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Klein bound states in single-layer graphene
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The Klein paradox, introduced in the study of chiral tunneling in single-layer graphene, is shown to also
manifest in graphene bound states with a 1D square-well potential. Such bound states occur both below and
above the potential well. We derive bound-state wave functions, in the absence and in the presence of an external
transverse magnetic field, and calculate the corresponding electronic currents and dipole transition rates, which
can be experimentally probed. The role of parity and time-reversal symmetries is discussed. Our results are also
relevant for the physics of bound states of light in periodic optical waveguide structures.
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I. INTRODUCTION

Chiral tunneling of electrons through a 1D potential barrier
in single layer graphene in which the Klein paradox [1] is
exposed was first considered in a seminal paper by Katsnel-
son, Novoselov, and Geim [2]. It was studied experimentally
[3,4] and theoretically [5,6], and stimulated much research
on the topic of potential scattering of electrons in graphene
[6–10]. A closely related and physically motivated problem
concerns the formation of electron bound states in graphene
[8,9,11–14] (the notion of bound states refers here to electrons
bound along x and free to move along y).

Here we consider the occurrence of confined electrons
in single layer graphene subject to a symmetric 1D square
well potential, U (x) = U (−x), of height U0, and elucidate
several novel aspects of such bound states that are amenable
to experimental verification. We also explore the transmis-
sion coefficient at energy E , T (ε), for Klein scattering off a
single barrier in the two cases 0 < E < U0 and E > U0 > 0.
First, we consider bound states in the absence of an external
magnetic field and significantly expand upon earlier results
reported in Refs. [8,9] (see our list of main results below).
Second, we consider the occurrence of bound states in the
presence of a uniform perpendicular magnetic field (this topic
has not been discussed earlier).

Our main results are: (1) In the absence of a magnetic
field, analytic expressions for bound-state eigenfunctions
and eigenvalues are obtained, and electric dipole transition
strengths are calculated to determine the absorption spectrum
between bound states. Parity and time reversal symmetries are
employed to find the relation between the two (pseudo)spinor
components of the wave function. Klein tunneling and occur-
rence of bound states are analyzed in the entire energy range.
In particular, we show that Klein bound states occur in both
cases E > U0 (bound states above the barrier) and E < U0.
(2) In the presence of an external magnetic field, analytic
expressions for the bound state wave functions for a discrete

sequence of potential strengths, and numerical solutions for
any potential strength are derived. These solutions are then
used to determine the measurable areal densities and currents.
Based on ideas presented in Refs. [15,16], our formalism also
applies to the occurrence of bound states of light in periodic
optical waveguide structures.

The outline of the paper is as follows. Section II consid-
ers the bound state is a symmetric 1D square well U (x) =
U (−x). Section III presents the energy eigenvalues, wave
functions, symmetries, and currents in the Klein regime, and
Sec. IV presents calculation of the electromagnetic transitions
between the bound states. In Sec. V we trace the behavior
of Klein transmission for scattering off a rectangular barrier
and Klein bound states in a square well in the entire energy
range E > 0. The analysis of bound states in a combination
of perpendicular magnetic field and square well is developed
in Sec. VI, and finally, Sec. VII presents a short summary
and conclusion. Several technical issues are relegated to the
Appendix.

II. BOUND STATES IN A SYMMETRIC 1D SQUARE WELL

Recall that graphene can be treated as two interpenetrating
triangular lattices often labeled by A and B [17]. In the
presence of an external potential U (x, y), the dynamics of
the low-energy quasiparticles of the system near the Dirac
points (say K′) is governed by the 2D Dirac Hamiltonian
for massless particles: H = γσ · p + U (x, y) [2]. Here σ is
the pseudospin Pauli matrix vector, p = (px, py) is the 2D
momentum operator, and γ = h̄vF in which vF ≈ 108 cm/sec
is the Fermi velocity. We search for bound states (energies and
wave functions) of a massless particle in single-layer graphene
using the 2D Dirac equation with 1D square-well symmetric
potential U (x) = U0�(|x| − L).

To simplify manipulations, it is useful to define dimension-
less variables. The square-well half-width L = 100 nm can
serve as a length unit. Henceforth dimensionless coordinates
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FIG. 1. (a) Nodes of det[A(ε, φ)], Eq. (5), in the (φ, ε) plane
(blue curves), and the curve ky = ε sin φ = 10 (orange curve). The
pairs (εn, φn) specified by blue and red dots are the bound state
energies for this fixed ky. The spectrum is discrete for ky > u0/2.
(b) Upper components of ψ0(x) (red solid curve) and ψ1(x) (blue
dot-dashed curve) versus x. The lower components are related to the
upper ones via Eq. (8). Note that the wave functions do not have a
definite symmetry around x = 0 (see discussion on the role of parity
below).

and wave numbers are defined as x → x/L, y → y/L, k →
kL. The energy ε0 ≡ γ /L = 6.538 meV serves as an energy
unit, so that the dimensionless energy is ε = E/ε0 (where
E is the energy in meV), and the dimensionless potential is
u(x) = U (x)/ε0. For definiteness we take U0/ε0 ≡ u0 = 16,
which implies U0 = 104.613 meV (the value of U0 is close to
that used in Fig. 2 of Ref. [2]).

Klein physics [1] occurs for u0 > ε > 0 where inside
the well (|x| < 1) the Fermi energy lies in the conduction
band while outside the well (|x| > 1) the Fermi energy
lies in the valence band [1,6]. Near the K′ Dirac point,
the time-independent 2D Dirac equation (in dimensionless
variables) is

H� ≡ [−i(σx∂x + σy∂y) + u(x)]�(x, y) = ε�(x, y). (1)

FIG. 2. Absorption spectrum of the transitions 0 → 1, 0 → 3,
0 → 5, 0 → 7, 1 → 2, 1 → 4, 1 → 6. The absorption rate wmn (in
dimensionless units) from level n to m is plotted versus the resonant
absorption photon energy h̄ωnm = εn − εm (in dimensionless units).

Under parity transformation (x, y) → (−x, y), the potential
is symmetric, u(x) = u(−x), but the total Hamiltonian is
not, H(−x, y) �= H(x, y). The general solution of the wave
function in the three different regions is �(x, y) = eikyyψ (x),

ψ (x)=

⎧⎪⎨
⎪⎩

a
( 1

eiφ

)
eikxx + b

( 1
−e−iφ

)
e−ikxx (|x| < 1),

α
( 1
−eiθ

)
eiqxx + β

( 1
e−iθ

)
e−iqxx (x > 1),

γ
( 1
−eiθ

)
eiqxx + δ

( 1
e−iθ

)
e−iqxx (x < −1),

(2)

where φ is the inclination angle in the x-y plane and θ is the re-
fractive angle [6]. The dimensionless wave number vector in-
side the well [where u(x) = 0] is k = ε(cos φ x̂ + sin φ ŷ) ≡
kxx̂ + kyŷ, and |k| = ε =

√
k2

x + k2
y . The x component of the

momentum outside the well [where u(x) = u0 > 0], qx, and
the refractive angle θ are

qx =
√

(ε − u0)2 − k2
y ,

tan θ = ky

qx
= ε sin φ√

(ε − u0)2 − (ε sin φ)2
. (3)

In the p-n-p junction analyzed here, Klein tunneling occurs
for u0/(1 + sin φ) > ε > 0, so that qx is real, whereas Klein
bound states occur for u0 > ε > u0/(1 + sin φ) > 0, so that
qx is imaginary,

qx = iκx(ε, φ) ≡ i
√

(ε sin φ)2 − (u0 − ε)2, (4)

and κx(ε, φ) > 0.
The bound state wave functions must decay exponen-

tially as e−κx |x| as |x| → ∞. In this region tan θ = −iky/κx

is pure imaginary, and tan2 θ < −1. Consequently, sin θ is
real and cos θ is imaginary. To ensure asymptotic decay
at large |x| we must set β = γ = 0 in Eq. (2). Continu-
ity of ψ (x) at x = ±1 yields a homogeneous system of
four linear equations for the complex coefficient vector c ≡
(a, b, α, δ)T that is an eigenvector with zero eigenvalue
of the matrix A(ε), A(ε)c = 0 [A(ε) is explicitly given in
Eq. (A3) in the Appendix]. The determinant of A(ε) is
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given by

C det[A(ε)] = κx(ε, φ) cos φ cos(2ε cos φ)

+ [ε(1 + sin2 φ) − u0] sin(2ε cos φ), (5)

where C is a nonvanishing multiplicative constant and the
expression on the RHS is real [see Eq. (A5) in the Appendix].
Bound states occur at energies εn for which det[A(εn)] = 0.
For reasons that will be explained below, we focus on bound
states at different energies {εn} but for the same ky = εn sin φn.
With our parameters, u0 = LU0

h̄vF
≈ 16.0, and the pattern of

bound state energies in the (φ, ε) plane is as shown in
Fig. 1(a). Also shown in the figure is the curve ky = ε sin φ =
10 (= 0.1 nm−1). The intersection points indicate bound-state
energies {εn} with the same value of ky = εn sin φn. Note that
for this value of ky, there are no states in the continuum below
u0 = 16.

III. WAVE FUNCTIONS, SYMMETRIES, CURRENTS

Once a bound-state energy εn is determined through a nu-
merical solution of the transcendental equation DetA(ε) = 0,
evaluation of the corresponding spinor wave functions ψn(x)
is obtained analytically and exposes a beautiful symmetry
between its two components. This symmetry is exploited for
the discussion of parity and time-reversal symmetries which
reflects on the pattern of currents.

A. Wave functions

Here we compute the wave functions for (εn, φn), n =
0, 1, . . . , 7, see Fig. 1(a). The pairs (εn, φn) are inserted
into the matrix A and the spinor bound-state wave functions

ψn(x) = (ψ (1)
n

ψ
(2)
n

)
are determined in terms of the four coefficients

cn ≡ (an, bn, αn, δn), i.e., the solution of the eigenvalue equa-
tion A(εn, φn)cT

n = 0. Due to parity symmetry (see below), it
is possible to choose an overall phase such that the compo-
nents of the spinors are subject to the following constraints:

Im
[
ψ (1)

n (x)
] = Re

[
ψ (2)

n (x)
] = 0,

Im
[
ψ (2)

n (x)
] = (−1)nRe

[
ψ (1)

n (−x)
]
. (6)

Analytic expressions for the ground and excited state wave
functions are derived by choosing

a = b∗ = Aneiηn , ηn = (2n + 1)π
4 − 1

2φ, (7)

where An are real normalization constants and the phase ηn

is chosen to satisfy the symmetries in Eq. (6). Combining
Eqs. (2) and (7), the bound-state wave functions, �n(x, y) =
eikyyψn(x) for |x| < 1 are

ψn(x) = An

(
ψ (1)

n (x)

(−1)niψ (1)
n (−x)

)

= An

(
cos[γ −

n (x)] + sin[γ −
n (x)]

(−1)ni{cos[γ +
n (x)] + sin[γ +

n (x)]}
)

, (8)

where γ ±
n (x) = 1

2 (φn ± 2knxx) and knx = εn cos φn. The de-
caying parts of the wave functions for |x| > 1 are determined
by the coefficients β, δ, and the symmetry specified in Eq. (6)
is fulfilled for all x. The two upper components of the spinor
wave functions ψn=0,1(x) are shown in Fig. 1(b).

The symmetry specified in Eq. (6) also implies that
ψ

†
0 (x)ψ1(x) is an odd function of x. Hence, 〈ψ0|ψ1〉 = 0,

i.e., the two states are orthogonal, as are any two different
eigenfunctions.

B. Discrete symmetries

1. Parity

The importance of parity in the physics of graphene is
discussed in Ref. [18], where it is shown that parity operator in
(1 + 2) dimensions plays an interesting role and can be used
for defining conserved chiral currents (see also Ref. [19]).
Here we concentrate on bound states, wherein the current
along x should vanish and consider the role of the parity trans-
formation under which the Hamiltonian is not invariant. For
a symmetric potential, u(x) = u(−x), we consider the static
(time-independent) case with Hamiltonian H(x, y) introduced
in Eq. (1). The parity transformation in 2 + 1 dimensions
is taken to mean the transformation (x, y) → (−x, y). For
massless Dirac fermions this transformation is realized by the
operator σy. Explicitly,

HP(x, y) = iσx∂x − iσy∂y + u(x), (9)

and HP(x, y) ≡ σyH(x, y)σy =H(−x, y) �= H(x, y). Thus,
near a given Dirac point, say K′, H is not parity invariant
[even though u(x) = u(−x)] [20]. However, for a symmetric
potential the wave functions ψn(x) in Eq. (8) obeys the
symmetry relations,

σyψ0(x) = ψ0(−x), σyψ1(x) = −ψ1(−x). (10)

Equation (10) is a concrete realization of Eq. (14) in Ref. [18].
Hence, we define ψn(x) as being

(even
odd

)
under parity if and

only if σyψ (x) = ±ψ (−x). With this assignment, Eq. (10) is
consistent with (albeit different than) the nonrelativistic one-
dimensional problem, where, in a symmetric potential, the
parity of eigenstates is such that ψn(−x) = (−1)nψn(x), n =
0, 1, 2, ..., and the ground state is symmetric. By definition,
Hψn(x) = εnψn(x) ⇒ HPψn(−x) = εnψn(−x). Thus, ψn(x)
and ψn(−x) �= ±ψn(x) are, respectively, eigenfunctions of H
and HP �= H with the same eigenvalue εn.

2. Time reversal invariance

The time reversal operator is T = iσyK , where K is
the complex conjugation operator. It is easy to check that
[H, T ] = 0, so that each state is doubly (Kramers) degener-
ate. Applying the operator T on a wave function �n(x, y),
Eq. (8) we obtain [recall that ψ (1)

n (x) is real and ψ (2)
n (x) =

(−1)niψ (1)
n (−x) is purely imaginary],

�T
n (x, y) = Ane−ikyy

(
(−1)nψ (1)

n (−x)

iψ (1)
n (x)

)
, (11)

which is the Kramers partner of �n(x, y), i.e., H�T
n (x, y) =

εn�
T
n (x, y).

C. Currents

Bound states, with wave functions ψn(x) = ( ψ (1)
n (x)

±iψ (1)
n (−x)

)
, do

not carry current along x: Jnx(x) ≡ ψ†
n (x)σxψn(x) = 0. How-

ever, they do carry current along y, Jny(x) ≡ ψ†
n (x)σyψn(x) �=
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0, (n = 0, 1), that is symmetric under x ↔ −x and it quickly
decays for |x| > 1. As we discuss below in connection with
time reversal invariance, all states are Kramers degenerate,
and the two degenerate states forming a Kramers pair carry
currents in opposite directions. Since the measured current
is the incoherent sum of the contributions from the two
degenerate Kramers states, it is virtually unobservable. As we
shall see below, in the presence of magnetic field the current
is observable.

IV. ELECTROMAGNETIC TRANSITIONS

Consider E1 transitions induced by x polarized light such
that the dipole operator is O(x) = eExx, where Ex is the
electric field amplitude. The parity of the product ψ†

n (x)ψm(x)
is (−1)n+m+1. Because ky is conserved and is the same
for �n(x, y) and �m(x, y), we have 〈�m|O|�n〉 = 1

2 [1 −
(−1)n+m]eEx〈x〉n,m. Figure 2 shows the absorption spectrum
of the transitions 0 → 1, 1 → 2, 0 → 3, 1 → 4, 0 → 5,
1 → 6, 0 → 7, where the absorption rates (in arbitrary units)
wnm from m to n are proportional to ω4

nm |〈ψn|x|ψm〉|2 where
h̄ωnm = εn − εm [21].

Strictly speaking, electrons can occupy wave functions
with arbitrary transverse wave number in the range u0 − ε <

ky < ε and E1 transitions can occur between energy states
with different ky. However, practically, an experiment can
be carried out in a graphene nanoribbon of width Ly such
that ky = 2π p

Ly
, (p = 1, 2, . . .) is quantized. If Ly is sufficiently

small, only the lowest mode, p = 1, is occupied, and all
transitions occur between states of the same value of ky.
In our example, ky = 10 and ε < u0 = 16 (in dimensionless
units). Hence, the second mode (p = 2) has ky = 20 > ε

which is outside of the allowed range. Let us estimate the
pertinent value of Ly. Since kyL = 10 and L = 100 nm, we
have ky = 0.1 nm−1 corresponding to a graphene nanorib-
bon width of Ly = 132.6 nm. Experimental fabrication of
graphene nanoribbons of similar width is reported in Ref. [22].

V. BOUND STATES AND TRANSMISSION ABOVE
THE BARRIER, ε > u0

Discrete bound states occur under the condition that q2
x =

(ε − u0)2 − k2
y = (ε − u0)2 − (ε sin φ)2 < 0. Thus, we can

trace the occurrence of bound states either for fixed φ or fixed
ky. Below we will formulate the conditions for q2

x < 0 for
either sign of ε − u0 in terms of φ and/or ky.

For fixed inclination angle φ, and square-well barrier
height u0 we have so far focused on the formation of
bound states below the barrier height (ε < u0), expected
for u0

1+| sin φ| < ε < u0 (equivalently, for fixed transverse wave

number the condition for q2
x < 0 is u0 − ky < ε < u0). Exper-

imentally, it is possible to tune the Fermi energy through the
whole interval ε > 0. In this section we briefly substantiate
the formation of bound states at energies above the potential
barrier, ε > u0, and, for the sake of completion, we illustrate
the behavior of the transmission coefficient T (ε) along the
entire energy interval ε > 0 (its main properties have already
been reported in Ref. [6]).

FIG. 3. (a) The determinant of the set of homogeneous equations
(up to a multiplicative constant C) versus energy ε whose zeros
indicates bound-state energies in a symmetric square well of height
u0 = 16 and width 2L = 2 for φ = 0.6. These bound states occur in
the interval for u0 < ε < u0/(1 − | sin φ|) (the right part of interval
II). (b) For fixed transverse wave number ky = 2, the transmission
T (ε) through a barrier of height u0 = 25, and width D = 1 is plotted
as a function of energy in the entire energy interval ε > ky. Referring
to the text, the first vertical line on the left (orange) separates regions
I and II, and the second vertical line (green) specifies the grazing
energy ε = u0 for which qx = iky and the transmission is minimal.
The third vertical line (red) separates regions II and III above which
the transmission oscillates as it approaches the unitary limit.

A. Bound states above the barrier

Discrete bound states with energy above the potential
barrier height are expected to occur in the interval u0

1−| sin φ| >

ε > u0 wherein q2
x < 0 (equivalently, for 0 < ε − u0 < ky).

The matrix Ã(ε) for the system of matching equations in
the region ε > u0 is different from the matrix A(ε) in the
region ε < u0 that is defined in Eq. (A3) in the Appendix.
Explicitly, Ã(ε) is obtained from A(ε) by reversing the sign
of the elements A(2, 3) and A(4, 4). The corresponding de-
terminant Det[Ã(ε)] is given in Eq. (A5) in the Appendix.
The bound states in this subregion are then identified as
the zeros of Det[Ã(ε)], as shown in Fig. 3(a). These Klein
bound states occur above the barrier where both ε and
ε − u0 lie in the conduction band, when 0 < ε − u0 < ky.
Recall that in an analogous Schrödinger problem the con-
dition for occurrence of bound states above the barrier
is 0 < ε − u0 < k2

y . To the best of our knowledge Klein
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bound states above the barrier have not been considered
so far.

B. The transmission coefficient T (ε) for the entire positive
energy interval

Klein transmission through a rectangular barrier has been
studied in Ref. [6]. For fixed transverse wave number ky, ex-
pressions for the transmission coefficient are given at several
energies in the interval 0 < ky < ε. For the sake of complete-
ness we specify the relevant energy regions in the plot of T (ε)
versus energy in Fig. 3(b). Guided by Fig. 3(b), it is useful to
divide the positive energy axis into three intervals according
to the sign of q2

x = (ε − u0)2 − k2
y .

(i) Region I: ky < ε < u0 − ky, wherein q2
x > 0. The wave

function is extended, Klein tunneling prevails as studied in
Refs. [2,6].

(ii) Region II: u0 − ky < ε < u0 + ky, wherein q2
x < 0.

The wave function decays under the barrier, and the trans-
mission is exponentially small. In particular, at the grazing
energy ε = u0, qx = iky (maximally imaginary) and the trans-
mission is minimum. For u0 < ε → u0 + ky, q2

x → 0, where
here → means approaching from below, and the transmission
increases.

(iii) Region III: ε > u0 + ky we have q2
x > 0 and the trans-

mission tends to its maximum with oscillations.
We can now summarize the main physical points illustrated

in Fig. 3(b): (1) To the left of the first line at ky < ε < u0 − ky

we see that: (1a) Transmission occurs below the barrier and
oscillates below its maximum due to Klein chiral tunneling
as discussed in Refs. [2,6]. (1b) The wave function in the
square well is extended and there are no bound states. (2)
Between the first and second vertical lines u0 − ky < ε < u0

we have: (2a) Transmission is very small and decreases with
energy to a minimum at the green vertical line erected above
the grazing energy ε = u0, and (2b) there are isolated Klein
bound states under the potential barrier as analyzed above in
the previous sections. (3) Between the second and third lines
u0 < ε < u0 + ky we have: (3a) Transmission occurs above
the barrier, but it is small, and increases with energy, and
(3b) there are isolated Klein bound states that occur above
the potential barrier [see Fig. 3(a)]. (4) To the right of the
third line u0 + ky < ε we have: (4a) Transmission occurs
above the barrier and oscillates with decreasing amplitude and
approaches its maximum value and (4b) there are no bound
states.

VI. BOUND STATES IN A PERPENDICULAR MAGNETIC
FIELD AND SQUARE WELL

Analysis of bound states in the presence of a uniform
perpendicular magnetic field and a square well potential en-
ables access to “un-quantized” Landau functions in graphene.
First recall the extensively studied case U (x) = 0 (see, e.g.,
Ref. [23]). In the Landau gauge, Ay = Bx, translation invari-
ance along y ensues, and the spinor wave function factorizes
as �(x, y) = eikyyψ (x). Introducing the magnetic length � =√

h̄c/(eB) enables formulation in terms of the dimensionless
position, wave number, and binding energy: x → x/�, kx,y →
kx,y� and ε = �E

h̄vF
. The bare equation with dimensionless

variables and parameters reads:

[−iσx∂x + σy(ky − x)]ψ (x) = εψ (x). (12)

It is simplified after a shift and scaling of the position coordi-
nate, x → z√

2
+ ky, into

Hψ (z) ≡ [ − iσx∂z − 1
2 zσy

]
ψ (z) = εψ (z), (13)

whose general solution is (with δ̄ ≡ 1 − δ),(
ψ (1)(z)

ψ (2)(z)

)
= c1

(
Dν1 (z)

ε
i Dν1−1(z)

)
+ c2δ̄ε,0

(
Dν2 (iz)

−1
ε

Dν2+1(iz)

)
. (14)

Here Dν (z) is the parabolic cylinder function, z ≡ z(x) =√
2(x − ky), ν1 = ε2, ν2 = −(ε2 + 1). If the wave function

is required to be square integrable on the whole interval
−∞ < z < ∞, we must set ε2 = n (where n is a non-negative
integer), and c2 = 0 (because wave functions with imaginary
arguments blow up). These constraints determine the Landau
quantized energies ε = ±√

n and wave functions for electrons
in graphene.

A. Inclusion of a square well

In the scaled shifted variable z the square-well potential
U (x) = U0�(|x| − L) reads

u(z) =
{

0, z(−L) < z < z(L)
u0, otherwise , (15)

where u0 = �U0
h̄vF

and z(L) = √
2L − ky ≡ L1, z(−L) =

−√
2L − ky ≡ L2 �= −z(L) = −L1, hence ky = − 1

2 [z(L) +
z(−L)]. Thus, a symmetric well in x is not symmetric in z.
The eigenvalue problem is specified by the set of equations
defined for −∞ < z < ∞:[

− iσx
d

dz
− 1

2
zσy

]
ψ (z) =

{
εψ (z), z ∈ [L2, L1]
(ε − u0)ψ (z), z /∈ [L2, L1].

(16)

Here ψ (z) = (
ψ (1) (z)
ψ (2) (z)

)
, and ε is the energy eigenvalue that needs

to be determined. As in Eq. (14), the solutions can be ex-
pressed in terms of parabolic cylinder functions Dν (·), and the
spinor wave function is required to be continuous everywhere
and square integrable. For z ∈ [L2, L1] the solution reads,

ψc(z) = c1

(
Dν1 (z)

−iεDν1−1(z)

)
+ c2δ̄ε,0

(
Dν2 (iz)

− 1
ε
Dν2+1(iz)

)
. (17)

Generically, the orders ν1 = ε2, ν2 = −(ε2 + 1) in Eq. (17)
are not (non-negative) integers. In the external regions z /∈
[L2, L1], the only solutions of the second of Eq. (16) that decay
as |z| → ∞ are such that: (1) the order ν of Dν (·) should be
a non-negative integer, and (2) the argument of Dν (·) must be
real [24]. The most general solution is then an infinite linear
combination of Landau functions Lsn(z) = ( Dn(z)

si
√

nDn−1(z)

)
, n =

0, 1, . . . , s = ∓.

B. Analytic solution for a special case

A general numerical solution is worked out in
subsection 2 of the Appendix. Here we show that analytic
solutions exist for specific discrete values of the potential
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strength u0. We employ the following solutions of Eq. (16)
for z /∈ [L2, L1], with ε = u0 ± √

n, that is, n = (ε − u0)2:

wψright(z) = c3�(z − L1)

(
Dn(z),

±i
√

nDn−1(z)

)
,

ψleft(z) = c4�(L2 − z)

(
Dn(z)

±i
√

nDn−1(z)

)
. (18)

1. Matching equations

Following Eqs. (17) and (18), for fixed ±√
n, the

wave function is determined by the coefficients vector c =
(c1, c2, c3, c4)T . Continuity requires ψc(L1) = ψright(L1) and
ψc(L2) = ψleft(L2), where each relation yields two equations.
This set of four linear homogeneous equations can be formally
written as An(u0)c = 0. The potential strength u0 must satisfy
Det[An(u0)] = 0, and the roots unm determine the bound-state
energies εnm = unm ± √

n. The eigenvector cnm of An(unm)
corresponding to eigenvalue zero determines the wave func-
tion in all space. Figure 4(a) plots Det[An(u0)] versus u0. For
each 0 � n ∈ Z there are, in principle, an infinite number
of zeros {unm} and infinite number of bound-state energies
εnms = unm + s

√
n, where s = ±. A few bound state energies

are shown in Fig. 4(b).

2. Wave functions and currents

The spinor wave functions and the currents along y corre-
sponding to well height unm for (n, m) = (0, 0) are shown in
Fig. 5. The main properties of the wave functions are: (1) It
is possible to choose the phase such that the upper component
of the spinor is real while the lower component is imaginary.
This implies that the current along x vanishes, as it should
for bound states. (2) Parity symmetry (or antisymmetry) is
not exact for the wave functions around z = 0. The density
ρ(z) = ψ

†
0 (z)ψ0(z) is not perfectly symmetric and the current

density Jy(z) = ψ
†
0 (z)σyψ0(z) is not perfectly antisymmetric,

hence the total (integrated) current Iy does not vanish. (With
the choice of parameters adopted here we get Iy = 0.007373).
The reason for this is that the energy levels are degenerate
ε(ky) = ε(−ky) and the corresponding quantities for ±ky are
related as:

ρ(z; −ky) = ρ(−z; ky), Jy(z; −ky) = −Jy(−z; ky). (19)

Hence, the (incoherent) weighted sums of contributions from
±ky satisfy the pertinent symmetries and hence Iy = 0 for the
weighted sums. In principle, ρ(z) and Jy(z) can be measured,
as can the dipole transition rates. Therefore, graphene Landau
wave functions with noninteger orders can be probed. In the
calculations of density, current, and E1 transitions presented
below we take u0 = �U0

h̄vF
= 10, − 5

2
√

2
� x � 5

2
√

2
(in units of

�) and ky = ±0.5 (in units of 1/�). Since z = √
2x − ky, this

gives [L2, L1] = [−3, 2] for ky = +0.5 and [L2, L1] = [−2, 3]
for ky = −0.5.

Figure 6 shows the symmetrized ground-state density
ρ0(z) = 1

2

∑
±ky

[ψ†
0 (z)ψ0(z)] and current density along y,

Jy0(z) = 1
2

∑
±ky

[ψ†
0 (z)σyψ0(z)]. As stated in Eq. (19), the in-

coherent sum of contributions from ±ky results in a symmetric
density and an antisymmetric current density. In particular,
the total current along y, Iy0 = ∫ ∞

−∞ Jy0(z)dz, vanishes (as it

FIG. 4. (a) For square well boundary conditions with L2 =
−3.1

√
2 and L1 = 2.1

√
2 (in units of �) we plot |Det[An(u0 )]| as a

function of u0 for n = 0 (blue) and n = 1 (orange). The zeros unm

fix the bound-state energies, εnm = unm ± √
n, n = 0, 1, 2, . . . , m =

0, 1, 2, . . .. (b) 3D discrete plot of the bound-state energies εnm

(negative n means εnm = unm − √
n). The points (n, m, εnm ) are the

center of a unit square placates with half integer vertices, (n ±
1/2, m ± 1/2). The square placates are drawn simply to graphically
clarify the values of εnm.

should). Similar results for the first excited state ψ1(x) are
shown in Fig. 7.

C. E1 transitions in the presence of a magnetic field

In analogy with the discussion of photon absorption in the
absence of an external magnetic field (see Sec. IV), we now
consider E1 transitions in the presence of the magnetic field.
The E1 transition rates wn,m from m to n with light polarized
along the x axis are proportional to |εn − εm|4 |〈ψn|x|ψm〉|2,
where {εn} are the energy eigenvalues obtained from the
solution of Eq. (A11) in the Appendix, and the transition
dipole matrix elements are

〈x〉mn = 〈ψm|x|ψn〉 =
∫ ∞

−∞
ψ†

m[z(x)]xψn[z(x)]dx, (20)
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FIG. 5. For the potential strength u0 = un=0,m=0 = 1.0013 [the
first blue zero in Fig. 4(a)] and L2 = −3.1

√
2, L1 = 2.5

√
2, we plot

the upper component (solid red) and −i times the lower component
(dashed blue) of the wave function ψ10(z), and the current Jy(z)
(dotted purple) of the state ψ00(z). Since u00 is small, the wave
functions and current seem to have symmetry around z = 0 but, in
fact, they do not. To get the quantities in physical units recall that
z, ψ (z) and J (z) are in units of �, 1/

√
� and 1/�, respectively.

FIG. 6. Density ρ0(z) and current Jy0(z) of the ground state
ψ0(z) following incoherent summation over ±ky. (a) 1

2 [ρ0(z, ky ) +
ρ0(z,−ky ), (b) 1

2 [Jy0(z, ky ) + Jy0(z,−ky ). ρ(z) and J (z) are in units of
1/�.

FIG. 7. Density ρ1(z) and current Jy1(z) of the first excited state
ψ1(z) following incoherent summation over ±ky. (a) 1

2 [ρ1(z, ky ) +
ρ1(z,−ky ), (b) 1

2 [Jy1(z, ky ) + Jy1(z,−ky ). ρ(z) and J (z) are in units of
1/�.

where z(x) = √
2(x − ky). The main contribution comes from

the interval −L � x � L where L/� = 5
2
√

2
(see caption of

Fig. 5). The photon absorption spectrum between the low-
est eight states n = 0, 1, . . . , 7 (determined by the set of
parameters specified after Fig. 5), is shown in Fig. 8. It is
interesting to note the differences between photon absorption
spectra in the presence and in the absence of the magnetic
field shown in Fig. 2. In the latter case, there is the usual
parity selection rule, namely, the function ψ†

n (x)xψm(x) is
even (odd) if n + m + 1 is odd (even). In particular, transitions

0 2 4 6 8 10
10- 4
0.001

0.010

0.100

1

10

n– 0

tra
ns
iti
on
ra
te
w
n0

FIG. 8. Absorption spectrum of the transitions 0 → n, n =
1, 2, . . . , 7. The transition rates w0,n (in dimensionless units), which
are proportional to ω4

0n |〈ψ0|x|ψn〉|2, are plotted versus the resonant
light photon energy h̄ω0n = εn − ε0 in dimensionless units.
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0 → 1, 3, 5, 7 are shown but 0 → 2, 4, 6 vanish. These parity
selection rules do not apply in the presence of magnetic field,
hence all transitions 0 → n (n = 1, 2, . . . , 7) are allowed.

Following Ref. [21], p. 324, the electric dipole (E1) transi-
tion rate wmn between states |n〉 and |m〉 is given by

wmn = A(Em − En)4(eEx )2|Xmn|2, Xmn = 〈m|x|n〉,
where A is a constant depending on e, c, and h̄. Em and En are
the pertinent energy levels and Ex is the slowly varying electric
field envelope. The physical dimension of the rates wmn are
s−1. Recall that the parameter of length here is the magnetic
length � (in the presence of a magnetic field of 1 T, � ≈ 25 nm,
the energy unit is h̄vF /� ≈ 27.52 meV), hence the measured
physical quantities, expressed in terms of our dimensionless
quantities, εm, u0, and xmn are

Em = h̄vF

�
εm, U0 = h̄vF

�
u0, Xmn = � xmn,

wmn = A

[
h̄vF

�

]4

(εn − εm)4(eEx�)2|xmn|2. (21)

VII. SUMMARY AND CONCLUSIONS

We have developed a formalism for studying electron Klein
bound states in single layer graphene subject to a symmetric
1D square-well potential, in the absence as well as in the
presence of an external magnetic field. This study completes
and adds novel concepts to the analysis of chiral tunneling
reported Ref. [2]. In the absence of magnetic field, an analytic
expression is derived for the wave functions of the ground
and excited states, and a beautiful symmetry between the
two components of the (pseudo)spinor is shown to exist. We
showed that Klein bound states are located both below the
barrier (u0 − ky < ε < u0) and above the barrier (u0 < ε <

u0 + ky). In both cases, bound states exist also within the
Schrödinger scheme, but in that case the dependence of the
energy interval that hosts bound states on ky is quadratic.
The consequences of parity noninvariance and time reversal
invariance are elucidated, and photon absorption inducing E1

transitions between levels are worked out. For the sake of
completeness we illustrated the structure of the transmission
coefficient T (ε) across the entire positive energy axis.

In the presence of an external uniform perpendicular mag-
netic field, an analytic expression for the wave functions is
derived for a discrete (albeit infinite) sequence of potential
strengths u0 = {unm} n, m = 0, 1, 2, . . .. Hence, the Landau
functions in graphene with noninteger orders and imaginary
argument appearing in Eq. (17) can be experimentally inves-
tigated. Numerical calculations valid for arbitrary potential
strength are presented in the Appendix, and the importance
of the symmetry (19) is stressed.

Our results can be applied directly to the propagation of
light waves in periodic waveguide optical structures. Light
transport in a 2D binary photonic superlattice with two inter-
leaved lattices A and B is realized by a sequence of equally
spaced waveguides with alternating deep/shallow peak re-
fractive index changes. The propagation of monochromatic
light waves are modeled by the scalar wave equation in the

paraxial approximation, and the tight-binding limit results
in coupled-mode equations for the fundamental-mode field
amplitudes which are functions of a discrete set of integer
variables. Approximating these with a continuous variable,
rather than as an integer index, yields a 2D Dirac equation
with an external electrostatic potential [15,16]. This yields the
same mathematical formalism used here.
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APPENDIX

In this short Appendix we elaborate on two points dis-
cussed in the main text. Subsection 1 explains the construction
and displays the precise form of the matrix A(ε) introduced
in Eq. (5). Subsection 2 details the numerical solution of
Eq. (16).

1. The Matrix A(ε) Related to Eq. (5)

Here we give an explicit expression for the matrix A(ε)
introduced in Eq. (5) that determines the bound state energies
and wave function coefficients specified by the vector c ≡
(a, b, α, δ) appearing in Eq. (2). The pertinent quantities are
introduced after Eq. (5), and Eqs. (3) and (A2). For self-
consistence, some equations are repeated. The (dimension-
less) momenta inside the well (u0 = 0) and outside the well
(u0 > ε > 0) are,

kx = ε cos φ, ky = ε sin φ, tan φ = ky

kx
,

qx =
√

(ε − u0)2 − k2
y , tan θ = ky

qx
. (A1)

In the p-n-p junction analyzed here, the Klein paradox occurs
if the inequality u0 > ε > 0 is satisfied. Klein bound states
occur under the more stringent inequality,

u0 > ε > u0/(1 + sin φ) > 0 ⇒ qx

= iκx = i
√

(ε sin φ)2 − (u0 − ε)2, (A2)

where κx > 0 (real and positive). The bound-state wave func-
tions must decay exponentially as e−κx |x| as |x| → ∞. In this
region tan θ = −iky/κx is pure imaginary, and tan2 θ < −1.
To ensure this behavior we must set β = γ = 0 in Eq. (2),
keeping only the decaying parts of the wave function for
|x| > 1. The matching conditions at x = ±1 lead to a ho-
mogeneous system of four linear equations for the complex
coefficients a, b, α, δ. Bound-state solutions occur at energies
{εn} for which the determinant of A(ε) vanishes, and the
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corresponding coefficient vector cn is determined by the set
of homogeneous equations A(εn)cn = 0. The explicit form
of the matrix A(ε) in the system of equations, A(ε)c = 0,
is given by

A(ε)=

⎛
⎜⎜⎝

eiε cos φ e−iε cos φ −e−κx 0
ei(ε cos φ+φ) −e−i(ε cos φ+φ) e(−κx+iθ ) 0
e−iε cos φ eiε cos φ 0 −e−κx

e−i(ε cos φ−φ) −ei(ε cos φ−φ) 0 −e(−κx−iθ)

⎞
⎟⎟⎠.

(A3)

The determinant is given by

Det[A] = 4e−2κx [cos θ cos φ cos(2ε cos φ)

+ i(1 + sin θ sin φ) sin(2ε cos φ)]. (A4)

Here tan θ = ε sin φ

qx
and for u0

1+| sin φ| < ε < u0 we have q2
x =

(u0 − ε)2 − (ε sin φ)2 = −κ2
x < 0. In this case sin θ is real

and cos θ is imaginary, so that, up to a multiplicative constant,
the determinant is real in this energy range. After some
algebra one arrives at the expression in Eq. (5). In the interval
u0 < ε < u0

1−| sin φ| , where we find bound states as in Fig. 3(a),

the appropriate matrix Ã(ε) is obtained after reversing the
signs of A(2, 3) and A(4, 4). The corresponding determinant
is:

Det[Ã] = 4e−2κx [cos θ cos φ cos(2ε cos φ)

+ i(1 − sin θ sin φ) sin(2ε cos φ)]. (A5)

2. Numerical solution of Eq. (16)

The set of Landau functions is complete on the interval
(−∞,∞) so we can expand ψ (z):

ψ (z) =
M→∞∑

n=0

∑
s=∓

ansLns(z),

where Lns(z) = Nns

(
Dn(z),

si
√

nDn−1(z)

)
. (A6)

Here Nns is a normalization factor. Substitution into Eq. (16)
then yields

[−iσx∂z − 1
2 zσy]ψ (z) =

M∑
n=0

∑
s=∓

anss
√

nLns(z)

= [ε − u(z)]
M∑

n=0

∑
s=∓

ansLns(z). (A7)

Multiplying by L†
mt (z) (where t = ∓) and integrating over z,

using 〈Lmt |Lns〉 = δmnδts one obtains

t
√

mamt = εamt −
M∑

n=0

∑
s=±

Amt,nsans. (A8)

The infinite sum (as M → ∞) can be cut off at a sufficiently
large M. This procedure leads to an eigenvalue problem in
a finite Hilbert space of dimension 2M + 1. The matrix A
introduced above can be written as u0(I − B), where I is the
(2M + 1) × (2M + 1) unit matrix. The explicit expressions
for the matrices A and B are

Amt,ns =
∫ ∞

−∞
L†

mt (z)u(z)Lns(z)dz

= u0[δmnδts︸ ︷︷ ︸
Imt,ns

−
∫ L1

L2

L†
mt (z)Lns(z)dz

︸ ︷︷ ︸
Bmt,ns

]. (A9)

where u0 is the strength of the square well potential defined in
Eq. (17). Next, we define a diagonal matrix � by

�mt,ns = δmt,nsDiag(t
√

m)

= (0,
√

1,
√

2, . . . ,
√

M,−
√

1,−
√

2, . . . ,−
√

M ),

(A10)

and a vector a with 2M + 1 components, ans =
(a0, a1+, a2+, . . . , aM+, a1−, a2− . . . , aM−). Equation (A8)
then becomes the eigenvalue problem,

[� + u0(I − B)]a = εa. (A11)

The matrix � + u0(I − B) is real and symmetric. For u0 = 0
the eigenvalues are the Landau energies for graphene εm =
±√

m.
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