium electride in the hP4 phase
can be classified as an insulator using the nearsightedness
of the one-particle density matrix as a quantitative criterion.
In such an insulator system, increasing temperatures along an
isochore progressively decreases the electronic band gap. This
decrease is primarily driven by the effect of ion dynamics in
the solid phase due to its unusual geometry. Upon melting,
however, there is a rapid insulator-to-metal transition. This

transition is accompanied by residual electronic localization
(d orbitals) in the form of electron bubbles and a change in
electronic orbital hybridization from p-d to s-p. The residual
electron bubbles are transient in thermodynamic space, and
increased temperatures dissipate the said bubbles when the
system thermalizes at temperatures away from near-melt con-
ditions. The change in hybridization stems from the fact that
increased localization tends to delay the plasmon onset of d
electrons, which decreases their likelihood of hybridization
and diminishes their role in electro-optical properties. Such
electro-optical properties also demonstrate an insulator-to-
metal transition upon melting, along with an unconventional
secondary peak in the solid state. However, one open question
left unanswered in this paper is the existence of a high-
temperature solid phase different from the hP4 phase. This
is not the case along the isochore starting from P = 320 GPa
at zero Kelvin, but at higher pressures, we speculate the exis-
tence of distorted hexagonal structures. Whether such phases
would be insulating or metallic is something worth exploring
as well in the future.
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