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Origin of the vortex displacement field in twisted bilayer graphene
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A model description of patterns of atomic displacements in twisted bilayer systems has been proposed. The
model is based on the consideration of several dislocation ensembles, employing a language that is widely
used for grain boundaries and film/substrate systems. We demonstrate explicitly how the dislocation language
relates to vortex lattice motives found in experiment and simulations. We show that three ensembles of parallel
screw dislocations are sufficient both to describe the rotation of the layers as a whole, and for the vortexlike
displacements resulting from elastic relaxation. The results give a clear explanation of the observed features of
the structural state such as vortices, accompanied by alternating stacking.
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I. INTRODUCTION

Bilayer systems consisting of two layers of identical or
different two-dimensional materials such as bilayer graphene
(G/G), bilayer hexagonal boron nitride (BN/BN), and bilayer
graphene/hexagonal boron nitride (G/BN) are the subject
of great interest now as the simplest examples of van der
Waals heterostructures (for reviews, see Refs. [1–3]). Building
bilayer devices involves mechanical processes such as rotation
and translation of one layer with respect to the other. This
has substantial influence on the performance and quality of
such devices [4,5]. The rotation leads to structural moiré
patterns which directly affect the electronic properties of
bilayers [6–14]. A further growth of interest in the field was
triggered by a recent discovery of superconductivity and a
metal-insulator transition in “magic angle” twisted bilayer
graphene [15,16]. In this paper, we focus on the structural as-
pects of moiré patterns and consider bilayer G/G. We suggest
a description of the moiré patterns in terms of vortices and in
terms of dislocations and establish a connection between these
two languages.

In two-dimensional materials, such as monolayer
graphene, the term “dislocation” is typically used to describe
pointlike [zero-dimensional (0D)] defects lying within the
sheet, e.g., pentagon-heptagon or square-octagon pairs [17];
they are also used to describe grain boundaries as dislocation
walls [18–20]. Such defects are edge dislocations with
line directions oriented normal to the sheet. Unlike the
case of monolayers, in bilayers it is also possible to have
one-dimensional (line) dislocations that lie between the two
layers of a bilayer material; these dislocations do not require
the generation of any topological defects within each of two
sheets.

The geometry of displacement fields in bilayer van der
Waals systems has been discussed repeatedly starting from
the discovery of a commensurate-incommensurate transition

in G/BN systems [10]. The results of atomistic simulations
[21–23] show that the formation of the vortex lattice is rather
typical for the picture of displacements of relaxed twisted
bilayer systems (both G/BN and G/G). On the other hand,
an electron microscopy study [24] revealed multiple stacking
domains with solitonlike boundaries between them in slightly
twisted bilayer graphene, where the domain boundaries can
be also described as one-dimensional Frenkel-Kontorova dis-
locations, in which a topological defect where six domains
meet can be considered as a vortex in a displacement field.
A similar multiple stacking domain structure was discussed
in Refs. [25,26] in the framework of a model employing a
network of partial dislocation. However, the relation between
these two descriptions, in terms of vortices and in terms of
dislocations, is currently unclear.

Here, based on the dislocation model, we propose a general
description of the moiré patterns in twisted bilayer graphene
in terms of twisted grain boundaries in layered materials.
We show that both pictures (vortex networks and dislocation
arrays) are consistent and present two possible ways for a
qualitative description of such systems and a physical inter-
pretation of the computer simulation results.

II. DISLOCATION MODEL OF A TWISTED
BILAYER SYSTEM

Moiré patterns are formed initially by a rigid twist of the
upper layer with respect to the bottom layer; their geometry
is determined by lattice type and the rotation angle [27]. If
one allows atomic relaxation, that is, their shifts from these
ideal geometric positions within the lattice of coincidence
sites to minimize the total energy, the picture becomes more
complicated and, according to simulations [22], a vortex
displacement field arises. Notably, the vortices form a regular
lattice and are separated by broad regions of almost zero
displacements.
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There are two canonical ways to describe conjugation
in bilayer systems. The first one is the simplest picture of
a coincidence site lattice (CSL) [28], where one lattice is
just rotated and placed on the other one without atomic
relaxation; it corresponds to the moiré description. In the
second approach, a general description of twist boundaries
in bilayer systems can be derived on the basis of dislocation
models proposed earlier for three-dimensional materials and
thin films [29]. A consideration of grain boundaries based on
the concept of surface dislocations was given in Ref. [30]
where general relations between grain boundaries and the
geometry of dislocation arrays were discussed. In the context
of graphene, this language was used in Refs. [18–20].

A. General geometric relationships

At least two arrays of parallel equidistant screw disloca-
tions are necessary to ensure a given relative twist of two
crystallites in their conjugation plane [30]. In this case, certain
geometric relations must be fulfilled so that the total shear
deformation in the plane of the boundary is zero. In particular,
in the case of two arrays, it is necessary to require that the
dislocation axes in these arrays were perpendicular to each
other.

To present correctly the geometry of the conjugation of two
graphene layers (and the corresponding moiré pattern), two
dislocation arrays are not enough. We consider a more general
case and represent the plastic distortion tensor β

p
i j produced

by one array of dislocations in the form β
p
i j = nib j/d , where

n is the normal to the dislocation line lying in the plane of the
boundary, b is the Burgers vector of dislocation, and d is the
distance between neighboring dislocations in the array. The
plastic deformation ε

p
i j and rotation ω

p
i j are determined by the

symmetric and antisymmetric parts of the tensor β
p
i j [30],

ε
p
i j = nib j + n jbi

2d
, ω

p
i j = nib j − n jbi

2d
. (1)

To describe the conjugation of two twisted graphene layers
and taking into account the lattice trigonal symmetry, we will
use three dislocation arrays rotated with respect to each other
by π/3. Assuming that the normal to the graphene layers is
[001] and considering screw dislocations with the Burgers
vector parallel to dislocation line, we write (see Fig. 1)
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where b is the module of the Burgers vector which should
be equal to the elementary translation in the graphene layer.
To ensure the total deformation ε

p
i j is equal to zero, it is

necessary to choose the third dislocation array with the vector
b3 orthogonal to b1 + b2,

b3 = b [0, 1, 0], n3 = [−1, 0, 0]. (3)

(a)

3

1

2

(b)

FIG. 1. The schematic representation of the dislocation network
used to describe the twist boundary. (a) Network of screw disloca-
tions. (b) Reconstructed network of dislocations. Vectors 1–3 indi-
cate the directions of dislocation lines. The moiré cell is highlighted
by a yellow tetragon.

Indeed, substituting expressions (2) and (3) into Eq. (1), we
find

ε
p
i j = 0, ω

p
i j = 3b

2d

⎛
⎝ 0 1 0

−1 0 0
0 0 0

⎞
⎠, (4)

and the rotation vector ωk = 1
2εi jkωi j will be ω = 3b

2d [0, 0, 1].
The periodicity of this dislocation network matches the period
of the moiré picture and intersections of the dislocations
correspond to the moiré coincidence points. Note that for
a small rotation angle, ψ ≈ ω3 = 3b/(2d ); this expression
is similar to that determining the geometry of the moiré in
the model of the CSL ψ ∼ a/l , with l the distance between
coincidence points, and a the elementary lattice translation.

B. Relaxed displacement field within the dislocation model

Equations (4) are valid on the average for the whole sheet.
In fact, the displacements are nonuniformly distributed and
concentrated near the dislocation lines. As discussed above, to
describe correctly the displacement field in the case of twisted
bilayer graphene, three arrays of dislocations are necessary.
We believe that the Frenkel-Kontorova model [31] gives a
qualitatively correct description of the displacement field cre-
ated by surface dislocations. Assuming that the energy relief
of the substrate may have an additional minimum [32,33] and
dislocations can split into partial ones [30,31,34], the screw
component of the displacement field for one family can be
represented as

us(x) = b

π

∑
i

{
arctan

[
exp

(
x − x0

i − δ/2

ξ

)]

+arctan

[
exp

(
x − x0

i + δ/2

ξ

)]}
, (5)

where x0
i correspond to the position of the center of dislo-

cation line, ξ is the core width, δ ∼ μb/γ is the distance
splitting between partial dislocations, μ is the shear modulus,
and γ is the stacking fault energy. A typical value of the core
width is about a few lattice parameters a0 [20]. As it was
shown in Ref. [34], the splitting of total dislocations leads to
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FIG. 2. Screw component (a) of displacements produced by one
dislocation array in the case of nonsplit (ξ = 0.2, δ = 0.2, curve 1)
and split (ξ = 0.1, δ = 0.4, curve 2) dislocation cores. Edge com-
ponent (b) of the displacements is produced by one array of partial
dislocation (ξ = 0.1, δ = 0.4). Distances and parameters ξ, δ are
given in units of d .

an AB-AC-AB alternation of stackings and results in a rather
large distance between partial dislocations, about 20 nm.

The splitting of the dislocation on a hexagonal lattice re-
sults in the formation of a stacking fault which is accompanied
also by the appearance of the edge components of partial
dislocations [26], b = (b/2 + be) + (b/2 − be). In this case,
the edge component of the displacement field can be written
as

ue(x) = be

π

∑
i

{
arctan

[
exp

(
x − x0

i − δ/2

ξ

)]

−arctan

[
exp

(
x − x0

i + δ/2

ξ

)]}
. (6)

Figure 2(a) displays the dependence us(x) for the cases of
narrow and wide (split) dislocations. In the case of narrow
dislocations the displacements are concentrated in the dislo-
cation core and include both plastic and elastic parts. When
the width of the dislocation core ξ increases, the dependence

us(x) becomes close to linear u ≈ up = bx/d and represents a
pure plastic shear. Figure 2(b) shows the edge component of
displacements in the case of split dislocation.

Following the discussion in the previous section, we rep-
resent the total displacement field in twisted graphene layers
as a superposition of three dislocations arrays. Subtracting the
plastic part, we write the elastic displacements produced by
screw dislocations in the form

uel(r) =
3∑

k=1
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π
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i=−m

arctan

[
exp

(
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i − δ/2

ξ

)]

+ arctan

[
exp

(
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ξ

)]

−
(

mb + b

L
rnk

)
, (7)

where nk = [001] × bk is the normal to the dislocation line
of the kth array, 2m + 1 is the number of dislocations in
each array. In addition, in the case of split dislocations, there
is a displacement field created by arrays of edge partial
dislocations

ue(r) =
3∑

k=1
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k

π
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exp

(
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i + δ/2
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−arctan

[
exp

(
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ξ

)]}
. (8)

The vector fields described by Eq. (7) are shown in Fig. 3
for the cases of narrow (nonsplit) and split dislocation cores.
As one can see from Figs. 3(a) and 3(c), the screw component
of the displacement field produced by elastic relaxation (7)
forms a vortex lattice. However, the geometry of displace-
ments is quite different for the cases under consideration.
In particular, dislocation splitting results in a decrease of
the period of the vortex lattice by two times; the magnitude
of displacement becomes essentially smaller [Fig. 3(c)]. The
distribution of the edge components of the displacement field
uedge(r) [Fig. 3(d)] corresponds to alternating domains with
almost constant displacements.

The picture of elastic displacement in Fig. 3(a) is rather
similar to that obtained in atomistic simulations [22,33,35],
which indicates a semiquantitative correctness of the descrip-
tion of atomic relaxation effects in twisted graphene bilayers
within our simple dislocation model.

The distribution of the strain energy density [3]

Eel = 1

2
[λ(uαα )2 + 2μuαβuαβ ] (9)

is presented in Fig. 3(b). Here, the components of the defor-
mation tensor are

uxx = dux

dx
+ 1

2

(
duy

dx

)2

+ 1

2
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+ 1

2

(
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dy

)2
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2

(
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)2

,
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2

(
dux

dy
+ duy

dx
+ dux

dy

dux

dx
+ duy

dy

duy

dx

)
,

(10)
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FIG. 3. Displacement uel (r) shown as a vector field for (a) narrow and (c), (d) split dislocation cores (δ = 0.4d), and (e) for the
reconstructed dislocation network. (c) and (d) display screw and edge components of the displacement field, respectively, in the case of
split dislocation. (b) and (f) present the distribution of the strain energy density determined by Eq. (9) for cases (a) and (e), respectively. The
value ξ is equal 0.05d in cases (a)–(c) and 0.15d in cases (e) and (f). Distances along the X,Y axes are given in units of L

√
3/2, where L is

the separation between the moiré coincidence points.
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FIG. 4. Distribution of ω3, z component of the dimensionless rotation vector ω, for narrow (a) and split (b) dislocation cores. The
corresponding displacement fields are shown in Figs. 3(a) and 3(c). Distances along the X,Y axes are given in units of L

√
3/2, where L

is the separation between the moiré coincidence points.

and we take the ratio μ/λ = 5, in agreement with the com-
putational results for graphene [3]. Figure 3(b) shows that
the elastic energy E el is localized mostly near the dislocation
lines. This picture agrees well with the results of atomistic
simulations [35]. Although we considered complete disloca-
tions when constructing Fig. 3(b), one should expect a similar
distribution also for partial dislocations; in the latter case, they
will separate areas with different stacking.

It is worthwhile to note that in the center of the vortex
situated in the crossing of dislocation lines in Fig. 1, the
relative displacement of the layers is equal to the half of the
elementary translation which results in the formation of a
stacking fault. In this case the more energetically favorable
configuration is the one where one of the dislocation families
is shifted from the symmetry position [Fig. 1(b)] by the value
δl in the direction normal to the dislocation lines.

The distribution of the elastic displacements and strain
energy after such a reconstruction of the dislocation network
is shown in Figs. 3(e) and 3(f), respectively. One can see
that the reconstruction of the dislocation network results
in a drastic change of the displacement field uel(r) [cf.,
Figs. 3(a) and 3(e)]. The primary vortices are centered at the
AA-stacked regions and the secondary ones (in AB-stacked
regions) originate from the overlap of the displacement field.
According to Ref. [26], the structure of the layer conjugation
in twisted bilayer graphene can be described in terms of
a network of partial dislocations a/3〈11̄00〉 separating the
regions of AB and BA stacking. The picture presented in
Fig. 3(f) agrees qualitatively with that discussed in Ref. [26];
the density of elastic energy is concentrated near the lines
of partial dislocation and in the area of their intersection the
AA stacking is realized [25]. Note that the asymmetry of AB
and BA stacking in Fig. 3(e) results from the limitations of
the model considering three families of straight dislocations.
Despite this shortcoming, our approach reproduces correctly
the qualitative features of the layer conjugation.

The other quantity characterizing the peculiarities of the
displacement field is the distribution of the rotation vector
ω(r) = ∇ × uel(r) presented in Fig. 4. As one can see from
this figure, in the case of a narrow core [Fig. 4(a)], the

dislocation lines are clearly visible in the distribution of
the rotation vector and their intersections correspond to the
centers of the vortices. At the same time, the only lattice
of vortices remains visible in the case of split dislocations.
Thus, depending on the representation used, the conjugation
of layers can be described either in terms of vortices or
dislocations, wherein the vortex displacement field originates
naturally from the elastic relaxation of atomic positions. Note
that the magnitude of the rotation vector ω is close to zero for
the edge component of displacements.

The other characteristic which is actively discussed now
[14] is the distribution of the pseudomagnetic field (PMF)
[3,36] given by the equations

HPMF = dAy

dx
− dAx

dy
, (11)

where the vector potential is expressed (with the accuracy of
some constant multiplier) via deformations as

Ax = uxx − uyy, Ax = −2uxy.

The distribution of PMF calculated from Eqs. (10) and
(11) for the dislocation networks with the displacement field
from Figs. 3(a) and 3(f) is shown in Fig. 5. The displacement
field created by the network of narrow dislocations results
in a regular alternation of triangular regions (left part of
Fig. 5) with negative and positive values of the PMF; a similar
distribution of PMF was obtained in the simulations [37].
The right-hand side of Fig. 5 shows the PMF distribution in
the case of a reconstructed dislocation network. Pink regions
(with negative PMF) correspond to the domains of small
displacements in Fig. 3(d); quasicircular yellow regions with
positive PMF are situated in between. The pictures presented
here are characteristic of the flat dislocation network whereas
out-of-plane deformations of the moiré pattern [14,38] can
affect the distribution of PMF quite vitally.

III. DISCUSSION AND CONCLUSIONS

The model developed here allows us to explain naturally
some qualitative peculiarities of the moiré patterns in bilayer
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FIG. 5. Distribution of PMF calculated by using Eqs. (10) and (11) for the network of narrow dislocations shown in Fig. 3(a) (left) and for
the reconstructed dislocation network shown in Fig. 3(e) (right). Distances along the X,Y axes are given in units of L

√
3/2, where L is the

separation between the moiré coincidence points.

systems. In particular, the rotation angle and location of
the coincidence site of the moiré patterns are related to the
Burgers vector and the distance between dislocation lines (see
Sec. II A). We show that the plastic part of the displacement
field provides the rotation of one layer with respect to the other
one as a whole. At the same time, the distribution of elastic
displacements is quite complicated and vortices are the most
typical elements; the observed picture is in qualitative agree-
ment with both experiment [24] and the results of atomistic
simulations [21–23,26].

Although, by construction, the displacements uel are equal
to zero at a point located in the middle between two vortices,
the derivative duel

i /dx j �= 0. Note that the values duel
i /dx j de-

pend on the distance between the dislocations in a given array
and the width of their core. For narrow dislocations located far
enough from each other, duel

i /dx j ≈ 0 in the middle between
two vortices. However, a more realistic consideration of the
G/G case [26,32,33] assumes the dislocation core width is
rather large, and the cores are situated close to each other.
As a consequence, one should expect a remarkable deviation
of the values duel

i /dx j from zero between the vortices. By
using Eq. (7) and assuming L � z, we have duel

x /dxy ≈
2b/πz exp(−L/2z) cosh(d/z). As a result, the region between
the vortices is characterized by an excess of elastic energy
density 
Eel ∼ μ(duel

x /dxy)2. This additional energy can be
reduced by the self-reorientation of the graphene layers [23]
resulting in an increase in the distance between dislocations
[cf., Eq. (4)].

Note that although the model does not take into ac-
count details related to the characteristics of chemical bond-
ing, the formation of various types of stacking, and out-of-
plane buckling, it provides a clear vision of the qualitative
structural features of twisted bilayer systems. Our results
unify the language used in the physics of moiré patterns
in twisted bilayer graphene and other van der Waals het-
erostructures with that traditionally used for the descrip-
tion of nano- and mesostructures in solids. The proposed
model gives a reasonable description of the structural features
of twisted bilayer graphene, at least at not too large mis-
orientation angles when the commensurate-incommensurate
transition [10] occurs. The details of the chemical bond-
ing enter our description via the model parameters, such as
the width of the dislocation core ξ and the stacking fault
energy γ . We suggest explicit analytical expressions for
the distribution of atomic displacements in twisted bilayer
graphene which can be used for both model theoretical stud-
ies and the interpretation of experimental and computational
results.
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