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Substrates, and layered media in general, are ubiquitous and affect the properties of any object in their
vicinity. However, their influence is, in an arbitrary framework, challenging to quantify analytically, especially
for large arrays which additionally escape explicit numerical treatment due to the computational burden. In
this work, we utilize a versatile T -matrix-based framework to generalize the coupled multipole model toward
arbitrarily high multipole orders and substrate-supported arrays. We then employ it to study substrate-supported
random/amorphous arrays of high index dielectric nanoparticles which are of wide interest due to relatively
low losses and a highly tunable optical response, making them promising elements for nanophotonic devices.
We discuss how multipole coupling rules evolve in the presence of a substrate in amorphous arrays for
three interaction mechanisms: direct coupling between particles, substrate-mediated interparticle coupling, and
substrate-mediated self-coupling. We show how the interplay of array density, distance from the substrate, and
the latter’s refractive index determine the optical response of an array. As an example, we use this framework to
analyze refractometric sensing with substrate-supported arrays and demonstrate that the substrate plays a crucial
role in determining the array sensitivity.
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I. INTRODUCTION

High index dielectric (HID) nanoresonators are used as
building blocks of novel photonic devices such as photoni-
cally enhanced photovoltaic cells, biomolecule sensors, and
flat analogs of conventional optical devices called metasur-
faces [1]. The interest in HID nanoresonators stems from the
fact that they support both electric and magnetic resonances
in simple geometries such as spheres or disks, what provides
significant tunability of the optical response [2]. Also, they are
less susceptible to losses and they are more compatible with
the CMOS standard of modern electronics than plasmonic
counterparts [1].

A convenient way to express and analyze the fields scat-
tered by HID nanoresonators is by multipole expansion. The
far-field response of an antenna is related to the interference
of its multipole fields, the manipulation of which can, for
example, lead to unidirectional scattering via generalized
Kerker effects [3]. Tailored, directional scattering is essential
for nonlinear photonics with HID nanoresonators and design
of Huygens metasurfaces, which exploit Kerker effects to
obtain almost ideal Huygens sources [4]. The conditions
for achieving directional scattering are almost exclusively
expressed using multipole moments. Notably, while small
particles are usually associated with dipole moments, higher-
order multipoles are also important and, upon careful design
of nanoresonator geometry, can be even dominant in its scat-
tering spectrum [5].
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Antennas can, of course, be assembled into arrays. Their
optical response is then determined by an interplay between
the single-particle response, multiple scattering, and interfer-
ence of the emitted fields. Multiple scattering leads to radia-
tive coupling of multipole moments of nanoresonators and is
addressed by solving a set of self-consistent equations. The
coupled multipole approach retains the physical interpretation
of the inner working of an array and begets an intuitive un-
derstanding of the properties, such as shifting and broadening
of antenna resonances due to near-field coupling, or lattice
resonances in periodic arrays [6]. It also demonstrates that dif-
ferent multipoles are affected in distinct manners by tuning the
periodicity of an array in orthogonal directions. By virtue of
this fact, electric and magnetic dipole resonance wavelengths
can be tuned independently, modifying the resonance overlap
condition [7].

Alternatively, interparticle coupling can be shaped by using
amorphous arrays, which are random with a constraint on
the minimal separation between nanoresonators. This con-
straint introduces short-range position correlation and long-
range disorder. The randomness eliminates lattice resonances,
leaving the optical response qualitatively similar to that of a
single nanoresonator. In general, the minimal center-to-center
(CC) distance between nanoresonators in amorphous arrays
changes interparticle coupling and the optical response. These
modifications manifest themselves as, for example, changes of
the resonance wavelength and quality factor [8], scattering-to-
absorption ratio [9], or directional scattering and solar energy
harvesting efficiency [10].

The versatility of the coupled multipole model stems from
that it provides semianalytical solutions for the multipole
moments of infinite nanoresonator arrays in both periodic and
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amorphous arrangements [10]. To that end, first, propagators
of each multipole must be derived and a general coupled
multipole equation system must be proposed. Then, an as-
sumption that the nanoparticle array is infinite is introduced.
For periodic arrays this renders the multipole moments of
all particles identical and reduces the inverse problem to
single-particle multipoles coupled to their infinite multipole
neighborhood via so-called lattice sums. The procedure is
exactly the same for amorphous arrays [8,11], except for the
fact that in random arrays each nanoparticle has a unique
neighborhood and therefore an average, continuous multipole
film is considered as the nanoparticle’s neighborhood. In
recent literature, there are several examples of lattice sum
derivations including electric and magnetic dipoles, dipole-
quadrupole coupling for both periodic [12,13] and amorphous
arrays [8,10,11,14].

A substantial disadvantage of the coupled multipole model
for nanoresonator arrays is its applicability to a homoge-
neous environment. However, two-dimensional nanoresonator
arrays are almost exclusively fabricated on a substrate. One
prominent example of substrate-related effects is exceptional
field enhancement observed in a nanoparticle-on-mirror sys-
tem, in which a plasmonic or a HID nanoresonator is placed
in close vicinity of a metallic mirror [15,16]. From a mathe-
matical point of view, the presence of a substrate influences
the multipole expansion of the scattered fields [17,18]. For
example, the scattered electric dipole field can be reflected off
the substrate and trigger a magnetic dipole response and vice
versa, leading to magnetoelectric coupling [19] and substrate-
induced bianisotropy [20]. Magnetoelectric coupling also
leads to exceptionally strong polarization sensitivity of the
optical response of HID nanoresonators placed on a metallic
film [21]. Finally, the presence of a substrate is known to
modify the back-reflection Kerker conditions [22,23] and
circular dichroic spectrum of a nanoresonator [24–26].

In this work, we exploit recent advantages in the transition
matrix (T -matrix) method to address the generalization of
the coupled multipole model toward arbitrarily high multipole
orders and substrate-supported arrays. The T matrix is closely
related to Cartesian multipole moments and the two formu-
lations (superposition T matrix and Green function based)
of the coupled multipole model are equivalent [27,28]. Both
require the evaluation of the so-called Sommerfeld integrals
in order to calculate the reflected fields. This approach has
been used, for instance, to evaluate magnetoelectric coupling
in a single dielectric particle [19] or substrate-supported single
nanoresonator optical response in the discrete dipole ap-
proximation [29]. Recently, a general superposition T -matrix
method for nanoresonators in a layered medium has been
proposed [30]. As the multipole expansion of the field is used
in this work, it is prudent to note that despite the usefulness
of distinguishing between toroidal and nontoroidal multipole
moments, such a separation cannot be done here. One should
note that the effect of the toroidal moments is included in
the scattering coefficients calculated based on the T matrix.
Lack of such distinction does not affect the physics of the
interparticle coupling captured by the T -matrix formulation
as the interparticle coupling cannot modify the toroidal and
nontoroidal moments independently [31]. This stems from
the fact that the toroidal moments are actually higher-order

corrections to well-known long-wavelength approximations to
multipole moments [32].

Here, we formulate an infinite array approximation, which
provides the effective (average) multipole moments of a
nanoresonator in an array. We focus on amorphous arrays as
they are challenging to tackle with other methods and are
an interesting alternative to periodic ones, especially since
many bottom-up, self-assembly methods exist to fabricate
such random structures. However, the model and some of
the conclusions are also applicable to periodic arrays. This
work is structured as follows. First, we derive the model
and verify it numerically with the superposition T -matrix
and finite-difference time-domain (FDTD) methods. Then,
we study multipole coupling in a substrate-supported array.
We discuss general multipole coupling rules that can be
applied to any array with central symmetry. We exemplify
these rules and show generalized magnetoelectric coupling
that includes higher-order multipoles. Finally, we study the
parameters influencing substrate-mediated multipole coupling
and discuss the physics of electromagnetic coupling effects in
refractometric sensing.

II. AMORPHOUS ARRAY OF PARTICLES
ON A PLANAR SUBSTRATE

The external Eex(r) field acting onto a particle and its
scattered Esc(r) field at position r can be expanded into vector
spherical wave functions (VSWFs) as follows:

Eex(r) =
∞∑

l=1

n∑
m=−l

aE
ml M

1
ml (kr) + aM

ml N
1
ml (kr), (1)

Esc(r) =
∞∑

l=1

n∑
m=−l

bE
ml M

3
ml (kr) + bM

lmN3
ml (kr), (2)

where k = 2πnm/λ is the wave number in a given medium
with index nm, λ is the wavelength, and we follow [33] in
the definitions of VSWFs, which for convenience are sum-
marized in Appendix A. The T matrix relates the expansion
coefficients of the external (a) and scattered fields (b) in terms
of radiating VSWF [33]:(

bE

bM

)
=
(

T EE T EM

T ME T MM

)(
aE

aM

)
, (3)

which is simplified as b = T a. Here, the T matrices are calcu-
lated using the null-field method with discrete sources which
is an efficient method of evaluating single-particle scattering
properties [34].

In the case of coupled nanoantennas embedded in a strat-
ified medium, the equation describing the response of any
scatterer S is extended [35] to include the scattered field of
all other scatterers S′ as

bS = T S

⎛⎝aS +
∑
S′ �=S

aS,S′
d +

∑
S′

aS,S′
r

⎞⎠. (4)

The scattered field from the other scatterers, S′, is expressed in
regular rather than radiating VSWFs to conveniently consider
this field as a contribution to the incident field driving scatterer
S. The relation that defines the direct (subscript d) coupling
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matrix is therefore

aS,S′
d = W S,S′

d bS′
, (5)

where W S,S′
d is the direct coupling matrix which is also

present in a homogeneous environment. A similar expression
is defined for the scattered field from scatterer S′ reflected
(subscript r) off the substrate

aS,S′
r = W S,S′

r bS′
, (6)

where W S,S′
r is the substrate-mediated coupling matrix. The

definitions of the coupling matrix terms are presented in
Appendix B.

By combining the definitions of the coupling matrices with
Eq. (4) we obtain

bS = T S

⎡⎣aS +
⎛⎝∑

S′ �=S

W S,S′
d +

∑
S′

W S,S′
r

⎞⎠bS′

⎤⎦. (7)

We separate out the reflected self-coupling of scatterer S with
itself (W S,S

r ) from substrate-mediated interparticle coupling
(W S,S′

r ) and under the summation we explicitly introduce the
dependence of W S,S′

d and W S,S′
r on cylindrical coordinates and

drop the superscripts

bS = T S

⎧⎨⎩aS +
⎡⎣W S,S

r +
∑
S′ �=S

[Wd (ρS,S′ , φS,S′ )

+ Wr (ρS,S′ , φS,S′ )]

⎤⎦bS′

⎫⎬⎭, (8)

where (ρS,S′ , φS,S′ ) is a vector in cylindrical coordinates from
scatterer S to S′.

To reduce the many-particle problem to an effective single-
particle one described with a self-consistent equation, we
make use of the nature of amorphous arrays composed of
identical scatterers [cf. Fig. 1(a)]. Namely, while the neigh-
borhood of any given resonator is unique, the fluctuations
of the scattering coefficients of each neighboring particle are
sufficiently small to be neglected. Then, assuming an infinite
array and averaging over different realizations of spatial dis-
order, it is possible to describe the particle distribution in the
array by a pair correlation function (PCF) �(ρ/lcc, φ) (see Ap-
pendix C). � is parametrized by the minimal center-to-center
distance lcc = CC × D, where D is the nanodisk diameter
(with thickness H) and CC is a dimensionless parameter. This
stochastic similarity of a random array allows us to replace the
discrete particle properties bS′

by an effective, continuous film
of multipoles of average properties given by bS and density by
�(ρ/lcc, φ). Thus,

bS = T S

{
aS +

[
W S,S

r + σ

∫ ∞

0
ρ dρ

∫ 2π

0
dφ �(ρ/lcc, φ)

× [Wd (ρ, φ) + Wr (ρ, φ)] exp(−ερ)

]
bS
}
, (9)

where σ is the particle-number density and the passage from
Eqs. (8) to (9) is described in more detail in Appendix D.
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FIG. 1. (a) Small-scale schematic representation of substrate-
supported random arrays of nanodisks (c-Si, nsub = 2, diameter D =
160 nm, thickness H = 120 nm) for comparison between FDTD and
T -matrix calculations with (b) obtained extinction spectra showing
very good agreement. (c) Comparison of T -matrix calculations of
explicit substrate-supported arrays of 1751 nanodisks with refractive
index 4 [other parameters from (b)] with proposed model shows
good agreement. Coupling in the random arrays with different den-
sity induces significant changes of the peak positions, widths, and
amplitudes.

For amorphous arrays, which are made using random se-
quential adsorption (RSA) [36], we have σ = σ0/l2

cc, where
σ0 � 0.696 is a surface packing parameter which stems from
the surface jamming limit [37]. As the radiative, proportional
to r−1 terms of the coupling matrices yield an improper
integral without a well-defined limit for r → ∞, we introduce
an exponentially decaying term [exp(−ερ)], where ε is a
small constant equal to 10−5 nm−1, to make the integrals
well defined. Physically, this corresponds to an infinite array
illuminated by a finite, slowly decaying beam.

The equation can be further simplified by analyzing the
angular integral. The coupling matrix can be factorized into
radial and angular terms

Wr,d (ρ, φ) = Wr,d (ρ) exp[i(m′ − m)φ]. (10)

The angular probability distribution of finding a neighboring
particle is uniform, which leads to

bS = T S

{
aS +

[
W S,S

r + 2πσ

∫ ∞

0
ρ dρ �(ρ/lcc)

× [Wd (ρ) + Wr (ρ)] exp(−ερ)

]
bS
}

(11)

for m1 = m2 and zero otherwise. Next, we define the effective
direct coupling matrix as

W̃d = 2πσ

∫ ∞

0
ρ dρ �(ρ/lcc)Wd (ρ) exp(−ερ), (12)

and the effective substrate-mediated (reflected) coupling one
as

W̃r = 2πσ

∫ ∞

0
ρ dρ �(ρ/lcc)Wr (ρ) exp(−ερ). (13)
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The radial integration is performed numerically, during
which the improper integrals are truncated at a certain inter-
particle distance. There are three parameters that determine
the accuracy of the integration: resolution of the radial grid,
damping of the oscillating part of the integral, and truncation
distance. Equation (11) is then solved for the scattering coef-
ficients bS by matrix inversion:

bS = [
(T S )−1 − (

W S,S
r + W̃d + W̃r

)]−1
aS. (14)

Finally, the extinction cross section is evaluated as a sum of
individual VSWF contributions [33]

Cext = − π

k2

∞∑
n=1

n∑
m=−n

Re
(
a∗E

nmbE
nm + a∗M

nm bM
nm

)
. (15)

Having outlined the model, we verify it numerically by cal-
culating optical properties of substrate-supported amorphous
arrays of HID nanodisks illuminated by a normally incident
plane wave. Modeling of anisotropic scatterers with the T -
matrix method is problematic due to the Rayleigh hypothesis
that states that the fields calculated with the T -matrix method
are valid only outside the circumscribing sphere of the scat-
terer. In our particular case of HID nanodisks supported by a
substrate, such a sphere crosses the substrate and therefore the
Rayleigh hypothesis is not fulfilled for a particle interacting
with its image. However, it has been recently shown that this
limitation can be circumvented by relying on the conditional
convergence of plane-wave expansion of VSWFs truncated
at a certain wave vector [38]. Here, we utilize the relation
between the truncation wave vector and the truncation mul-
tipole order from [38] to simulate anisotropic nanoresonators.
Because of the fact that full-wave Maxwell equation solvers
based on finite-element or FDTD methods are not capable
of simulating random arrays of realistic size, we validate our
approach in two steps.

First, we confirm the validity of the plane-wave expansion
for substrate-supported arrays by comparing the extinction
cross-section spectrum obtained with the T -matrix method
(open-source python code SMUTHI [30,35]) for an amorphous
array composed of 24 crystalline silicon (c-Si) [39] nanodisks
(D = 160 nm, H = 120 nm, substrate index nsub = 2) with
an FDTD simulation (FDTD Solutions, Lumerical) for the
same array [cf. Fig. 1(b)]. Next, we compare the results of
superposition T matrix to our effective model. We simulate
substrate-supported arrays with 1751 particles made of c-Si
and assembled using RSA. This number of disks is sufficient
for obtaining converged spectra for different realizations of an
amorphous array. For low density (high lcc > 10D) the optical
response is almost density independent [14], as it should, since
the arrays tend to well-separated quasisingle disks. However,
as plotted in Fig. 1(c), for dense arrays significant deviation
from the single-particle response is observed [8,10]. Agree-
ment of the two methods is maintained even for dense arrays,
confirming that the effective approach calculates correct opti-
cal spectra of substrate-supported amorphous arrays orders of
magnitude faster than the direct superposition T -matrix one.

III. MULTIPOLE COUPLING SELECTION RULES

Occurrence of multipole coupling depends on three factors:
on the coupling matrix form of a given particle environment,
on symmetries of the angular distribution of particles, and on
the polarization of the external field (nonzero coefficients in
the VSWF expansion a) [33]. We now recall the multipole
coupling rules for the free-space case emerging from the
translation theorem for VSWF [40]. We then analyze the
relaxation of those rules for substrate-supported scatterers and
discuss its consequences for the interparticle coupling.

Let us then consider the associated Legendre polynomial
part of the direct coupling matrix W S,S′

d ,

P|m−m′ |
χ (cos θ ), (16)

where χ ∈ [|l − l ′|, l + l ′] and θ is the azimuthal angle in
spherical coordinates. Since interparticle coupling vanishes
unless m = m′, one can use the recurrence relation

Pn+1(cos θ ) = α cos θPn(cos θ ) − βPn−1(cos θ ) (17)

with P0 =
√

2
2 and P1 =

√
3
2 cos θ to evaluate these polynomi-

als. As a consequence of the fact that we are analyzing a planar
array, we set cos θ to zero. Then, only even χ contribute to the
overall result.

The other factor governing the occurrence of coupling
between multipoles of given degrees are Wigner-3 j symbols,
where

wa(l, l ′, χ ) =
(

l l ′ χ

0 0 0

)
(18)

contributes to coupling between multipoles of the same type
(i.e., electric-electric or magnetic-magnetic) and

wb(l, l ′, χ ) =
(

l l ′ χ − 1
0 0 0

)
(19)

contributes to cross coupling between electric and magnetic
multipoles.

Such Wigner-3 j symbols vanish unless the sum of its top
row is an even integer. Because the condition that stems from
the Legendre polynomials limits χ to even numbers, we have
that if l + l ′ is even, then wa �= 0 and wb = 0. Otherwise, if
l + l ′ is odd, then wa = 0 and wb �= 0. These conditions lead
to the following conclusion: coupling between electric and
magnetic multipoles can happen only if one of their orders is
even and the other is odd. For such orders, coupling between
multipoles of the same types does not occur. Otherwise, only
coupling between the same multipole types occurs. This is
a generalization of previously known examples of multipole
coupling selection rules. The presented selection rules are
valid for particles embedded in a homogeneous environment.
When particles are deposited on a substrate, these rules can be
violated as a consequence of substrate-mediated coupling, al-
lowing multipoles with the same order m to couple regardless
of their type and degree.

The coupling matrix can be used as a tool for studying
properties of multipole coupling between the particles as well
as between the particles and the substrate [Fig. 2(a)]. We dis-
tinguish three coupling types which originate from Eq. (11):
direct coupling (W̃d ), substrate-mediated self-coupling (W S,S

r ),
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FIG. 2. (a) Coupling matrices for (left) direct coupling between
particles, (center) substrate-mediated interparticle coupling, and
(right) substrate-mediated self-coupling for CC = 3.5D, λ = 700
nm assuming D = 160 nm and H = 160 nm. (b) Real and imaginary
parts of the dipole matrix elements at λ = 700 nm as a function
of center-to-center distance for direct coupling (direct), substrate-
mediated coupling between the same dipole type (refl) and cross
coupling between electric and magnetic dipoles (refl-c), and self-
coupling also between the same dipoles (self-) and cross coupling
(self-c). (c) The magnitude of the dipole matrix element as function
of wavelength for CC = 3.5D shows that the self-coupling is the
dominant factor modifying the optical properties, however, jointly
the remaining contributions can be, depending on the relative phases,
of similar magnitude.

and substrate-mediated interparticle coupling (W̃r). Each of
the coupling matrix terms can be considered individually
to study the contribution of each mechanism into the final
result, as presented in Fig. 2. The direct term, which is
present even when the particle is embedded in a homoge-
neous environment, obeys the symmetry dictated by multipole
coupling selection and is an extension of the dipole-dipole
coupling [10,14]. An analysis of this analogy is presented in
Appendix E. In contrast to direct coupling, both substrate-
mediated coupling terms obey a less-strict selection rule pro-
viding a route toward observation of various multipole cross-
coupling effects. The only rule except for m = 0 they obey
is that coupling is not possible between electric and magnetic
multipoles when m = 0. This rule is discussed in Appendix B.

To elucidate the influence of various parameters on multi-
ple scattering leading to intra-array coupling, we now focus
on dipolar terms only, which dominate the optical spectrum
of nanodisks in the visible and near infrared. While electric-
electric and magnetic-magnetic dipole coupling is described
by the same term, electric-magnetic dipole cross coupling
has its own unique dependence. As shown previously, (direct)
interparticle coupling in amorphous metasurfaces depends on
their density in an oscillatory manner of a stochastic, quasi-
Fabry-Perot cavity [10,11]. Here, various coupling types also
exhibit this distinct dependence [cf. Fig. 2(b)]. While self-
coupling does not depend on array density, substrate-mediated
interparticle coupling, similar to direct coupling, does

oscillate as a function of density, but its phase is shifted
with respect to direct coupling. Similar oscillations occur also
for interparticle cross coupling between electric and mag-
netic dipoles, however, it is comparatively weaker than other
coupling types [cf. Fig. 2(c)]. In contrast, self-cross-coupling
has nearly the same magnitude as self-coupling, but opposite
sign [Fig. 2(b)]. The magnitudes of the various dipole matrix
elements as function of wavelength for lcc = 3.5D show con-
stant qualitative behavior, as plotted in Fig. 2(c). In principle,
the direct term is the one which has the biggest impact on
the optical properties of a single substrate-supported particle.
However, the remaining contributions can be of similar mag-
nitude, especially for arrays of intermediate density with CC
around 4–7.

We now study the optical extinction spectra of substrate-
supported amorphous arrays of HID nanodisks in the light
of the above conclusions. First, we compare the response of
metasurfaces composed of c-Si [39] cylinders with diameter
of 150 nm and height of 225 nm in three environments
[see Figs. 3(a)–3(c)]: vacuum, on a substrate with nsub =
1.45, and an effective homogeneous medium with index
1.28. Qualitatively, dependence of the extinction spectrum
on the minimal CC distance is the same for the vacuum
and substrate-supported case. The difference between the two
cases is most prominent for CC = 4, for which the ratio
between the magnetic and electric resonances is substantially
different. In contrast, when the disks are placed in an effec-
tive medium, interparticle coupling is strongly modified as a
consequence of the ratio between vacuum and medium wave-
lengths. Since reflection of waves scattered by the substrate
is neglected, the phase relations of the scattered and external
fields change significantly. Consequently, approximation of a
substrate-supported case by using an effective permittivity is
only poorly applicable to amorphous arrays.

Further differences between the optical properties of arrays
embedded in a homogeneous and a layered medium can be
observed by performing a multipole decomposition of the
extinction spectra shown in Figs. 3(d)–3(f). The contribution
from each of the multipoles is obtained by summing only over
the index m in Eq. (15) with the type (electric and magnetic)
defined by the superscript E/M. The herein discussed disk
supports spectral overlap of multiple electric and magnetic
multipoles thanks to its dimension ratio H/D > 1. This makes
it an excellent candidate for observing magnetoelectric cou-
pling and substrate-induced bianisotropy.

First of all, the decomposition shows that for the substrate-
supported case the electric dipole extinction spectrum has a
characteristic shoulder at the magnetic dipole [Fig. 3(e)]. It
is indicative of mutual coupling [19] and is markedly absent
in both homogeneous environments [Figs. 3(d) and 3(f)]. Fur-
thermore, our calculations show that the presence of the sub-
strate suppresses MD/EQ coupling at the magnetic resonance,
which is inherently present in a homogeneous environment.
The second significant resonance centered around 600 nm is
composed of an electric dipole and a magnetic quadrupole,
which is one of the consequences of H/D > 1. Indeed, in con-
trast to the homogeneous cases, we observe an enhancement
of the magnetic dipole around the composite ED/MQ reso-
nance, in contrast to other works which reported even negative
MD extinction in the vicinity of the ED resonance [19,21], as
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FIG. 3. Comparison between the optical response of amorphous arrays of c-Si cylinders with D = 150 nm and H = 225 nm for selected
center-to-center distances: (a) in air, (b) on a substrate with nsub = 1.45, and (c) in an index-matched medium of 1.28. (d)–(f) Multipole
decomposition (D, dipole; Q, quadrupole; O, octupole) of extinction spectra for the three cases for CC = 5. Note the substrate-mediated
magnetoelectric coupling around 600 and 725 nm, which is absent in homogeneous environments.

well as significant amplification of the ED resonance itself.
In fact, all first four multipoles are coupled, as evidenced by a
weak EQ peak around 600 nm. We attribute this observation to
substrate-mediated multiple multipole coupling effects, which
are observed, despite that fact that we use a relatively low-
index substrate. Finally, we note that for the index matched
case, in addition to the incorrect broadening of the dipolar
resonances, this approximation erroneously predicts a sharp
EQ around 500 nm.

IV. FACTORS INFLUENCING MULTIPOLE COUPLING

For an amorphous array of nanoparticles in free space, in-
terparticle coupling depends on the minimal CC distance [10],
while the presence of the substrate begets additional coupling
mechanisms, which are governed by two factors. One is
the substrate refractive index, which modifies the reflection
coefficient and determines the strength of substrate-mediated
coupling and the phase relationship between the field incident
onto the substrate and the one reflected off it. The second
one is the the array-substrate distance, which modifies the
phase factors of substrate-mediated coupling and its decay.
Consequently, a substrate changes both interparticle coupling
and self-coupling. To analyze this effect, we calculate total in-
terparticle coupling, as a sum of direct and reflected coupling
terms, and the self-coupling between dipoles, in both cases
neglecting higher-order terms and magnetoelectric coupling,
as function of the array-substrate and minimal CC distances.
In Figs. 4(a)–4(c) we present the analysis for λ = 500 nm,
approximately the magnetic dipole resonance wavelength for
a silicon nanodisk with H = 100 nm and D = 100 nm in free
space.

As shown in Figs. 4(a) and 4(b), the array-substrate dis-
tance modifies the dependence of the total interparticle cou-
pling term on the minimal CC distance, especially for dense
arrays. For the highest density analyzed (lcc = 200 nm), both
the amplitude and phase of the coupling term can be tuned
within the broad range. At the same time, for dilute arrays, the
overall interparticle coupling strength is low and thus cannot
be easily modified by changing the phase term via placement
of an array. However, even then the optical response of an
array depends strongly on its distance from the substrate due
to the self-coupling term, as plotted in Fig. 4(c). A similar
modification of the self-coupling term can be observed when
the refractive index of the substrate is changed, despite the fact
that interparticle coupling is not significantly distinct from the
free-space case, as shown in Fig. 4(d). Notably, the optical
response of an array is always determined by the sum of self-
coupling and interparticle coupling terms, which makes the
array-substrate distance an important parameter for shaping
how the interparticle coupling contributes the overall response
of an array. In general, the real and imaginary parts of W
affect, respectively, the width and position of the resonance.
When Im[W ] > 0 and affected peak will blueshift, while for
Re[W ] < 0 it will redshift. Simultaneously, a positive real part
of W broadens the resonance (and decreases its amplitude),
while a negative one makes it more narrow (increasing the
amplitude).

To exemplify this we study the optical spectra of arrays
composed of c-Si disks with D and H of 100 nm placed
above a substrate with nsub = 2. The extinction spectra for
selected array-substrate distances z and minimal CC distances
lcc are presented in Figs. 5(a)–5(c). Both the amplitude and
resonance wavelength are modified by changing the array-
substrate distance, being consistent with the coupling matrices
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FIG. 4. Coupling dependence vs distance from substrate and
substrate index. (a) Real and (b) imaginary parts of the dipole-dipole
coupling term W (neglecting magnetoelectric cross coupling) for
an amorphous array on a substrate (nsub = 2) at λ = 500 nm as
function of array-substrate distance z and minimum center-to-center
lcc distance. The distance z = 0 corresponds to an array of disks of
height equal to 100 nm placed on a substrate. Both real and imaginary
parts of total interparticle coupling shows distinct dependence on lcc

for each array-substrate distance. (c) The self-coupling term W S,S
r .

likewise affected. (d) W S,S
r increases significantly with nsub, while

interparticle coupling is weakly dependent on nsub and only for very
dense arrays with small lcc is larger than W S,S

r .

of Fig. 4 for the magnetic dipole at 500 nm. For example,
for a dense array with CC = 2, the magnetic resonance in-
creases in amplitude when going from z = 0 to 90 nm and
then diminishes for z = 240 nm. This is accompanied by
corresponding, but inversely proportional width changes and
concomitant peak shifts, whose evolution is offset in phase
with respect to that of the peak amplitude [8,14]. The partic-
ular behavior of the peak amplitude stems from the fact that
the real part of the interparticle coupling term has an opposite
sign for z = 240 nm in comparison with the two other cases.
The same conditions cannot be straightforwardly applied to
the electric dipole resonance because of the different phase
relationship within the coupling matrix between the resonance
wavelength and the array-substrate distance. For CC = 4.5
the properties are close to that of a single particle, yet each
array-substrate distance results in a distinct modification of
the optical response due to the relation between the coupling
matrix and array-substrate distance. Figure 5(d) summarizes
these observations for the magnetic dipole resonance position,
whose dependence on z and lcc results from direct W̃d and
reflected W̃r interparticle coupling [Fig. 4(b)], self-coupling
W S,S

r [Fig. 4(c)], and other terms like cross coupling.
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FIG. 5. Extinction cross-section spectra for silicon nanodisks
with 100-nm diameter and 100-nm height placed on a substrate
with nsub = 2 for selected center-to-center distances and (a) z =
0 nm, (b) z = 90 nm, and (c) z = 240 nm. The modification of the
resonances is determined by the array density, which is inversely
proportional to CC, and the array-substrate separation distance.
(d) Example of magnetic resonance dependence on the disk’s dis-
tance from the substrate z and lcc, which results from an interplay of
various coupling terms. White marks the resonance wavelength of a
single disk in free space.

V. REFRACTIVE INDEX SENSING WITH HID ANTENNAS

Amorphous arrays of HID nanodisks have recently been in-
vestigated in the context of refractometric biosensing [41,42].
Potential benefits of Si structures are low losses and high
CMOS compatibility, providing a valid alternative for plas-
monic sensors despite having a lower sensitivity than plas-
mons [43]. Hence, unraveling the role various effects play
in determining their response is important [44]. One factor
enabling good sensitivity of an array of dielectric nanodisks is
interparticle coupling due to an isolated one’s low sensitivity
in a homogenous environment [10]. Thus, it is important to
understand and quantify how a substrate affects its sensing
characteristics: (i) by modification of the Fresnel coefficient
as a function of the environment’s refractive index and (ii) by
modifying the phase factor of reflected waves.

We exemplify this by calculating bulk refractive index
sensitivity for nd ∈ 〈1.35; 1.55〉 for a c-Si nanodisk with D =
H = 160 nm supported by a substrate with a varying nsub and
compare it in Fig. 6(a) to a homogeneous environment. The
sensitivity is calculated as the slope of a linear fit to the peak
shift vs nd . Indeed, the value of nsub substantially affects the
sensitivity showing that even for an isolated particle it is a key
factor. In principle, for a large contrast between the substrate
and the medium the sensitivity is large, while for low contrast
the sensitivity can even tend to zero. Moreover, the sign of
peak shift depends on whether nsub is higher or lower than nd

of the sensed medium.
When placed in an array, the optical response of the

system is additionally modified by the interparticle coupling,
which is an important factor determining the refractive index

085431-7



CZAJKOWSKI, BANCEREK, AND ANTOSIEWICZ PHYSICAL REVIEW B 102, 085431 (2020)

0

10

20

-10

-20

si
ng

le
 d

is
k 

se
ns

iti
vi

ty
 (n

m
/R

IU
)

homogeneous
on substrate

0

-20

20

40

60

-40

-60

-80

m
ea

n 
ar

ra
y 

se
ns

iti
vi

ty
 (n

m
/R

IU
)

1.9
1.7
1.45
1.2

1.8
1.6
1.3
1.1

2.0

substrate
index

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
substrate refractive index

1 2 3 4 5 6 7 8
 minimum center-to-center distance (D)

0

-20

20

40

60

-40

-60

lo
ca

l a
rr

ay
 s

en
si

tiv
ity

 (n
m

/R
IU

)

1 2 3 4 5 6 7 8
 minimum center-to-center distance (D)

1.49
1.45
1.41
1.37

1.47
1.43
1.39
1.35

1.51
sensed
index

1.53average

(a) (b) (c)

FIG. 6. Bulk sensing (nd ∈ 〈1.33, 1.53〉) characteristics of substrate-supported dielectric nanodisks. (a) Sensitivity of a nanodisk in a
homogeneous environment (dashed line) is very small, but when the disk is placed on a substrate (solid with circles) with nsub ∈ 〈1.1, 2〉 it
varies significantly with nsub. (b) The average sensitivity (over the whole nd range) of substrate-supported random arrays of disks (solid lines)
varies with the center-to-center distance and the mean single-particle value (dashed lines) around which it oscillates depends on nsub. (c) The
local-index (∂λ/∂nd ) sensitivity for substrate nsub = 1.45 is nonlinear and there is considerable spread of its value once near-field coupling
effects have decayed for the center-to-center distance above ∼2.5D.

sensitivity of arrays embedded in a homogeneous environ-
ment [10]. Next, we calculate the sensitivities of amorphous
arrays of Si nanodisks with D = 160 nm and H = 160 nm
for selected nsub as function of the minimum CC distance,
which are plotted in Fig. 6(b). The oscillating behavior of the
sensitivity mirrors that of the interparticle coupling, which
follows a damped, periodic function of lcc. The choice of
the minimal CC distance is essential for obtaining high re-
fractive index sensitivity through maximizing the imaginary
part of the interparticle coupling matrix W and maximizing
the single-particle response by coupling to an appropriate
substrate [cf. Fig. 6(a)]. Consequently, the choice of substrate
determines the sensitivity in the low-density limit and then
sets the potential range of values attainable by tuning the array
density (minimum CC distance). For small nsub the optimal
lcc is at the first maximum that occurs at CC ≈ 2.5 and gives
approximately 55 nm/RIU (refractive index unit) sensitivity.
In contrast, for nsub = 2 the best sensitivity occurs at CC ≈ 3
and while negative, it gives the global maximum (in the tested
range) of 70 nm/RIU.

A further consequence of the oscillatory behavior of the
minimal CC dependence of interparticle coupling is a non-
linear relation between nd and the wavelength shift. If nd

changes are small, the sensitivity is linear, however, not for
large index changes. We illustrate this via the local sensitivity
as ∂λ/∂nd |nd and study this property for selected nd as a
function of lcc for a fixed nsub = 1.45. The results are plotted
in Fig. 6(c). In general, the observed local sensitivities are
close to the average value [plotted also in Fig. 6(b)]. However,
for CC � 2.5, for which near-field effects have decayed, a
substantial spread of the sensitivity values is observed, indi-
cating the nonlinear dependence of the wavelength shift vs the
refractive index of the environment. The effect is especially
pronounced close to sensitivity minima.

VI. CONCLUSIONS

In this work we introduced a computationally efficient and
accurate T -matrix-based effective model for describing the
optical properties of substrate-supported random arrays of

nanoresonators, accounting for multiple scattering effects and
the presence of the substrate. The advantage of the T -matrix
framework is its close relationship with multipole decomposi-
tion, which we exploit to discuss general multipole coupling
rules for both free-space and substrate-supported arrays. The
model can be used to study the optical properties up to
arbitrarily high multipole orders, which is advantageous with
respect to a Green function based approach, where including
each new multipole order requires an involved derivation of
multipole propagators. Our approach extends beyond cur-
rent multipole studies of substrate-supported arrays, which
consider the dipole approximation in a decoupled case with
substrate-mediated coupling neglected [23]. We show how an
important factor substrate-mediated coupling is and introduce
generalized substrate-induced magnetoelectric coupling be-
yond magnetic dipole-electric dipole coupling.

We anticipate that this work will be useful for studying op-
tical properties of large-scale photonic systems which contain
nanoparticles and nearby interfaces. The proposed T -matrix-
based effective model can be used as a general and very
efficient numerical tool for simulating substrate-supported
nanoresonator arrays composed of identical particles with
at least an approximate point symmetric spatial distribution.
This includes not only amorphous but also periodic arrays,
which are often present in metasurfaces. The coupling matrix
and multipole decomposition are easily obtained from the
model and can shine light onto contributions from interpar-
ticle and substrate-mediated coupling effects, which provide
further insight into the properties of the coupled nanoparticle
array-layered medium system.
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APPENDIX A: VECTOR SPHERICAL WAVE FUNCTIONS

In the T -matrix method the fields are expanded into regular and radiating vector spherical wave functions defined in the
spherical coordinate system (r, θ, φ) as

M1,3
ml (kr) = √

Dml z
1,3
l (kr)

[
im

P|m|
l (cos θ )

sin θ
eθ − d

dθ
P|m|

l (cos θ )eφ

]
eimφ, (A1)

N1,3
ml (kr) = √

Dml

{
l (l + 1)z1,3

l (kr)

kr
P|m|

l (cos θ )er +
d

d (kr) krz1,3
l (kr)

kr

[
d

dθ
P|m|

l (cos θ )eθ + im
P|m|

l (cos θ )

sin θ
eφ

]}
eimφ, (A2)

where index 1 corresponds to regular VSWFs and 3 corresponds to radiating VSWFs, (er, eθ, eφ ) are the unit vectors in spherical
coordinates, z1,3

l corresponds to the spherical Bessel jl and spherical Hankel functions of the first kind hl which correspond
to superscripts 1 and 3, respectively, P|m|

l is the associated Legendre polynomial of order l and m, and Dml is a normalization
constant equal to

Dml = (2l + 1)(l − |m|)!
4l (l + 1)(l + |m|)! . (A3)

APPENDIX B: LAYER-MEDIATED AND DIRECT COUPLING MATRICES

1. Layer-mediated coupling

The layer-mediated coupling matrix is defined as [35]

W S,S′
r,n,n′ = 4i|m−m′ |ei(m−m′ )φS,S′ [I+

n,n′ (ρS,S′ , zS + zS′ ) + I−
n,n′ (ρS,S′ , zS − zS′ )], (B1)

where n is a single index denoting the corresponding VSWF, which otherwise would require three indices (l, m, η) with η

denoting magnetic (0 or M) and electric (1 or E ) multipoles. I+
n,n′ (ρS,S′ , zS + zS′ ), I−

n,n′ (ρS,S′ , zS + zS′ ) are the Sommerfeld integrals
meaning that the integral over the angular extent of the array is equal 2π for multipoles of with the same m value and zero
otherwise.

To show how this matrix is constructed, we refer to a formula from [35] in which the Sommerfeld integral theorem is yet to
be applied,

W S,S′
r,n,n′ = 2

π

∑
j

∫
d2k‖
kzk

ei(m′−m)φS,S′ eik‖·(rS−rS′ )(B†
n, j (kz/k)eikzzS B†

n, j (−kz/k)e−ikzzS )L(kz )

(
Bn′, j (kz/k)

Bn′, j (−kz/k)

)
, (B2)

where

Bn, j (x) = 1

il+1

1√
2l (l + 1)

(iδ j,1 + δ j,2)
√

1 − x2

(
δη j

∂P|m|
l (x)

∂x
+ (1 − δη j )m

P|m|
l (x)

1 − x2

)
, (B3)

where k‖ is the in-plane wave vector and kz is the wave-vector component perpendicular to the substrate. L(kz ) denotes the layer
response matrix constructed according to [30] and j corresponds to summation over polarizations. B† is defined as B with all
explicit i substituted by −i. For a simple case of a particle above a plane the layer-mediated coupling matrix reads as

W S,S′
r,n,n′ = 2

π

∑
j

∫
d2k‖
kzk

ei(m′−m)φS,S′ eik‖·(rS−rS′ )r(kz )B†
n, j (kz/k)Bn′, j (−kz/k)eikzS , (B4)

as the substrate converts downward plane waves into upward reflected ones, the amplitude of which is modified by the Fresnel
reflection coefficient r(kz ).

For m = 0 the equation

Bn, j (x) ∝ δη j

√
1 − x2

∂P|m|
l (x)

∂x
. (B5)

Consequently, if η = η′ and m = m′ = 0, then one of the terms of the sum in the integral defining W is zero, however, the other
one is not, as the product B†

n, j (kz/k)Bn′, j (−kz/k) consists of two terms corresponding to the same plane-wave polarizations. In

contrast, if η does not equal η′, then B†
n, j (kz/k)Bn′, j (−kz/k) consists of terms corresponding to the opposite polarizations, one of

which always leads to zero and therefore the magnetoelectric coupling can never occur if m = m′ = 0. The same result can be
provided for the direct coupling by analyzing the Wigner-3 j symbols in a similar manner to the one provided in the main text.
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2. Direct coupling

The direct part contains three factors: Bessel functions dependent on the product krS,S′ , Legendre polynomials and a5 and b5

coefficients, which depend on Wigner-3 j symbols. Here, we write those coefficients explicitly because we study the properties
of the Wigner-3 j symbols in the main text. Due to the presence of the Legendre polynomial, it is convenient to define W S,S′

d in
spherical coordinates (r, φ, θ ). If η = η′,

W S,S′
d,n,n′ = ei(m−m′ )φS,S′ (−1)m+m′ 1

4

√
εmεm′

∑l+l ′

χ=|l−l ′ |(−1)(l ′−l+χ )/2(2χ + 1)

√
(2l + 1)(2l ′ + 1)[χ − (m − m′)]!
l (l + 1)l ′(l ′ + 1)(χ + m − m′)!

×
(

l l ′ χ

0 0 0

)(
l l ′ χ − 1

m −m′ m′ − m

)
[l (l + 1) + l ′(l ′ + 1) − χ (χ + 1)]h(1)

χ (krS,S′ )P|m−m′ |
χ (cos θS,S′ ), (B6)

otherwise for η �= η′,

W S,S′
d,n,n′ = ei(m−m′ )φS,S′ (−1)m+m′ 1

4

√
εmεm′

∑l+l ′

χ=|l−l ′ |+1
il ′−l+χ+1(2χ + 1)

√
(2l + 1)(2l ′ + 1)[χ − (m − m′)]!
l (l + 1)l ′(l ′ + 1)(χ + m − m′)!

×
(

l l ′ χ − 1
0 0 0

)(
l l ′ χ

m −m′ m′ − m

)√
[χ2 − (l − l ′)2][(l + l ′ + 1)2 − χ2]h(1)

χ (krS,S′ )P|m−m′ |
χ (cos θS,S′ ), (B7)

where εm ≡ 2 − δm0 denotes the Neumann symbol.

APPENDIX C: PAIR CORRELATION FUNCTION
OF AMORPHOUS ARRAYS

Amorphous arrays are constructed using the RSA algo-
rithm [36], in which the minimum center-to-center distance
is a hard limit on particle separation. While the individual
neighborhood of each particle is random and hence unique,
statistically the density distribution of particles from any one
particle is given by a radial PCF [37]. For two-dimensional
systems the PCF is obtained numerically [45,46], as shown in
Fig. 7 with circles, to which we fit an analytical function to
allow for easy integration. The numerical PCF data are well
fitted by [14]

�(x) = 1 + sin

(
2π

x − x0

xs

) 2∑
i=1

aie
−bi (x−xi ) (C1)

with x = ρ/lcc being the CC distance in units of the minimum
CC distance. The fitting parameters are x0 = 0.79, xs =
1.22, a1 = 1.02, a2 = 0.77, b1 = 17.5, b2 = 1.62, x1 =
1.05, x2 = 0.87.
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FIG. 7. Pair correlation function for 2D amorphous arrays are
obtained from fitting numerical data.

APPENDIX D: AVERAGING PROCEDURE

The passage from Eqs. (8) to (9) requires averaging over
the scatterers in an array and replacing their discrete spatial
distribution with continuous one. Here, we summarize the
necessary steps and approximations leading to the film of mul-
tipoles model. If we want to find the average scattering coeffi-
cients we have to deal with the coupling term from Eq. (8) av-
eraged over index S, 1

N

∑
S

∑
S′ �=S WS,S′ (ρS,S′ , φS,S′ )bS′

, where
WS,S′ (ρS,S′ , φS,S′ ) = Wd + Wr . This term is problematic be-
cause we cannot calculate bS′ without solving the equation
system or approximations. We assume that the neighborhood
of the particle with index S is composed of approximately
identical multipoles, which can be considered a mean field
approach. Then, assuming that the array is sufficiently large
and uniform, every particle can be approximately described
with the same set of multipole moments:

1

N

∑
S

∑
S′ �=S

WS,S′ (ρS,S′ , φS,S′ )bS′

= 1

N
〈b〉
∑

S

∑
S′ �=S

WS,S′ (ρS,S′ , φS,S′ ). (D1)

Because of the fact that WS,S′ depends on the position differ-
ence, one index can be omitted and the sum can be rewritten
in integral form

1

N
〈b〉
∑

S

∑
S′ �=S

WS,S′ (ρS,S′ , φS,S′ )

= 〈b〉
∫

d2r W (�r)
∑

S′′

δ(�r − �r′′
s )

N
. (D2)

The Dirac δ term is the local number density of the particles
at a certain distance and angle. The local number density can
be averaged over disorder realizations as σ�(ρ/lcc, φ), where
σ is the global particle-number density, �(ρ/lcc, φ) is the pair
correlation function leading to Eq. (9) with bS′ = 〈b〉.
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APPENDIX E: RELATIONSHIP BETWEEN THE
COUPLING MATRIX AND THE RETARDED MULTIPOLE

POTENTIALS

Previously, we utilized a Green-function-based approach
to calculate the effective multipole moments (polarizabilities)
of particles in an amorphous array, denoted as S [8,10,11,14].
One can convert the herein presented result from the VSWF
basis back to the multipole moments representation using re-
lations between scattering VSWF expansion coefficients and
multipole moments from the literature [27,28]. For magnetic
or electric dipoles this relation is expressed as [28]

⎛⎝px

py

pz

⎞⎠ = c

⎛⎝ b1 − b−1

i(b1 + b−1)
−√

2b0

⎞⎠, (E1)

where c is a factor required to obtain correct units and wave-
length dependence and is defined as c = − 6i

4k3 (the difference
between [28] and this work stems from centimeter-gram-
second units in Ref. [10]). This equation is easily rewritten

into matrix form ⎛⎝px

py

pz

⎞⎠ = cM

⎛⎝b−1,1

b0,1

b1,1

⎞⎠, (E2)

with M being defined as

M =
⎛⎝1 0 −1

i 0 i
0 −√

2 0

⎞⎠. (E3)

One can then utilize M for basis conversion

S = c−1MW M−1. (E4)

Finally, we relate Sxx, which is used in Ref. [11], to W , which
is the dipole-dipole part of the coupling matrix used here, by
evaluating it with Eq. (E4)

Sxx = 1

2c
(W−1,−1 + W1,1), (E5)

which, knowing that W−1,−1 = W1,1, reduces to

Sxx = 4ik3
0

6
W1,1. (E6)
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