
PHYSICAL REVIEW B 102, 085437 (2020)

Quantum paracrystalline shear modes of the electron liquid

Jun Yong Khoo ,1 Po-Yao Chang,2,1 Falko Pientka,3,1 and Inti Sodemann1

1Max-Planck Institute for the Physics of Complex Systems, D-01187 Dresden, Germany
2Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan

3Institute of Theoretical Physics, Goethe University, 60438 Frankfurt a.M., Germany

(Received 6 February 2020; revised 9 June 2020; accepted 11 August 2020; published 31 August 2020;
corrected 13 October 2020)

Unlike classical fluids, a quantum Fermi liquid can support a long-lived and propagating shear sound wave at
arbitrarily small wave vectors and frequencies, reminiscent of the transverse sound in crystals, despite lacking
any form of long-range crystalline order. This mode is expected to be present in moderately interacting metals
where the quasiparticle mass is renormalized to be more than twice the bare mass in two dimensions (2D), but
it has remained undetected because it is hard to excite since it does not involve charge density fluctuations,
in contrast to the conventional plasma mode. In this work we propose a strategy to excite and detect this
unconventional mode in clean metallic channels. We show that the shear sound is responsible for the appearance
of sharp dips in the ac conductance of narrow channels at resonant frequencies matching its dispersion. The liquid
resonates while minimizing its dissipation in an analogous fashion to a sliding crystal. Ultraclean 2D materials
that can be tuned toward the Wigner crystallization transition such as silicon metal-oxide-semiconductor field-
effect transistors, MgZnO/ZnO, p-GaAs, and AlAs quantum wells are promising platforms to experimentally
discover the shear sound.
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I. INTRODUCTION

Ordinary classical fluids only display one kind of sound
waves that correspond to longitudinal compressional oscil-
lations of the fluid [1]. On the other hand, classical solids
display transverse waves as well, which originate from their
finite restoring force to shear deformations [2]. Quantum
Fermi fluids can dramatically differ from this paradigm by
displaying long-lived and propagating collective shear sound
waves at arbitrarily small frequency and wave vector while
lacking any form of static crystalline order [3–7].

To this date there is no report of the observation of these
shear sound waves of electrons in metals, and a pioneering
attempt to detect them in 3He [8] remained inconclusive
[9]. However, the appearance of these modes requires only
a moderate interaction strength, in the sense that they are
expected to become sharp when the quasiparticle mass be-
comes approximately twice and three times the transport mass
in two and three dimensions, respectively [5]. Therefore, it
is possible that these elusive collective modes are actually
present in a variety of electron liquids but they have remained
undetected so far because their transverse nature makes them
unresponsive to charge-sensitive probes.
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In this paper, we demonstrate that shear modes leave clear
fingerprints in the conductivity of clean metallic channels.
Our idealized setup is depicted in Fig. 1(a), where a uniform
ac electric field generates an alternating current along the y
direction. In a clean channel, the current can only be damped
at the boundary. This is illustrated by the current profile shown
in Figs. 1(b) and 1(c), which is suppressed at the boundaries
due to friction. The current magnitude varies in a direction
transverse to the electron flow signaling the excitation of shear
modes.

The central result of our work is summarized in Fig. 1(d),
which shows the conductance of the strip as a function of fre-
quency. When scattering due to impurities or electron-electron
collisions is weak, the conductance exhibits sharp dips at
frequencies ω = nω0, where ω0 is the shear sound frequency
at momentum 2π/W determined by the width W of the chan-
nel. In fact, when friction only occurs at the boundary (blue
curve), the conductivity vanishes on resonance and the liquid
responds in a dissipationless fashion. As we will show, this is
a characteristic transverse response of a sliding crystal which
is only subjected to friction at the boundaries. Therefore,
these resonances reveal a type of crystallinity that appears
in Fermi liquids when probed dynamically. Such remarkable
collective behavior could be observed in ultraclean samples
such as those recently employed to observe the hydrodynamic
electronic flow [10–13] but in the low-temperature quantum
regime where the classical hydrodynamic description breaks
down. A related behavior in the form of oscillations of the
absorption power as a function of magnetic field was predicted
in Ref. [13] (see Fig. 2 of this reference). We note, however,
that in the regime of long wavelengths in a magnetic field there
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FIG. 1. (a) Experimental setup to detect shear sound. The blue region illustrates the out-of-phase (imaginary) current profile in the channel.
(b) Out-of-phase (imaginary) and (c) in-phase (real) current profiles for driving frequency on and off resonance with the shear sound frequency
ωshear . (d) Real part of the transverse conductivity in units of D�eff/ω

2 when the shear sound is present (solid blue line) and absent (solid black
line) in the limit of boundary-dominated scattering [boundary scattering parameter b = 0.1(2πvF )], where D = ne2/m is the Drude weight and
�eff is an effective scattering rate [14]. For finite bulk scattering (�1 = 0.1vFq0), the resonant zeros at the shear sound harmonics (solid blue
line) evolve into smooth dips (dashed blue line).

is no well-defined separation into transverse and longitudinal
modes leading to a crucially distinct regime of collective
modes from the one studied here.

The conductivity dips shown in Fig. 1(d) are unique sig-
natures of the shear sound that would be absent in weakly
interacting metals where this mode does not exist (black
curve). Likewise, the dips are washed out once scattering in
the bulk becomes comparable to the boundary friction (dashed
curve). This is a consequence of a reduced shear force when
the force difference between the interior and the boundary is
small as we will describe in detail.

Our paper is organized as follows. Section II generalizes
the discussion of Ref. [5] to describe the behavior of shear
modes in the presence of impurity and electron-electron colli-
sions in an ideal infinite two-dimensional (2D) system without
boundaries. Section III is devoted to a conceptual discussion
reviewing some of the key similarities and differences be-
tween the quantum Landau Fermi liquid (LFL), crystalline
solids, ordinary classical fluids, and viscoelastic classical
fluids, also for ideal infinite-size 2D systems. In Sec. IV we
develop a theory to describe the hydrodynamics of the LFL in
a strip geometry and derive the exact analytic solution which
predicts the appearance of shear resonances in experiments. In
Sec. V we show that these resonances are analogous to those
arising from an ideal crystal sliding in a channel by studying a
toy model. We summarize our results and discuss potential
material candidates to observe these shear sound modes in
Sec. VI.

II. DIFFUSIVE AND PROPAGATING SHEAR MODES

At low temperatures metals enter the quantum Landau
Fermi liquid (LFL) regime. A Fermi liquid can be thought
of as having an infinite number of slow degrees of freedom
that describe the relaxation of the shape of the Fermi sur-
face. Unlike superfluids or ordinary classical liquids, the low-
energy excitations of LFLs cannot be captured completely by

a description in terms of a finite number of dynamical fields
such as density and current. We will focus on 2D systems but
many of our conclusions carry over to the three-dimensional
(3D) case.

We begin by stating a central finding of our study: even in
the presence of collisions, 2D Fermi liquids display a sharp
propagating transverse sound mode with speed vs = vF(1 +
F1)/2

√
F1, for Landau parameter F1 > 1, and for wave vectors

q � q∗, with q∗ = max {�1/vs, �2/vF
√

F1}, where vF is the
Fermi velocity and �1, �2 are the momentum-relaxing and
-preserving collision rates, respectively. We will now derive
these results within the Landau theory of Fermi liquids.

In LFL theory the shape of the Fermi surface becomes a
dynamical object and small deviations of the radius pF(r, θ )
from the equilibrium shape obey the linearized Landau kinetic
equation (LKE) [3]:

∂t pF(r, θ ) + vp · ∂r

[
pF(r, θ ) +

∫
dθ ′

2π
f (θ − θ ′)pF(r, θ ′)

]

= −eE · vp + I[pF]. (1)

Here, vp = vF p̂ is the velocity normal to the Fermi sur-
face at angle θ , f (θ − θ ′) is the Landau function includ-
ing short-range and Coulomb interactions, E is the applied
electric field, and I are collision terms. There are two kinds
of collisions terms: those which relax momentum, such as
electron-impurity collisions, and those that preserve momen-
tum, originating from electron-electron collisions, which can
be modeled as [15–17]

I[pF] = −�1(pF − P0[pF]) − �2(pF

−P0[pF] − P1[pF] − P−1[pF]). (2)

Here, Pm[pF] projects the Fermi radius onto the mth harmonic
eimθ . There are two types of solutions to the LKE: incoherent
and collective modes. The incoherent modes are sharply local-
ized angular deformations of the Fermi surface [3,5] that form
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FIG. 2. (a) The dispersive shear sound (blue solid curve) exists
only for moderately interacting Fermi liquids (F1 > 1) and relaxes
at a lower rate than that of the incoherent particle-hole excitations
(green wedge) �s = �1 + vsq2 < �1 + �2. (b) The dispersive shear
sound is absent when interactions are too weak (F1 < 1). Red and
blue dashed curves indicate the dispersion of decaying collective
shear modes.

the particle-hole continuum with a dispersion of the form

ωp-h = vFq cos θ + i(�1 + �2). (3)

Collective modes, however, are angularly delocalized defor-
mations of the Fermi surface [3,5]. When the system has a
microscopic mirror symmetry and the wave vectors of the
modes lie along the mirror invariant line, the modes can be
separated into odd (transverse) and even (longitudinal) under
the mirror operation [3,5]. The well-known plasma mode of
metals is a longitudinal mode, whereas, the shear sound is a
transverse mode.

To illustrate the features of the shear sound, we con-
sider a simplified model in which all the n > 1 angular
moments of the Landau interaction function vanish, Fn>1 =∫

(dθ/2π ) f (θ ) cos(nθ ) = 0. The F1 parameter controls the
ratio of the quasiparticle mass (m∗) to the Drude mass (m) of a
Fermi liquid, m∗ = (1 + F1)m. The Drude mass would equal
the noninteracting mass (m0) in Galilean invariant systems
[18–21].

Our key results are expected to remain valid in the presence
of other Landau parameters whenever the shear sound mode
remains the only sharp collective mode in the transverse sector
[5]. For this model, a LFL with F1 > 1 would feature a
propagating shear sound mode with dispersion:

ωs = i(�1 + vsq2) + vs

√
q2 − q2

2, q2 = �2

vF
√

F1
. (4)

This mode exists for q > q2, whereas for q < q2 one encoun-
ters diffusive collective modes as depicted in Fig. 2(a) and
detailed in the Supplemental Material [14]. Therefore, the
shear sound is expected to become a sharp collective mode
in moderately interacting Fermi liquids (F1 > 1) for q > q∗,
with

q∗ ≈ max

{
�1

vs
, q2

}
. (5)

In the q2 � q � pF limit, the shear sound velocity asymp-
totes to its undamped value vs [5]. On the other hand, for a
weakly interacting LFL with |F1| < 1, only a single, purely
decaying collective mode exists as depicted in Fig. 2(b), with
dispersion:

ωdiff = i
(
�1 + vsq2 − vs

√
q2

2 − q2
)

(6)

� i

(
�1 + vF

2Q
q2 + O(q4)

)
, Q = 1

vF

2�2

1 + F1
. (7)

This decaying mode exists for 0 � q � Q, where its relax-
ation rate increases with q from �1 at q → 0 to �1 + �2 at
q = Q, as shown in Fig. 2(b). We have found that �1 + �2

is, within our model, the momentum-independent value of
the decay rate of all the modes that make up the particle-
hole continuum. Therefore, in the presence of collisions the
particle-hole continuum is displaced as a whole to lie in
a plane of constant imaginary part, and is depicted by the
green region in Figs. 2(a) and 2(b). Notice that this transverse
mode becomes strictly diffusive only in the limit of vanishing
momentum-relaxing collisions �1 → 0, and exists only for a
nonvanishing rate of momentum-preserving collisions �2 >

0. Therefore, at such small wave vectors the weakly interact-
ing Fermi liquid (|F1| < 1) behaves like a classical fluid, as we
will describe in more detail in the next section, where the slow
diffusive relaxation of transverse currents is a consequence of
the local conservation of momentum [1]. When F1 < −1, one
finds instead exponentially growing modes associated with a
Pomeranchuk instability [6,14,22].
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III. TRANSVERSE MODES IN FERMI LIQUIDS,
CLASSICAL VISCOELASTIC FLUIDS, AND

CRYSTALLINE SOLIDS

In this section, we would like to discuss the relations be-
tween the transverse current responses of the quantum Fermi
liquid, classical fluids, and crystalline solids. We review some
remarkable similarities but also sharp differences between
these systems and the quantum LFLs at small (q, ω). This
serves as a reminder that analogies between quantum LFLs
and classical states of matter must be employed cautiously
even in the limit of small (q, ω), and that these systems ulti-
mately belong to different universality classes. For conceptual
clarity we restrict the discussion in this section to translation-
ally invariant fluids by taking the momentum-relaxing rate to
be �1 = 0 from the outset.

We would like to begin by making precise what we
mean by “quantum” in “quantum LFL”. When we refer to
a “quantum LFL” we are emphasizing that this is a state of
matter which is strictly speaking only well defined at T = 0,
although its consequences permeate to finite temperatures,
analogous to the terminology employed in quantum critical
phenomena. Therefore, the long-wavelength response of the
quantum LFL is defined by taking first the limit T → 0, and
then afterward taking the limits of small (q, ω). This order
is crucial as the two limits do not commute. In fact, in the
opposite case when (q, ω) → 0 while keeping temperature
fixed, the response of the LFL is identical to that of an
ordinary classical fluid, as well shall see below. In the lan-
guage of critical phenomena, temperature can be viewed as a
relevant perturbation that transforms the universal properties
of the liquid at sufficiently long wavelengths. In our formal-
ism, temperature enters through the momentum-preserving
quasiparticle collision rate, which scales with temperature as
�2 ∼ (kBT )2/EF up to logarithmic corrections [23–33].

In Sec. II, we have seen that at T = 0 the shear sound
is indeed a sharp linearly dispersing mode at small (q, ω),
reminiscent of solids also featuring a propagating shear sound
at arbitrarily small (q, ω) but unlike classical fluids (including
viscoelastic fluids), which display shear diffusion at small
(q, ω). At finite temperature and sufficiently small (q, ω),
LFLs also exhibit a shear diffusion mode. To make these
similarities and distinctions more concrete, we will review
the limiting behavior of the transverse conductivity for these
various states of matter in the remainder of this section.

We begin by considering the case of an ordinary classical
liquid with the same symmetries as the quantum Fermi liquid
we are interested in: homogeneity, isotropy, time reversal, etc.
Such liquids can be described at long wavelengths by the
Navier-Stokes equation [1], which upon linearization yields
the transverse conductivity (that measures the current density
in response to an external transverse force)

σ CL
⊥ (q, ω) = ne2

m

1

iω + η

mn q2
, (8)

where η is the shear viscosity of the liquid. As we see, there is
a diffusive pole for transverse currents, with diffusion constant
D = η/mn.

Now, let us consider an ordinary crystalline solid which at
long distances has also the same symmetries of interest. We

take the solid to be described by an effective elasticity theory,
from which the conductivity can be easily derived by adding
an external force to the elasticity equations of motions [2]. In
particular, the transverse conductivity

σ CS
⊥ (q, ω) = ne2

m

1

i
(
ω − c2

t
q2

ω

) (9)

features a real and linearly dispersing pole at ω = ct q, signal-
ing the presence of a propagating transverse sound mode in
the solid. The transverse sound velocity ct can be related to
the shear modulus μ of the solid as c2

t = μ/mn.
Let us now consider the transverse response of the quantum

LFL. The full expression of the transverse conductivity of the
bulk Fermi liquid will be presented in Eq. (20) and here we
present its zero temperature and clean limit (�1,2 = 0) at small
ω and q but with an arbitrary ratio of s = ω/vFq:

σ LFL
⊥ (q, ω, T = 0) = ne2

m

2

ivFq

s − √
s2 − 1

1 − F1(s − √
s2 − 1)2

, (10)

where the frequencies lie in the lower half-plane, s → s − i0.
The response has nonanalyticities at the onset of the particle-
hole continuum of incoherent excitations at ω = vFq. This
threshold is ultimately a consequence of the existence of an
underlying sharp Fermi surface. It is easy to verify that when
F1 > 1 the denominator of the transverse conductivity of the
quantum Fermi liquid has a zero at the ideal T = 0 dispersion
of the shear sound mode [5] corresponding to the �1,2 → 0
limit of Eq. (4):

ωs(�1,2 = 0) = vsq, vs = 1 + F1

2
√

F1
vF. (11)

Notice that the condition F1 > 1 is precisely that which needs
to be satisfied so that the speed of the shear sound vs is larger
than vF, which is a self-consistent requirement if it is to be
a well-defined propagating mode outside of the particle-hole
continuum.

To compare the transverse response of these different sys-
tems we first consider the “optical” regime ω � vFq, where a
quantum Fermi liquid resembles a solid as emphasized in the
seminal work of Conti and Vignale [4]. Indeed, the transverse
response of the quantum Fermi liquid in this regime

σ LFL
⊥ (ω � vFq, T = 0) ≈ ne2

m

1

i
(
ω − 1+F1

4 v2
F

q2

ω

) (12)

is identical to that of the crystalline solid in Eq. (9). When
F1 � 1 the above form has a pole inside the optical regime
at ω = √

1 + F1vFq/2, which corresponds to the ideal shear
sound dispersion from Eq. (11) in that limit, and which was
first obtained in Ref. [4].

Notice that the expansion in Eq. (12), when extrapolated
without caution, appears to indicate that the Fermi liquid
always has a shear sound mode. However, as we have seen,
the shear sound mode only appears as a separate mode for
F1 > 1. For intermediate values of F1 the analogy between
quantum LFLs and crystalline solids fails because particle-
hole excitations cannot be ignored. In particular, the transition
at F1 = 1, where the shear sound merges with the particle-hole
continuum, cannot be captured by a classical fluid or elasticity
theory.
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TABLE I. Quasistatic limit of the transverse conductivity in
classical liquids, crystalline solids, and zero-temperature LFLs. The
factor (2S + 1) is the spin degeneracy factor of the Fermi fluid (2 for
usual spin- 1

2 fermions).

Liquid Solid LFL (T = 0)

lim
ω→0

σ⊥(q, ω)
n2e2

mηq2
0

e2

h
(2S + 1)

pF

q

The difference between classical and quantum regime is
most striking in the quasistatic limit ω � vF q, where the
quantum response is dominated by the particle-hole contin-
uum. The transverse response in this regime for the three
different cases is listed in Table I. While σ⊥ has a 1/q2

dependence in a liquid, a solid cannot flow when subjected
to static perturbations and exhibits a vanishing transverse
conductivity at ω = 0. In contrast, the quantum Fermi liquid
has a remarkable universal form ∝1/q in the quasistatic limit.
The limit is finite in contrast to the solid because the Fermi
liquid still flows, but it is distinct from that of a classical
fluid. This limiting response of the quantum LFL is universal
in the sense that it is not renormalized by interactions and
only depends on the geometry of the Fermi surface [3]. Notice
also the appearance of Planck’s constant in the denominator,
a reminder of the quantum nature of the response in this limit.
We will elaborate on the physics and measurement of this limit
in a forthcoming publication and demonstrate that another
quantum fluid, the spinon Fermi surface, which also features
a sharp Fermi surface despite not being a LFL, has the same
behavior in this limit.

While the quantum Fermi liquid at strictly T = 0 is clearly
distinct from solids and classical fluids, finite temperatures
smear out the sharpness of the Fermi surface on a scale
kBT/vF , destroying the “quantumness” of the fluid at suf-
ficiently small q. In the following, we elucidate how the
classical behavior is recovered in LFL theory once the limit
of small q is taken at finite temperature.

A useful point of comparison for LFLs at finite tempera-
tures are classical viscoelastic fluids, which can also display
long-lived shear modes [2,34–37]. Specifically, we focus on
the Frenkel model often employed in the description of clas-
sical viscoelastic fluids [35–37]. Following Refs. [35,37], we
add to the Navier-Stokes-Frenkel equation an external force
per unit area f = neE to obtain the equation of motion

η∂2
r v = (1 + τdt )(nmdtv + ∂r p − f ), (13)

where dt = ∂t + v · ∂r. Upon linearizing this equation one
finds that the transverse current j⊥ = nev⊥ has an associated
transverse conductivity

σ Fr
⊥ (q, ω) = ne2

m

1

iω + η

mn(1+iτω) q
2
. (14)

This equation interpolates between the classical fluid in
Eq. (8) at ωτ � 1 and the solid in Eq. (9) at ωτ � 1. It con-
tains a modified pole structure that gives rise to a propagating

shear sound wave with a momentum gap [35–37]

ωFr (q) = i

2τ
+

√
c2
τ q2 − 1

4τ 2
, c2

τ = η

nmτ
. (15)

Here when x < 0, we use the convention that
√

x = −i
√|x|.

This form is remarkably similar to what we have found for the
shear sound in Fermi liquids at finite temperature in Sec. II. In
fact, in the limit of small momenta, the transverse conductivity
of the LFL at finite temperature, which can be obtained by
taking �1 = 0 from the more general Eq. (20), which we will
discuss in the next section, reads as

σ LFL
⊥ (vFq � max{�2, ω}, ω, T ) ≈ ne2

m

1

iω + F1+1
4(�2+iω)v

2
Fq2

.

(16)

On comparison with Eq. (14), one concludes that the timescale
in Frenkel’s theory, τ , is simply given by the inverse quasi-
particle collision rate τ = �−1

2 . We emphasize again that the
analogy between viscoelastic fluids and LFLs at nonzero T
only holds for F1 � 1, when the pole lies in the regime of
validity of Eq. (16) far away from the particle-hole contin-
uum. The discrepancy with the classical model is particularly
evident at F = 1, where the spectrum in complex frequency
space undergoes a sharp transition to one without propagating
collective mode as illustrated in Fig. 2.

At low frequencies ω � �2, the LFL exhibits a shear
diffusion pole with diffusion constant D = (1 + F1)v2

F/2�2 =
η/mn regardless of the value of F1 (cf. Sec. II), which recovers
the well-known divergence with temperature of the classical
viscosity of the Fermi fluid [38–42]. Such a divergence of
the classical viscosity at low temperatures, which is present
even in weakly noninteracting Fermi liquids, is a symptom of
the emergence of the nonclassical behavior of the fluid that
we have previously discussed. The fact that the transverse
conductivity is dominated entirely by the diffusion pole at
finite temperatures and small (q, ω) can be understood from
Fig. 2, which shows that the modes making up the particle-
hole continuum are completely displaced in the complex-ω
plane to always have a finite imaginary part in their dispersion,
even as q → 0, whereas the shear diffusion pole asymptotes
continuously to (q, ω) = (0, 0) and thus dominates the re-
sponse in such limit. This is ultimately a consequence of the
conservation of momentum (when �1 = 0) which prohibits
currents from decaying locally and turns them into slow
hydrodynamic modes [43].

IV. SHEAR RESONANCES IN ULTRACLEAN CHANNELS

In this section we develop a theory to describe the dy-
namics of the LFL in a strip geometry, which will allow us
make concrete experimental predictions. To include boundary
effects, we adopt the minimal but realistic model proposed
in Ref. [16], which combines specular boundary conditions
with boundary friction modeled as an enhancement of the
momentum-relaxing collisions at the boundary of the form
I[pF] → I[pF] + Ibd[pF],

Ibd[pF] = bδ

(
|x| − W

2

)
(P1[pF] + P−1[pF]), (17)
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where x ∈ (−W/2,W/2), y ∈ (−∞,∞). As demonstrated in
Ref. [16] this model captures the hydrodynamic, diffusive, and
ballistic regimes of metals and their crossovers. For related
studies, see Refs. [15–17,44–46].

We have found an exact analytic solution of the LKE
[Eq. (1)] for this model with finite Landau parameters {F0, F1}
in addition to all of the above ingredients which we present
in the following (see Supplemental Material [14] for details).
Because translation symmetry along x is broken by the pres-
ence of the boundaries, the conductivity that determines the
current along the channel, jy(x, t ), in response to a driving
electric field along the channel, Ey(x, t ), is a function of two
wave vectors:

jy(q, ω) =
∑

q′
σy(q, q′, ω)Ey(q′, ω), (18)

σy(q, q′, ω) = δq,q′σ bk
y (q, ω) + σ bd

y (q, q′, ω). (19)

The conductivity can be expressed as the sum of a bulk (bk)
contribution

σ bk
y (q, ω) = ne2

m

2iz

F1z2 − (vFq)2 − 2iz�2
, (20)

z = ω − i(�1 + �2) −
√

[ω − i(�1 + �2)]2 − (vFq)2, (21)

and a boundary (bd) contribution

σ bd
y (q, q′, ω)

σ bk
y (q, ω)σ bk

y (q′, ω)
= −

cos
(

πq
q0

)
cos

(
πq′
q0

)
σ̄ bd

y + σ̄ bk
y (ω)

, (22)

where q is the momentum along x, q0 = 2π/W , m is the
transport mass, σ̄ bk

y (ω) = ∑
n∈Z σ bk

y (nq0, ω) is the trans-
verse conductivity measuring the bulk response to a periodic
array of delta-function perturbations, and σ̄ bd

y = ne2W/mb
parametrizes boundary scattering. The total conductivity for a
uniform driving field is obtained by taking the q, q′ → 0 limit
of the above expressions,

σy(ω) = σD(ω)

(
1 − σD(ω)

σ̄ bd
y + σ̄ bk

y (ω)

)
, (23)

where σD(ω) = ne2/m(iω + �1) is the frequency-dependent
Drude conductivity. The expression in Eq. (23) can be un-
derstood as the self-consistent response of the LFL to both
an externally applied electric force and the boundary friction.
In a single equation, our solution encompasses the effects of
disorder, interactions, as well as boundary scattering, con-
trolled respectively by the parameters �1,2, F1, and b/W , and
therefore captures the hydrodynamic, diffusive, ballistic, and
LFL regimes on equal footing. Notice that F0 is absent in our
expressions because of the absence of density fluctuations for
driving electric fields parallel to the channel.

The conductivity in Eq. (23) is shown for a metal with
(F1 = 3.0) and without (F1 = 0.5) shear sound in Fig. 1(d).
In the former case, there are sharp dips at the shear sound
energy, ω = Re ωs, evaluated at integer multiples of q0. In
Figs. 1(b) and 1(c), we see that the resonant current becomes
purely imaginary, i.e., it is out of phase with the applied field.
Therefore, in the limit of boundary-dominated scattering,
metals with shear sound display a dissipationless response at
the resonant frequencies of this mode. As we will see, this is

analogous to the response of a sliding crystal which is subject
to friction only at the boundaries.

These conductivity minima acquire finite values in the
presence of weak bulk scattering. The electron-electron col-
lision rate is expected to scale as �2 = (EF /2π )(kBT/EF)2

up to logarithmic corrections [23–33] and, therefore, can be
easily suppressed by cooling the metal well below the Fermi
temperature. The electron-impurity collision rate is limited
at low temperatures by the bulk elastic mean-free path λ =
vF/�1. We estimate that the shear sound dips would be visible
in metals with λ � 5W at low temperatures. Furthermore,
samples with enhanced boundary scattering relative to bulk
scattering should lead to more pronounced conductivity dips.

V. COMPARISON WITH AN IDEAL CRYSTAL SLIDING
IN A CHANNEL

In this section we would like to illustrate the behavior of a
crystal driven by an external uniform force through a clean
channel in the presence of enhanced friction at the bound-
aries. We demonstrate that the aforementioned dissipationless
resonant driving of the Fermi liquid at the harmonics of the
shear sound is indeed a hallmark behavior of sliding crystals
in such channels. In particular, we will see that in the case of a
clean channel with friction arising only from the boundary, the
crystal driven at the exact resonant frequency corresponding
to the harmonics of its transverse sound self-consistently pins
itself with zero velocity at the boundary so as to minimize
energy dissipation.

To illustrate this, we consider a toy model of a two-
dimensional tetragonal crystal [47] confined in a channel with
boundary friction aligned with one of its crystal axes [see
Fig. 3(b)]. The crystal slides in response to an alternating
external force along the channel, experiencing friction at
the edges analogous to the boundary scattering in the LFL.
Because the translational invariance of the crystal along the
infinite direction of the channel (y axis) is preserved during the
oscillatory driving, without loss of generality, it is sufficient
to consider the motion of a single chain describing a row
of N atoms across the channel. The displacement of each
atom from its equilibrium position along y is described by the
following equation of motion:

ÿ j = Fj − κ (2y j − y j+1 − y j−1) − (γ + γbδ j,− N
2

)ẏ j,

(24)

where j = −N/2, . . . , N/2 labels the x coordinate of the
atom, κ the shear restoring force constant, Fj the external
driving force, γ the homogeneous bulk friction, and γb the
boundary friction. The masses of the atoms are set to unity.
For simplicity, we have considered the case of periodic bound-
ary conditions along x to highlight the qualitative aspects of
the system which are identical to the case with open boundary
conditions. Details of the solution of the equations of mo-
tion are presented in Sec. III of the Supplemental Material
[14], and here we will summarize the resulting behavior.
Figure 3(a) shows the conductivity, i.e., the average velocity of
atoms divided by the external force, of such a sliding crystal.
In the absence of bulk friction, the real part of the conductivity
exhibits zeros at frequencies corresponding to the harmonics
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FIG. 3. (a) Real part of the channel conductivity of the 2D
sliding crystal, in units of γeff/ω

2, for b̃ = 0.1 (blue) and b̃ = 10
(orange), where b̃ is an energy scale parametrizing boundary friction
and γeff is an effective scattering rate analogous to b/W and �eff ,
respectively, in the LFL case. All energies are measured in units
of the transverse phonon frequency ωph (see Supplemental Material
[14] for full model). (b) Schematic of the 2D sliding crystal toy
model comprising a tetragonal crystal confined in a channel with
only boundary friction (red). (c) Out-of-phase (imaginary) and (d) in-
phase (real) current profiles in the crystal in the clean limit �1,2 → 0.
Solid curves correspond to the frequency of the first conductivity dip
in (a) (b̃ = 0.1) while dashed curves correspond to the frequency at
the first conductivity peak in (a) (b̃ = 10).

of the transverse phonon of the crystal at wavelength W . Reso-
nantly driving the system at these frequencies creates a current
profile that is out of phase with the drive: the crystal pins at
the boundary and self-consistently avoids energy dissipation
in an analogous fashion to the Fermi liquid with shear sound
[see Figs. 3(c) and 3(d)].

When probed optically, the sliding crystal therefore does
not exhibit the resonant absorption typical of a crystal with
pinned boundaries. The latter scenario can be described as
a limiting case of the sliding crystal at infinite boundary
friction. Indeed, when the boundary dissipation increases,

the dips broaden, ultimately giving rise to resonant peaks at
half-integer multiples of the fundamental frequency once the
dissipative boundary force exceeds the shear restoring force
of the crystal [14]. Such peaks do not have a counterpart in
the case of the LFL, where off-resonant pinning at the bound-
ary is prevented by scattering to the incoherent particle-hole
continuum. Consequently, the conductivity dips signaling the
shear sound in the LFL remain narrow even in the limit of
arbitrarily strong boundary scattering [14].

VI. SUMMARY AND DISCUSSION

As we have shown, moderately interacting metals display
a sharp shear sound collective mode which exists even in the
presence of weak impurity and electron-electron collisions.
This mode leaves clear fingerprints in clean metallic channels
at low temperatures in the form of sharp resonant dips in
the conductivity at frequencies controlled by the shear sound
dispersion in Eq. (4), and that resemble the transverse sound
resonance of a sliding crystal, despite the metal lacking any
form of long-range crystalline order. There already exist var-
ious ultraclean materials that feature a strongly interacting
metallic state before a metal insulator transition which are
therefore ideal platforms to discover the shear sound. These
include MgZnO/ZnO, Si metal-oxide-semiconduction field-
effect transistors (MOSFETs), AlAs, and p-GaAs [48–51].
They have been shown to have large mass enhancements
and therefore Landau parameters with F1 > 1 [51–56]. For
example, in MgZnO/ZnO two-dimensional electron gases
(2DEGs) we estimate that channels of about 1 μm, at temper-
atures below 2 K, and with densities so that the quasiparticle
mass is enhanced to be larger than twice the bare mass, would
display visible shear sound resonances in their conductance at
frequencies of about ω ∼ 0.1 THz.
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