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Worm-algorithm-type simulation of the quantum transverse-field Ising model
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We apply a worm algorithm to simulate the quantum transverse-field Ising model in a path-integral
representation of which the expansion basis is taken as the spin component along the external-field direction. In
such a representation, a configuration can be regarded as a set of nonintersecting loops constructed by “kinks” for
pairwise interactions and spin-down (or -up) imaginary-time segments. The wrapping probability for spin-down
loops, a dimensionless quantity characterizing the loop topology on a torus, is observed to exhibit small
finite-size corrections and yields a high-precision critical point in two dimensions (2D) as hc =3.044 330(6),
significantly improving over the existing results and nearly excluding the central value of the previous result
hc =3.044 38(2). At criticality, the fractal dimensions of the loops are estimated as d�↓(1D)=1.37(1)≈ 11

8
and d�↓(2D)=1.75(3), consistent with those for the classical 2D and 3D O(1) loop model, respectively. An
interesting feature is that in one dimension (1D), both the spin-down and -up loops display the critical behavior
in the whole disordered phase (0�h<hc), having a fractal dimension d� =1.750(7) that is consistent with the
hull dimension dH = 7

4 for critical 2D percolation clusters. The current worm algorithm can be applied to simulate
other quantum systems like hard-core boson models with pairing interactions.

DOI: 10.1103/PhysRevB.102.094101

I. INTRODUCTION

The quantum transverse-field Ising model (QTFI) is a
textbook model in quantum many-body physics and plays
an important role in quantum phase transition [1] and quan-
tum information science [2]. The one-dimensional QTFI can
be solved exactly [3], and it has been widely used to test
theoretical or numerical methods [4,5] and to study novel
quantities like entanglement entropy [6,7] and quantum fi-
delity susceptibility [8]. In higher dimensions, analytical re-
sults are scarce, and one has to rely on numerical or ap-
proximate methods. Many methods have been developed,
including transfer-matrix method [9], series expansion [8,10],
continuous-time Monte Carlo approach [5,11–15], tensor
renormalization group method [16], density matrix renormal-
ization group [17], projected entangled-pair states [18], and
machine learning method [19,20], etc. Nevertheless, to obtain
a high-precision critical point still remains to be a challenging
task. To our knowledge, the best estimates of the critical point
for the 2D QTFI are 3.044 2(4) in Ref. [8] and 3.044 38(2) in
Ref. [5], achieved by stochastic series expansion (SSE) and
continuous-time Wolff cluster methods, respectively.

In this work, we apply a worm algorithm to simulate QTFI
in 1D and 2D. It is shown that as pointed out in Refs. [21,22],
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the worm algorithm exhibits efficiency comparable to cluster
schemes. A high-precision estimate of the square-lattice criti-
cal point is obtained as 3.044 330(6), significantly improving
the existing results and nearly excluding the central value of
3.044 38(2) [5]. In the path-integral representation for the cur-
rent worm algorithm, a configuration can be regarded as a set
of nonintersecting loops constructed by “kinks” for pairwise
interactions and spin-down (or -up) imaginary-time segments.
Rich geometric properties are observed for these loops. In par-
ticular, it is found that in 1D, the loops over a wide parameter
range exhibit scaling laws that are in the universality class of
the classical 2D percolation. Deep theoretical understanding
is desired. Further, a variety of physical quantities, including
the magnetic and the fidelity susceptibilities, are examined.

The rest of the paper is organized as following. Section II
explains the current path-integral representation for the QTFI
and the formulation of the worm algorithm. The numerical
results are presented in Sec. III. A brief summary is given in
Sec. IV.

II. WORM ALGORITHM

The Hamiltonian of the QTFI on the d-dimensional cubic
lattice is

H = −t
∑
〈i j〉

σ z
i σ z

j − h
∑

i

σ x
i , (1)
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FIG. 1. Illustration of path-integral configurations. (a) For
Eq. (1). Red (gray) segments represent the spin-up (-down) state.
(b) A G configuration for Eq. (8) in the rotated basis, having an open
path with the two ends marked as I and M. Blue (green) lines are for
pairing (hopping) kink. (c) A sketch of Z configuration on the 1D
torus, with a nonlocal loop of winding numbers (Wτ = 4, Wx =
1). For simplicity, the lattice structure is not shown.

where σα
i (α=x,z) are Pauli matrices, 〈i j〉 represents nearest-

neighboring sites, t >0 is the ferromagnetic interaction
strength, and h is the transverse field. Taking the σ z spin
component as the expansion basis for the path-integral repre-
sentation, one can map a d-dimensional QTFI onto a (d+1)-
dimensional classical system, for which each lattice site has a
continuous line of spin segments; see Fig. 1(a) for an example.
This continuous dimension is called the imaginary-time (τ )
direction, along which the spin state σ z

i can be flipped by the
σ x

i operator but must satisfy the periodic condition. The length
of the τ dimension is the inverse temperature β = 1/kBT (the
Boltzmann constant is set as kB = 1 from now).

To formulate a worm algorithm that is effective for config-
urations of closed loops, we choose the external-field direction
as the expansion basis and rewrite Hamiltonian (1) as

H ≡ K + U = −t
∑
〈i j〉

σ x
i σ x

j − h
∑

i

σ z
i . (2)

As a result, U and K are, respectively, the diagonal
and the nondiagonal terms. The pairwise interactions K =
−t

∑
〈i j〉 σ x

i σ x
j can be further expressed in terms of the raising

and lowering spin operators σ± = (σ x ± iσ y)/2, as

K ≡ K1 + K2

= −t
∑
〈i j〉

(σ+
i σ−

j + H.c.) − t
∑
〈i j〉

(σ+
i σ+

j + H.c.). (3)

The term K1 flips a pair of opposite spins and thus the total
magnetization is conserved along the τ direction, while K2

flips a pair of spins of the same sign. We note that with
the Holstein-Primakoff transformation, bi(b

†
i ) = σ−

i (σ+
i ) and

thus ni ≡ b†
i bi = (σ z

i + 1)/2, the QTFI can be mapped onto a
hard-core Bose-Hubbard (BH) model with Hamiltonian

H = −t
∑
〈i j〉

(b†
i b j + H.c.) − t ′ ∑

〈i j〉
(b†

i b†
j + H.c.) − μ

∑
i

ni,

(4)

where t ′ = t , the particle number ni = 0, 1, and the chemical
potential μ=2h. In the language of the hard-core BH model,
K1 accounts for the hopping of a particle, and K2, which
simultaneously creates/deletes a pair of particles, represents
the pairing of two neighboring bosons. For convenience, we

shall refer to K1 and K2 as the hopping and the pairing term,
respectively.

With Eq. (3), the partition function of Hamiltonian (2) can
be formulated in the Feynman’s path-integral representation
(also called the world-line representation) as

Z = Tr[e−βH ] =
∑
α0

〈α0|e−βH |α0〉

= lim
dτ= β

n
n→∞

∑
{αi}

〈α0|e−Hdτ |αn−1〉 . . . 〈α1|e−Hdτ |α0〉

=
∑
α0

∞∑
N=0

∫ β

0

∫ β

τ1

. . .

∫ β

τN−1

N∏
k=1

dτk F (t, t ′, h) (5)

with the integrand function

F (t, t ′, h)= tNht ′Np exp

(
−

∫ β

0
U (τ )dτ

)
, (6)

where Nh and Np are, respectively, the number of hopping
and pairing kinks (N = Nh +Np), |αi〉 = |σ z

1 , σ z
2 , . . . , σ z

N 〉
is an eigenstate in the σ z basis (N is the total number of
lattice sites). Moreover, Eq. (5) can be graphically viewed
as the summation/integration over configurations in the (d +
1)-dimensional space-time {i, τ }, of which the statistical
weight is

WZ(t, t ′, h) =
N∏

k=1

dτk F (t, t ′, h). (7)

In such a representation, each lattice site has a line of spin
segments, and at imaginary time τk (k = 1, 2, . . . ,N), a pair
of neighboring spins is simultaneously flipped either by a
hopping term K1 or by a pairing term K2. We shall call them
the hopping or the pairing kink, respectively. Starting from an
arbitrary space-time point (i, τ ), one would construct a closed
loop by following spin-up (-down) segments and kinks. Thus,
a configuration effectively consists of closed loops.

An important ingredient of the worm algorithm is then to
extend the configuration spaceZ for Eq. (5) by including two
defects. For the QTFI, the extended configuration space G is
for the spin-spin correlation function of the Pauli matrix σ x:

G(xI, xM, τI
, τ

M
)=Tr

[
Tτ

(
σ x

I
(τ

I
)σ x

M
(τ

M
)e−βH)]

, (8)

where Tτ is the τ -ordering operator. In addition to closed
loops, a path-integral configuration in the G space contains an
open path with two ending points; see an example in Fig. 1(b).
We shall refer to the ending points as “Ira” (I) and “Masha”
(M), and denote their coordinates in the space-time as (xI, τI)
and (xM, τM). The statistical weight of the G configuration can
be written as

WG = dτIdτM

ωG

N∏
k=1

dτk F (t, t ′, h), (9)

where F is given by Eq. (6) and ωG is an arbitrary positive
constant. When I coincides with M, the open path forms a
closed loop, and the G space is reduced to theZ space.

The full configuration space for the worm-type simulation
corresponds to the combination of the G and the Z spaces.
For ergodicity, the simulation must be able to change the
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FIG. 2. The three updates.

kink number, the space-time location of any kink as well
as of defects (I, M), and to switch configurations back and
forward between theZ and G spaces. We adopt the following
three updates: (a) create/annihilate defects (I, M), (b) move
imaginary time of defect M, and (c) insert/delete a kink. The
first operation switches configurations between the Z and
the G spaces by creating or annihilating a pair of defects
(I, M). The second updates the τM value, and the third changes
the xM value by inserting or deleting a kink. Except “create
defects (I, M),” all updates only apply in the G space, and each
of them is chosen with an a priori probability given before
simulation.

(a) Create/annihilate defects (I, M). If the current configu-
ration is in theZ space, “create defects (I, M)” is the only pos-
sible update. One randomly picks up a point (xI, τI) from the
whole space-time volume βN =βLd , draws a uniformly dis-
tributed imaginary-time displacement δ∈ [−τa/2, τa/2) and
δ �= 0 with the range τa ∼ O(1/h) [23], assigns xM = xI and
τM = mod(τI + δ, β ), and flips the spin state between defects
I and M. The β periodicity is taken into account by the modular
function. As illustrated in Fig. 2(a), the types (hopping or pair-
ing) of kinks between defects I and M, if any, are interchanged
during this operation.

The update “annihilate defects (I, M),” the reverse oper-
ation of “create defects (I, M),” is chosen with an a priori
probability Aa in the G space. It changes a G configuration
into a Z one by annihilating defects (I, M) and flipping the
spin state in-between. This is possible only if I and M are
on the same world line xI = xM and their imaginary-time
displacement min {|τI − τM|, β − |τI − τM|} � τa/2.

Accordingly, the detailed-balance condition reads as

dτI

βN

dτM

τa
WZPcrea = AaWGPanni, (10)

where Pcrea (Panni) is the acceptance ratio for the “create
defects” (“annihilate defects”) operation, WZ (WG) is the
statistical weight for the configuration before (after) the cre-
ation of defects, and dτI/(βN ) and dτM/τa account for the
probability of choosing the space-time location for I and M,
respectively.

Making use of Eqs. (7) and (9), the acceptance probabilities
for the Metropolis filter can be calculated as

Pcrea = min

[
1,Aa τa

βN

ωG

Fnew

Fold

]
,

(11)

Panni = min

[
1,

1

Aa

1

τa

ωG

βN

Fnew

Fold

]
,

where Fnew and Fold, given by Eq. (6), is respectively for the
configuration after and before the corresponding operation.
Note that the statistical-weight change Fnew/Fold is mainly de-
termined by the random displacement |δ| � τa/2. As a result,
the acceptance probabilities in Eq. (11) can be optimized by
tuning τa.

A natural choice for the relative weight is ωG = βN since
the acceptance probabilities in Eq. (11) then hardly depend
on L and β. Physically, this is because the spin-spin corre-
lation function G(x

I
, x

M
, τ

I
, τ

M
) has the space-time translation

invariance so that the statistical weight of a G configuration
should be normalized by the factor 1/ωG = 1/(βN ). Further,
with this choice, the number of Monte Carlo steps between
two adjacent creations of (I, M), called the worm-return time,
measures the ratio of the G space over the Z space, and
exactly gives the dynamic magnetic susceptibility of the QTFI
which is stated explicitly in Sec. III C.

(b) Move imaginary time of defect M. The update, reverse
to itself, is chosen with a probability Ab in the G space.
One randomly selects a time displacement δ ∈ [−τb/2, τb/2)
and δ �= 0 assigns τ ′

M = mod(τM + δ, β ) for the new temporal
location of defect M, and flips the spin states in-between; see
Fig. 2(b). The types of in-between kinks are also interchanged.
The acceptance probability is

Pmove = min {1, Fnew/Fold}. (12)

(c) Insert/delete a kink. Each operation is chosen with a
probabilityAc in theG space. In “insert a kink,” one randomly
chooses one of the zd =2d neighboring world lines of xM, say
x′
M, and updates the spatial location of M as (xM, τM)→ (x′

M, τM).
Meanwhile, one inserts a kink k between world lines xM and
x′
M at imaginary time τk = mod(τM + δ, β ), with a random

displacement δ ∈ [−τc/2, τc/2) and δ �= 0. Further, the spin
states between τM and τk , on both xM and x′

M, are flipped which
causes the types of in-between kinks, linking xM and x′

M, to
stay the same. However, the types of in-between kinks are
interchanged if they link some other world lines to xM or x′

M.
An example is illustrated in Fig. 2(c).

In the reverse operation, “delete a kink,” one also picks
up a random neighboring world line x′

M of xM and moves M
as (xM, τM) → (x′

M, τM). Further, one counts the number nk of
kinks that connect world lines xM and x′

M in the imaginary-time
domain [τM − τc/2, τM + τc/2). If no kink exists nk = 0, the
operation is rejected. Otherwise, one randomly picks up one
of the nk kinks and deletes it, and meanwhile flips the spin
states on both world lines between τM and the imaginary time
of the deleted kink. Besides types of kinks linking xM or x′

M to
other world lines are interchanged as well.

The detailed balance condition of this pair of operations
reads as

Ac
1

zd

dτk

τc
WPinse = Ac

1

zd

1

nk
W+Pdele, (13)
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where Pinse (Pdele) is for the acceptance ratio for “insert a
kink” (“delete a kink”). The statistical weights W and W+,
given by Eq. (9), are respectively for the configuration before
and after inserting a kink. The infinitesimal dτk on the left-
hand side is canceled by W+, which has one more kink. The
acceptance probabilities are then

Pinse = min

[
1,

τc

nk +1

Fnew

Fold

]
,

(14)

Pdele = min

[
1,

nk

τc

Fnew

Fold

]
,

where nk denotes the number of in-between kinks for the
current configuration. The denominator nk + 1 in Pinse reflects
an extra kink in the updated configuration.

The worm algorithm is then formulated as in Algorithm 1,
in which a priori probabilities satisfy Aa +Ab + 2Ac = 1.
It is mentioned again that the acceptance probabilities in the
updates can be optimized by tuning the ranges of random τ

displacement, τa, τb, and τc. As its analog for the classical
Ising model which carries out a weighted random walk over
the lattice, the defect M in this quantum Monte Carlo method
effectively performs a random walk in the space-time and
simultaneously updates the spin states it passes by.

For the conventional BH model which does not have the
pairing term, the interchange between the hopping and pairing
kink cannot be allowed. For “create/annihilate defects” and
“move imaginary time of M,” the above illegal updates can
be avoided when performing these operations only within a
larger spin segment. In “insert/delete a kink,” the simplest
remedy is that the proposed update is rejected as long as
it leads to an illegal configuration, giving a price that the
acceptance probabilities are decreased by a factor of O(1/h).
As a more sophisticated remedy, one can reformulate the
operation in a way such that no illegal configuration would be
introduced.

Finally, for the computational efficiency, it is important to
implement hash tables such that each operation is done within
O(1) CPU time.

III. NUMERICAL RESULTS

In the absence of the external field (h = 0), the spin-up and
-down states are fully balanced in the QTFI (2). As h turns on,
the system evolves into a disordered phase with the spin-down
state being suppressed and the spin-up order still not formed
(h < hc). It enters into the spin-up ordered phase (h > hc)
through a second-order quantum phase transition. The critical
point is exactly known as hc/t = 1 in 1D and numerically
determined as hc/t ≈ 3.044 in 2D (square lattice). Without
loss of generality, the pairwise interaction is set as t =1 from
now unless stated explicitly.

Using the worm algorithm, we simulate the 1D and 2D
QTFIs with linear lattice size L and inverse temperature β =
L; the choice of β = L is due to the dynamic critical exponent
z = 1 for the QTFI. Periodic boundary conditions are applied
in each spatial direction, so that the lattice is essentially a
torus. The linear size is taken up to L = 512 in 1D and L =
128 in 2D, and no severe critical slowing down is observed. A
variety of geometric and physical quantities are sampled. To

locate the phase transition hc, we make use of the topological
properties of the nonintersecting loops on the torus, instead of
the scaling behaviors of physical quantities like the magnetic
susceptibility.

A. Critical point

Given a Z configuration, we record how many times
W�

i � 0 each loop � winds along the ith direction (i =
1, 2, . . . , d ), and calculate the total winding number Wi =∑

�W�
i from all the loops; see Fig. 1(c) for an illustration.

A path-integral configuration is said to wrap along the ith
direction as long as Wi > 0. This is indicated as Ri = 1;
otherwise, Ri = 0. The average wrapping probability R =
(1/d )

∑
i〈Ri〉 is then calculated, with 〈·〉 representing the

ensemble average. In the sub-percolating phase, the loops
are too small to percolate, and the R value quickly drops to
0 as L becomes larger. In the superpercolating phase, there
is at least one giant loop with large W�

i , and the R value
rapidly converges to 1. At the percolation threshold, the R
values for different system sizes L have an asymptotically
common intersection with a nontrivial value between 0 and
1. In short, the wrapping probability R is a dimensionless
quantity characterizing the topological feature of loops on
torus. In many cases, such wrapping probabilities are found
to exhibit small finite-size corrections, and have been widely
used for locating critical points [24–28].

Algorithm 1 Worm algorithm

BEGIN: Given aZ configuration.
loop

if it is aZ configuration
choose the “create defects (I, M)” operation

else
choose an operation with its a priori probability except
“create defects (I, M)”

end if
calculate the acceptance probability P and carry out the
operation with the probability P

end loop

For the QTFI, two types of nonintersecting loops, spin-up
(↑) or -down (↓) loops, can be constructed. The Monte Carlo
(MC) results in Fig. 3 show that irrespective of the spatial
dimension (1D or 2D), both the spin-up and -down loops
display critical behaviors near the quantum critical point hc.
In 1D, particularly rich behaviors are observed. In the whole
disordered phase (0 � h < hc), both R↑ and R↓ have nontriv-
ial values, 0 < R↑(R↓) < 1, indicating the fractal structures
of these loops. At the transition point h = hc, the R↑ and
R↓ values have a sharp drop, which becomes infinitely sharp
for L → ∞. For h > hc, the R↓ value drops to 0, meaning
that the spin-down loops are too small to percolate, while
the R↑ value converges to nontrivial value if h is not too
large, suggesting that the spin-up loops still exhibit fractal
properties. Nevertheless, as h is further increased, the R↑ value
also gradually approaches to 0. This is understandable because
the number of kinks decreases when h increases, and thus
the spin loops are less likely to percolate. In 2D, the R↑ and
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FIG. 3. Wrapping probabilities R↑ and R↓ versus the transverse
field h. The error bars are much smaller than the size of points. The
vertical black lines indicate the critical point. (a), (b) are for 1D, and
(c), (d) are for 2D. The inset plots of (a) and (b) show the curve near
hc = 1.

R↓ values converge to 1 in the disordered phase 0 � h < hc,
suggesting a superpercolating phase both for the spin-up and
-down loops. For h > hc, the R↓ value quickly reaches 0, but
R↑ seems to converge to 1 for L → ∞. At h = hc, the R↓ value
has a sharp drop, and the derivative of R↑ with respect to h
probably also develops a singularity as L increases.

Extensive simulations are then carried out at h = hc = 1 in
1D and h = 3.04435 in 2D, and the data nearby are obtained
by the standard reweighting technique [29]. The system size
is taken as L = 16, 64, 256, 512 in 1D, with at least 4 × 108

samples for each L, and L = 8, 16, 32, 64, 128 in 2D, with at
least 1 × 108 samples for each L.

According to the least-squares criterion, the R↓ data, partly
shown in Figs. 4 and 5, are fitted by

R↓ = R↓,c +
2∑

k=1

ak (h − hc)kLkyt + biL
yi + b2Ly2 . (15)

The thermal renormalization exponents are fixed at the known
values in the classical (d + 1) Ising universality, i.e., yt (1D) =
1 and yt (2D) = 1.5868 [30]. The term with bi comes from
the leading irrelevant thermal field, which has the exponent
yi(1D) = −2 and yi(2D) = −0.821 [28,30]. The subleading
correction exponents are set as y2(1D) = −3 and y2(2D) =
−2. As a precaution, we gradually increase Lmin and exclude
the L < Lmin data from the fit to see how the ratio of the
residual χ2 to the degree of freedom changes with Lmin.

In 1D, it is found that the MC data for Lmin = 64 can be
well described by Eq. (15) without the correction-to-scaling
term (b2 = 0). The fit yields hc = 1.000 001(5), in excellent
agreement with the exact quantum critical point hc = 1. Also,
we have R↓,c = 0.4995(3), which suggests that it might ex-
actly be 1

2 ; see the inset of Fig. 3(b).
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FIG. 4. Wrapping probability R↓ in 1D. The gray band indicates
an interval of 2σ above and below the estimate hc = 1.000 001(5).
The yellow band indicates an interval of 2σ above and below the
estimate Rc = 0.4995(3). The inset shows R̃↓ = R↓ − Rc − biLyi

versus (h − hc )Lyt , with a1 = −0.1625(9), a2 = −0.34(13), bi =
4.3(1.5), yi = −2, and yt = 1.

In 2D, an eye-view fitting of the R↓ data in Fig. 5 already
gives the critical point approximately as hc ≈ 3.044 33, with
uncertainty at the fifth decimal place. We find that it is
sufficient to describe these data by Eq. (15) with a2 = 0 which
means the fit is linear and for Lmin = 16, b2 can also be set to
zero. The fit gives R↓,c = 0.528 1(14) and hc = 3.044 330(6).
To test the reliability of the value and the error bar of hc,
we plot in Fig. 6 the R↓ data against L at some fixed h near
hc. It can be seen that at h= hc =3.044 330, the wrapping
probability R↓ converges to a constant value within the 2σ

shadow area in Fig. 6. In contrast, as L increases, the R↓ data

0.51

0.52

0.53

0.54

3.04415 3.04425 3.04435 3.04445 3.04455

2D

-0.01

0.00

0.01

-0.1 0.0 0.1

R↓

h

16
32
64

128

0.5281

fit

R̃↓
vs.

(h − hc)Lyt

FIG. 5. Wrapping probability R↓ in 2D. The gray band indicates
an interval of 2σ above and below the estimate hc = 3.044 330(6).
The yellow band indicates an interval of 2σ above and below the es-
timation Rc = 0.528 1(14). The inset displays R̃↓ = R↓ − Rc − biLyi

versus (h − hc )Lyt , with a1 = −0.0855(8), bi = −0.031(8), yi =
−0.821, and yt = 1.568.
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FIG. 6. Plot of R↓ versus L for various values of h for the 2D
QTFI. The yellow strip indicates an interval of 2σ above and below
the estimate R↓,c = 0.528 1(14). The solid lines are plotted according
to the fitting result.

for h = 3.044 300 and 3.044 360 bend upward and downward,
respectively, suggesting that they are clearly away from the
thermodynamic critical point. For h = 3.044 38, which is
the estimated central value of the critical point in Ref. [5], the
downward bending is stronger, meaning that it cannot be the
critical point. Table I gives a (incomplete) list of the existing
results for hc in 2D. It is clear that our estimate has the highest
precision.

We now briefly discuss the efficiency of the current worm
algorithm, which is already reflected by the precision of the
estimated critical point hc. For a quantitative evaluation, we
calculate at criticality the integrated autocorrelation times τint

for the energy E, magnetization M, and kink number Nk ,
in the unit of MC sweeps. A MC sweep is defined such
that on average, each imaginary-time spin line is updated by
βt times. From the least-squares fitting τ ∝ LzO , we obtain
the dynamical exponent as zE = 0.38(3), zM = 0.35(3), and
zNk

= 0.41(3) for 1D, and zE = 0.28(3), zM = 0.23(4), and

TABLE I. Estimated critical point hc on the square lattice. CMC:
cluster Monte Carlo method; SSE: stochastic series expansion; S-W:
Swendsen-Wang in continuous time; HOSVD: tensor renormaliza-
tion group method based on the higher-order singular value decom-
position; iPEPS: infinity projected entangled-pair state; MERA: mul-
tiscale entanglement renormalization ansatz; CTM: corner transfer
matrix.

Method hc

This work 3.044 330(6)
CMC [5] 3.044 38(2)
SSE [8] 3.044 2(4)
S-W [11] 3.044(1)
HOSVD(D=14) [16] 3.043 9
iPEPS [31] 3.04
MERA [32] 3.075
CTM [33] 3.14
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0.6
0.8
1.0

FIG. 7. The largest-loop size S1↑ and S1↓ versus L at h =
0.4, 0.6, 0.8, 1.0, 1.2 for 1D. For S1↑, the straight lines have a slope
7
4 , irrespective of the h value. For S1↓, the lines have slope 7

4 for
h < hc and 11

8 for h = hc.

zNk
= 0.30(3) for 2D. The efficiency of the worm algorithm is

comparable to that of the Wolff-type cluster method [5]. Note
that as the spatial dimension increases, all the values of zO de-
crease. From the numerical results of the worm algorithm for
the classical Ising model [21,34], we expect zO = 0 (without
critical slowing down) for d � dc, where dc = 3 is the upper
critical dimensionality for the QTFI.

B. Geometric properties of loops

We have determined the quantum critical point hc with a
high precision by locating the percolation threshold of the
loop configurations. Hereby, we shall further explore other
geometric properties of the spin-up and -down loops at and
away from hc. In the Z space, we measure the average
length S1 of the largest loop and the probability distribution
that a randomly chosen loop is of size s, i.e., P(s, L) ≡
(1/N�(L))∂N�(s, L)/∂s, where N�(L) ∼ βLd is the total num-
ber of loops and N�(s, L) is the number of loops of size in
range (s, s + ds).

In 1D, one knows from Fig. 3 that for the whole region
0 � h � hc, both the spin-up and -down loops exhibit critical
scaling behaviors. For the spin-up loops, such fractal prop-
erties further survive in the ordered phase h > hc. In these
cases, we expect that the largest-loop size scales as S1 ∝ Ld� ,
where d� < (1 + 1) is the loop fractal dimension, and that the
loop-size distribution behaves as [35,36]

P(s, L) ∼ s−τ f (s/Ld� ), (16)

where τ is called the Fisher exponent. Moreover, the expo-
nents τ and d� are related by the hyperscaling relation τ =
1 + (d + 1)/d�. The function f (x ≡ s/Ld� ) is universal and
describes the finite-size cutoff of s near S1 ∼ Ld� .

We simulate at h = 0.4, 0.6, 0.8, 1.0, 1.2 and the results
are shown in Fig. 7. The straight lines in the log-log plot
suggest that indeed, the largest loop has a fractal structure.
For the spin-up loops, irrespective of the h value, the straight
lines have the same slope approximately as 7

4 . Further, the
amplitude of the power law S1↑ ∼ L7/4 increases as a function
of h, at least in the range of 0.4 � h � 1.2. In contrast, as h
increases, the largest-loop size S1↓ decreases and then drops
to a significantly smaller value at h = hc. Further, while the
lines for h < hc still have a slope near 7

4 , the line for h = hc

has a smaller slope which is about 11
8 . This suggests that

the spin-down loops start with a dense and critical phase for
h < hc, experience a critical state at h = hc, and then enter
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TABLE II. Estimates of d�↑ and d�↓ at different h in 1D.

h 0.4 0.6 0.8 1.0(hc) 1.2

d�↑ 1.754(6) 1.750(5) 1.747(5) 1.750(6) 1.751(3)
d�↓ 1.751(5) 1.749(7) 1.750(7) 1.37(1)

into a sparse phase containing enormous small loops. The S1

data for both the spin-up and -down loops are fitted by

S1 = Ld� (a0 + b1Ly1 ), (17)

with different choices of the correction exponent y1 =
−0.5, −1.0, or −1.5. We find that the fits are rather stable,
and the results are shown in Table II.

We notice that the configuration of the classical O(n)
loop model on the honeycomb lattice also consists of non-
intersecting loops [37–39]. Moreover, the O(n) loop model
with n = 1 corresponds to the 2D Ising model, and has a
hull/loop dimension as dhull = 11

8 at the critical point xc =
1/

√
2 + √

2 − n = 1/
√

3 and dhull = 7
4 in the dense phase

x > xc, where x is the statistical weight for each loop unit
[37–39]. These behaviors are very similar to those of the
spin-down loops for the 1D QTFI. Accordingly, we conjecture
that in 1D, the fractal dimensions d�↓(h = hc) = 1.37(1) and
d�↓(h < hc) = 1.750(6) are exactly identical to 11

8 and 7
4 ,

respectively. We also conjecture that the fractal dimension
d�↑ = 1.747(5), which is independent of the h value, is also
exactly equivalent to 7

4 . Further, it is noted that by the duality
relation, the loops on the honeycomb lattice can be mapped
onto the boundaries of the spin domains for the Ising model on
the triangular lattice. In the dense phase x > xc, these domains
are simply critical site-percolation clusters. Therefore, we ex-
pect that the domains, enclosed by the spin-up or -down loops,
are also fractal and have a fractal dimension corresponding
to that for critical Ising spin domains or percolated clusters
in 2D.

To further demonstrate the fractal structure of the spin-up
and -down loops in 1D, we display in Fig. 8 the MC data
for the loop-size distribution P(s, L). Indeed, one observes
algebraically decaying behaviors s−τ for the spin-up loops
with h = 0.8, 1.0, 1.2 and for the spin-down loops with h =
0.8, 1.0. The cutoff size of s for the power-law scaling, due
to finite-size effects, increases as the system size L. The
hyperscaling relation τ = 1 + (d + 1)/d� is well confirmed
by the fact that the data for different L collapse onto the
straight lines with slope − 15

7 or − 27
11 . For the spin-down loops

in the ordered phase h = 1.2, the P(s, L) data for different L
drop quickly, illustrating that the loop sizes are finite even in
the thermodynamic limit L → ∞. We further plot sτ P(s, L)
versus s/Ld� in Fig. 9. With the values of (d�, τ ) as ( 7

4 , 15
7 ) or

( 11
8 , 27

11 ), the data for different L collapse well onto a single
curve, illustrating the universal feature of the cutoff function
f (x). It is interesting to see that for the spin-down loops at h =
hc, function f (x) displays a two-peak structure [Fig. 9(b′)].
We regard that the first peak at the smaller value of x reflects
the residual effect of the spin-down loops in the disordered
phase h < hc. Meanwhile, it is observed that for the spin-up
loops with h = 1.2, function f (x) exhibits a shoulder feature
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FIG. 8. Loop-size distribution P(s, L) for different h values in
1D. The figures in the left (right) panel are for the spin-up (-
down) loops, and the first, second, and third rows correspond to
h = 0.8, 1.0, 1.2, respectively. The straight lines, with slope − 15

7 or
− 27

11 , are a guide for the eye.
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FIG. 9. P(s, L)sτ versus s/Ld� in 1D. The plots in the left (right)
panel are for the spin-up (-down) loops, and the first, second, and
third rows correspond to h = 0.8, 1.0, 1.2, respectively. The values
of d�↑ and d�↓ are listed in Table II, and the τ value is calculated
from the hyperscaling relation τ = 1 + (d + 1)/d�.
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FIG. 10. Worm-return time at criticality hc. The straight lines,
with slope 2yh − (d + 1), are a guide for the eye.

on the smaller-x side. We expect that as h increases, such
a shoulder feature would become more pronounced and its
location would move toward the value x = 0. This is because
that as h is enhanced, the number of kinks will be gradually
suppressed and the sizes of the spin-up loops will eventually
start to decrease. In the limiting case h → ∞, all the spin-
up loops will become individual imaginary-time lines with
length β.

In 2D, the spin-down loops are fractal only at h = hc, and
the spin-up loops are always in a superpercolating phase.
The fit of the S1↓ data by Eq. (17) gives d�↓ = 1.75(3).
Again, this is in excellent agreement with the loop dimension
dhull = 1.734(4) for the classical O(n = 1) loop model on the
3D hydrogen-peroxide lattice [40], on which the loops are
also nonintersecting. As expected, for the spin-down loops at
h = hc = 3.044 330, the loop-size distribution P(s, L) follows
Eq. (16).

C. Worm-return time

The worm-return time Tw is the average update steps
between two adjacent Z configurations in the markov chain
MC simulation. Mathematically, it can be expressed as the
integral of spin-spin correlation function (8) over the lattice
and the imaginary time as

Tw = 1

ωGZ
Tr

⎡
⎣Tτ

∫ β

0

∫ β

0
dτ

I
dτ

M

∑
x
I
,x

M

σ x
I

(τ
I
)σ x

M
(τ

M
)e−βH

⎤
⎦

= 1

ωGZ
Tr

⎡
⎣(∫ β

0
dτ

∑
i

σ x
i (τ )

)2

e−βH

⎤
⎦

= 1

ωGZ
Tr

[(∫ β

0
dτ Mx(τ )

)2

e−βH

]
. (18)

With the choice of ωG = βN , the worm-return time Tw is
precisely equal to the dynamic magnetic susceptibility χ xx =
〈[∫ β

0 dτ Mx(τ )]2〉/βN . Figure 10 shows the Tw data at h = hc

for both 1D and 2D, which are fitted by

Tw = L2yh−(d+1)(a0 + biL
yi ). (19)

In 1D, the fit with yi = −2 gives yh = 1.876(2), in excellent
agreement with the exact value 15

8 . In 2D, we set yi = −0.821
[30] and obtain yh = 2.484(4), which is again well consistent
with the result yh = 2.4816(1) for the classical 3D Ising
model [30].
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FIG. 11. Fidelity susceptibility χF (t ) versus t , with (a) for 1D
and (b) for 2D. The black solid lines indicate the critical points
tc(1D) = 1 and tc(2D) = 1/3.044 330. The insets show χF /L2yt ver-
sus (t − tc )Lyt which indicate the universality of the function fχF

(x).

D. Fidelity susceptibility

It is well known that many systems can undergo quantum
phase transitions without spontaneous symmetry breaking
and thus without a good definition of local order parame-
ter. These phase transitions are beyond the Ginzburg-Landau
paradigm, and are difficult to be detected by conventional
thermodynamic observables. Fidelity susceptibility, a quantity
proposed in the quantum information science [41], has been
shown to be useful for such a purpose [8,42–45]. Consider
a quantum phase transition driven by some given parameter
λ and let |φ(λ)〉 represent the corresponding wave function,
the fidelity F (λ, ε) of the system is defined as the overlap
between the wave functions with different values of λ, i.e.,
F (λ, ε) = |〈φ(λ)|φ(λ + ε)〉|. Accordingly, the fidelity sus-
ceptibility χF (λ) is calculated as

χF (λ) = − ∂2 ln F(λ, ε)

∂ε2

∣∣∣∣
ε=0

. (20)

For the QTFI, we hereby choose the driving parameter λ to be
the pairwise interaction t , which is conjugate to the number of
kinks Nk . Given a Z configuration, let Nk,1 and Nk,2 denote
the total number of kinks in the first-half imaginary-time
domain 0 � τ < β/2 and the second-half one β/2 � τ < β,
respectively. It can be shown by following Ref. [43] that the
fidelity susceptibility χF (t ) is proportional to the covariance
of Nk,1 and Nk,2, and can be written as

χF (t ) = 〈Nk,1Nk,2〉 − 〈Nk,1〉〈Nk,2〉
2t2

, (21)

where the external field h is now set to be 1. The MC data
of χF (t ) for the 1D and 2D QTFIs are shown in Fig. 11.
As expected, the χF (t ) data for each L display a peak near
the critical point tc. As system size L increases, the peak
location tL , called the pseudocritical point, moves toward the
thermodynamic critical point tc, and the peak itself becomes
sharper with a smaller width. Following the standard finite-
size scaling analysis, we expect that near the critical point tc,
the fidelity susceptibility χF scales as

χF (t, L) = L2yt fχF
(Lyt (t − tc)). (22)

Indeed, making use of yt (1D) = 1 and yt (2D) = 1.5868, we
obtain a good collapse when plotting χF /L2yt versus (t −
tc)Lyt , as shown in the insets of Fig. 11.

For the fidelity F (λ, ε), we can also choose the driving
parameter to be the external field h for the QTFI, which is
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conjugate to the σ z-component magnetizationM. In this case,
we should consider the magnetization M1 for 0 � τ < β/2
andM2 for β/2 � τ < β, and the fidelity susceptibility χF (h)
would be proportional to the covariance ofM1 andM2. At the
critical point, we expect χF ∝ L2yh .

While Fig. 11 illustrates the applicability of the fidelity
susceptibility χF as a tool for studying the quantum phase
transition, it is worth mentioning that by calculating the
covariance of two quantities of the same kind but in sepa-
rated spatial/imaginary-time domains, χF normally has large
fluctuations. Thus, to achieve a good statistics for χF would
require extensive simulations.

IV. DISCUSSION

We formulate a worm-type algorithm and study the QTFI
in a path-integral representation in which configurations are
sets of nonintersecting loops. By locating the percolation
threshold of loop configurations via the so-called wrapping
probability, we obtain a high-precision quantum critical point
hc = 3.044 330(6) for the QTFI on the square lattice. These
nonintersecting loops are further observed to exhibit rich ge-
ometric properties, particularly in 1D, where both the spin-up
and -down loops have fractal structures over a wide parameter
range. By examining the similarity of the scaling behaviors
for the d-dimensional QTFI and for the (d + 1)-dimensional
classical O(n = 1) model, we conjecture that in 1D the two
fractal dimensions are d�↓(hc) = 11

8 and d�↓(h < hc) = 7
4 , and

that in 2D, d�↓(hc) = 1.75(3) is equal to the hull dimension
dhull = 1.734(4) for the classical 3D loop model. The finite-
size scalings of magnetic and fidelity susceptibilities are also
examined. It is confirmed that the fidelity susceptibility can be
used to probe quantum phase transitions.

Motivated by the fact that the classical O(1) loop model
is a specific case of the O(n) loop model with n = 1, we can
generalize the loop path-integral representation of the QTFI
by giving each spin-down loop a statistical weight n. As a
consequence, the partition function (5) is generalized to be

Z(t, t ′, h, n) =
∑
{α0}

∞∑
N=0

∫ β

0

∫ β

τ1

. . .

∫ β

τN−1

N∏
k=1

dτi

×nN�↓ tNh t ′Np e− ∫ β

0 U (τ )dτ

= C
∑
{α0}

∞∑
N=0

∫ β

0

∫ β

τ1

. . .

∫ β

τN−1

N∏
k=1

dτi

×nN�↓ tNh t ′Np (e−2h)S�↓ , (23)

where C = ehβN , N�↓ specifies the number of spin-down
loops, and S�↓ is the total length of spin-down loops. We
expect that for t = t ′, the phase transition of such a “quantum
O(n) loop” model in d dimensions will belong to the same
universality class as that for the classical O(n) loop model in
(d + 1) dimensions. In 1D, we further expect that the exact
value of the quantum critical point hc(n) can be obtained for
the “quantum O(n) loop” model, and that the spin-down loops
would exhibit rich geometric properties both at criticality
hc(n) and in the disordered phase h < hc. In particular, for
(d = 1, n = 2), the phase transition would be of the cele-
brated Berezinskii-Kosterlitz-Thouless topological transition.
All these expectations can be explored by the current worm-
type algorithm, and remain to be a future work.

The efficiency of the current worm algorithm implies its
broad applications in a variety of spin and hard-core systems.
A straightforward application is to simulate the QTFI on other
lattices regardless of dimensionality. For the high dimension
d � 3, one expects very minor or absent critical slowing
down, and thus interesting logarithmic corrections can be
examined. It can be also of significant relevance in solid-state
experiments since the pairing terms σ+

i σ+
j and σ−

i σ−
j are

found to occur in frustrated quantum materials due to the
dipolar-octupolar doublets [46–60]. Further, in addition to the
external field h, one can introduce pairing interaction σ z

i σ z
j

along the σ z direction, which can be either ferromagnetic
or antiferromagnetic. This allows the worm-type study of
quantum spin systems with geometric frustration with respect
to the σ z component. In combination with the so-called clock
Monte Carlo method [61], one can even study spin systems
with long-range σ z

i σ z
j interaction without heavy computa-

tional overhead. Finally, we mention that a similar worm
algorithm has recently been used in the SSE representation of
the hard-core bosonic Hubbard model with pairing terms [62].
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