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Surface plasmon polaritons in a strained slab of a Weyl semimetal with broken time-reversal symmetry are
investigated. It is found that the strain-induced axial gauge field reduces frequencies of these collective modes
for intermediate values of the wave vector. Depending on the relative orientation of the separation of Weyl nodes
in momentum space, the surface normal, and the direction of propagation, the dispersion relation of surface
plasmon polaritons could be nonreciprocal even in a thin slab. In addition, strain-induced axial gauge fields can
significantly affect the localization properties of the collective modes. These effects allow for an in situ control of
the propagation of surface plasmon polaritons in Weyl semimetals and might be useful for creating nonreciprocal
devices.
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I. INTRODUCTION

Collective excitations are simple and informative probes of
various physical properties in solids. Among them, excitations
related to the interaction of light and matter are, perhaps,
among the most numerous. In particular, polaritons are quasi-
particles related to the coupling of electromagnetic waves
with any resonance in material. The paradigmatic example
of polaritons is realized by coupled states of electromagnetic
waves with phonons in ionic crystals [1,2] whose charged
particles are not mobile. The latter property makes these mate-
rials insulating and allows for an unobstructed propagation of
electromagnetic collective modes. The situation is different in
metals, which are characterized by a large number of conduct-
ing electrons, where electromagnetic waves can propagate
only with frequencies higher than the plasma one. Still, the
surface plasmons [3] can propagate with frequencies below
the plasma edge. A strong interaction of light with surface
plasmons produces surface plasmon polaritons (SSPs), which
are, therefore, a particular case of polaritons confined to a
metal-dielectric or metal-air interface.

Surface plasmon polaritons are particularly important for
practical applications [4]. Indeed, they can be guided along
surfaces and have significantly smaller wavelength than that
of the incident photons enabling subwavelength optics and
lithography beyond the diffraction limit. Further, SPPs are
very sensitive to external fields, nonlinear effects, and material
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parameters. This can be used to create nanoscale devices
connected with optical switching and biosensing. Further-
more, the strong sensitivity allows one to investigate various
properties of novel materials.

Recently, materials characterized by nontrivial topological
properties have attracted a significant attention. A paradig-
matic example of topological matter with gapless energy spec-
trum is given by Weyl semimetals [5–7]. Their low-energy
excitations are described by the relativisticlike Weyl equation
in the vicinity of the band-touching points called Weyl nodes.
Each of these nodes is a monopole of the Berry curvature,
whose flux defines a topological charge of the nodes. As
proved by Nielsen and Ninomiya [8,9], the Weyl nodes in
lattice systems always come in pairs of opposite chirality
or, equivalently, topological charges. In each pair, the Weyl
nodes are separated by 2b in momentum [this breaks the time-
reversal (TR) symmetry] and/or 2b0 in energy (this breaks the
parity-inversion symmetry). The former parameter is known
as the chiral shift [10]. It results in the anomalous Hall effect
(AHE) [11–17] in Weyl semimetals, which plays an important
role in transport and optical properties of Weyl semimetals.
Moreover, the AHE strongly affects collective excitations,
including the SPPs.

Surface plasmon polaritons in Weyl semimetals were stud-
ied in Refs. [18–27]. The principal finding is that the SPP
dispersion in Weyl semimetals with broken TR symmetry is
similar to magnetoplasmons in ordinary metals [28–31] with
strong gyrotropic and nonreciprocity effects. It is important to
emphasize that a giant nonreciprocity can be attained in the
absence of magnetic fields, which is very advantageous for
technological applications. In thin films of Weyl semimetals,
a hybridization between plasmons localized at the opposite
surfaces of the semimetal results in mixed plasmon modes
with different localization lengths [22].

The nontrivial bulk topology of Weyl semimetals is also re-
flected in unusual surface states known as the Fermi arcs [32].
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Unlike surface states in ordinary materials, the Fermi arcs
form open segments in momentum space that connect Weyl
nodes of opposite chirality [32,33]. The interplay of the Fermi
arcs and the SPPs was studied in Refs. [34–38]. By using
semiclassical [34] and quantum-mechanical nonlocal [35]
approaches, it was found that the constant frequency contours
of the surface plasmons become strongly anisotropic. In ad-
dition, as was shown in Refs. [37,38], a gapless Fermi-arc
collective mode could emerge.

The dispersion relations of surface plasmons can be
measured by the scattering-type near-field optical spec-
troscopy (for a recent review, see Ref. [39]) as well as the
momentum-resolved electron-energy-loss spectroscopy (see,
e.g., Ref. [40] and references therein). Experimentally, the
electron energy loss in Weyl semimetals was recently studied
in Ref. [41]. The SPPs were experimentally investigated in the
type-II Weyl semimetal WTe2 in Ref. [42]. The nonreciprocity
of the SPPs can be used to develop unidirectional optical
devices [43] such as nonreciprocal circulators, nonrecipro-
cal Mach-Zehnder interferometers, one-way optical waveg-
uides [44], etc. Tuning the thickness of a Weyl semimetal,
dielectric constants of surrounding media, and the direction
of the chiral shift provides efficient means to control the
strength of the nonreciprocity. However, such a tuning cannot
be performed in situ, which is crucial for creating easily
controllable devices. In this study, we propose a different way
to control the nonreciprocity of the SPPs connected with the
effect of strains in Weyl semimetals.

A remarkable property of mechanical strains in Weyl
semimetals is their ability to induce pseudoelectromagnetic
fields [45–52]. Unlike the ordinary electromagnetic fields E
and B, their pseudoelectromagnetic counterparts E5 and B5

couple to the left-handed and right-handed particles with
opposite signs. A pseudoelectric field E5, for instance, can be
created by dynamically stretching or compressing the sample.
A nonzero pseudomagnetic field B5 is generated, e.g., by
applying a static torsion [50,53] or bending the sample [51]. A
typical magnitude of the pseudomagnetic field B5 is estimated
to be about 0.3 T in the former case and about 15 T in the latter
case. While dynamical pseudoelectromagnetic fields allow for
interesting effects such as the acoustogalvanic effect [54], for
the purposes of this study, it will be sufficient to consider
only static deformations in Weyl semimetals with broken
TR symmetry. In this model, we found that strains affect
the spectrum of the SPPs by reducing their frequencies and
even leading to nonreciprocity. Moreover, deformations can
be used to tune the localization of the SPPs.

The paper is organized as follows. The model, key notions,
and numerical estimates of model parameters are provided
in Sec. II. The SSPs for the perpendicular, Faraday, and
Voigt configurations of the chiral shift and wave vector are
investigated in Sec. III. The obtained results are summarized
in Sec. IV. The effects of a nonuniform chiral shift profile at
the surface of Weyl semimetals are discussed in Appendix.
Throughout this study, we set kB = 1.

II. MODEL

Let us begin with defining the model of a Weyl semimetal
and presenting general equations for the SPPs. We assume

that the Weyl semimetal has the form of a slab of finite
thickness 2d along the z direction. The corresponding setup
together with three configurations of the chiral shift b and
the wave vector q of the SPPs is shown in Fig. 1. For the
slab of a sufficiently large thickness, the SSPs on its surfaces
overlap weakly and can be considered as independent. In
this simplified case, one assumes that the Weyl semimetal
is situated at z > 0 and vacuum is at z < 0. In view of the
translational invariance along the interface, the electric field E
is sought as a plane wave with frequency ω and wave vector
along the surface q = (qx, qy), i.e.,

E ∝ e−iωt+iqxx+iqyy e−κ|z|, (1)

which decays exponentially away from the boundary for
κ > 0. The field in vacuum is sought in the same form,
however, with a different decay constant κ0. The electric field
is determined by the following equation:

∇ × [∇ × E] = − 1

c2

∂2

∂t2
D, (2)

where D is the displacement electric field and c is the speed of
light. The same equation where D is replaced with E should
be used in vacuum.

A. Hamiltonian and main equations

To demonstrate the effect of strain-induced axial gauge
fields on the SPPs in Weyl semimetals, it suffices to consider
the minimal model of a Weyl semimetal with a single pair of
Weyl nodes separated by 2b in momentum. The correspond-
ing Hamiltonian has the following form:

Hλ = −μ + λh̄vF σ ·
(
−i∇ + λ

e

ch̄
A5(r) − λb

)
. (3)

Here, λ = ± is the chirality of Weyl nodes, μ is the electric
chemical potential, vF is the Fermi velocity, σ is the vector of
Pauli matrices, and A5(r) is the axial gauge field. The latter
can be induced by strains [45–47]. Moreover, a coordinate-
dependent axial gauge field appears necessarily at the surface
of a Weyl semimetal, where the chiral shift terminates [49,55–
57]. The dependence of A5 on coordinates and the direction of
the chiral shift b will be specified later in Secs. II B and III.
The effects of nonuniform chiral shift profile are considered
in Appendix. In particular, we found that surface collective
modes become delocalized when the profile of the chiral shift
is sufficiently nonuniform.

In order to determine the displacement electric field D, the
dependence of the electric current density j on the electric
field E should be specified. In addition to the usual Ohm’s
current, it is well known [11–17] that a Weyl semimetal
with broken TR symmetry has the AHE current, which is
perpendicular to the electric field. This is the origin of the
gyrotropic effects observed in Weyl semimetals even in the
absence of a magnetic field.

In the model (3), the AHE current has the form

jAHE = − e2

2π2h̄
[b × E] + e3

2π2h̄2c
[A5 × E]. (4)
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(a) (b) (c)

FIG. 1. Schematic setup for the perpendicular configuration b ⊥ q and b ‖ ẑ (a), the Voigt configuration b ⊥ q and b ⊥ ẑ (b), and the
Faraday configuration b ‖ q and b ⊥ ẑ (c). Here b is the chiral shift vector, q is the wave vector of surface plasmons, and ẑ is the unit vector
in the z direction. The slab is infinite along the x and y directions and has the width 2d in the z direction.

Thus, the explicit expression for the displacement vector D is

D =
[
ε(ω) + 4π i

ω
σ

]
E − 2ie2

π h̄ω
[b × E] + 2ie3

π h̄2cω
[A5 × E],

(5)
where σ describes the real part of the electric conductiv-
ity related to disorder and ε(ω) is the frequency-dependent
dielectric constant of Weyl semimetal. For simplicity, we
assumed that ε(ω) does not depend on the wave vector q. This
approximation is justified if the inverse wave vector of SPPs is
larger than the inverse Fermi wave vector. Then, the frequency
dependence has the standard form ε(ω) = ε∞(1 − 	2

e/ω
2),

where ε∞ is the high-frequency dielectric constant and

	2
e = 4e2

3π h̄3vF ε∞

(
μ2 + π2T 2

3

)
(6)

is the plasma or Langmuir frequency. Here, T is temperature.
The profiles of electromagnetic fields and frequencies of

the corresponding collective modes are determined by solving
Eq. (2) with the appropriate boundary conditions. For these
conditions, we demand, as usual, the continuity of the parallel
components of electric and normal components of magnetic
fields. These magnetic fields are generated dynamically by
oscillating electric currents and fields. Further, since no ex-
ternal charges and currents are present, the perpendicular
components of the displacement field and parallel components
of the magnetic field are also continuous. For example, by
using ansatz (1), a homogeneous system of linear algebraic
equations can be derived in the case of a semi-infinite slab.
The zeros of the determinant of this system define the dis-
persion relation of SPPs. As we will show below, the case of
strained Weyl semimetal is more complicated and one can no
longer look for solution in form (1).

B. Model parameters

In order to provide a direct relation to experiments, we
quantify the values of model parameters in realistic materials.
For definiteness, we use in our analysis the numerical con-
stants valid for the Dirac semimetal Cd3As2 [58–62]:

vF ≈ 1.5 × 108 cm/s, μ ≈ 200 meV, b ≈ 1.6 nm−1,

(7)
where the chiral shift is estimated as the distance between two
Dirac points in Cd3As2. In addition, the dielectric constant

of the Weyl semimetal candidate Eu2Ir2O7, ε∞ = 13 [63], is
used.

Then, according to Eq. (6), the plasma frequency at T → 0
can be estimated as

	e ≈ 6.6 × 1013 s−1. (8)

This frequency corresponds to the following characteristic
length scale:

c

	e
≈ 4.5 μm. (9)

Note that the thickness of films of Weyl and Dirac semimetal
could be even smaller than the characteristic length scale.
For example, films of the Dirac semimetal Cd3As2 with the
thickness 2d ≈ 35–100 nm [64,65] and the Weyl semimetals
NbP and TaP with the thickness 2d ≈ 9–70 nm [66] can
be grown. The characteristic frequency corresponding to the
Weyl node separation is given by

ωb = 2e2b

π h̄ε∞
≈ 1.7 × 1014 s−1 ≈ 2.6 	e. (10)

It is interesting to note that this frequency is comparable to
	e. This suggests that the effects related to the Weyl nodes
separation could be indeed significant in real materials.

Further, let us provide estimates of strain magnitude. We
start with the case of bending about the y axis. The corre-
sponding components of the displacement field u are [67]

ux = u0

d
xz, uz = − u0

2d
(x2 + DLz2). (11)

Here, u0 is the maximum stress and DL is a certain function of
the Lamé coefficients. The corresponding strain-induced axial
gauge field for b ‖ x̂ can be estimated as [47]

A5,x � −ch̄

e
βGbxuxx = −ch̄βGbxu0

ed
z, (12)

where x̂ is the unit vector in the x direction, βG � 1 is the
Grüneisen parameter, and the standard definition of the strain
tensor was used, ui j = (∂iu j + ∂ jui )/2. Then, the effective
axial field strength, which is defined as

Ã5 � |A5|d

z
, (13)
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reads as

Ã5,x � ch̄βGbxu0

e
. (14)

We find it convenient to quantify the magnitude of strain
by the following dimensionless parameter:

β =
√

cωb

	2
ebl2

, (15)

where l2 = h̄cd/(eÃ5). In the case of bending, it is estimated
as

β =
√

cωb

	2
ebl2

=
√

2e3Ã5,x

π h̄2ε∞	2
ed

�
√

2u0e2cβGbx

π h̄ε∞	2
ed

≈ 1.6
√

c

	ed
u0. (16)

As expected, the strain effects are well manifested in suffi-
ciently thin films. For example, even for u0 = 1% and d =
0.1c/	e, the dimensionless parameter β ≈ 0.5. In such a case,
however, the SPPs on the opposite surfaces hybridize notably.

In the case of an inhomogeneous stretching along the z
direction, the z component of the displacement vector is

uz = z
f (z)

2d
= z2 f (d ) − f (−d )

(2d )2
, (17)

where we assumed a linear dependence of the function f (z)
on coordinates. Then,

A5,z � −ch̄

e
βGbzuzz = −ch̄

e
βGbzz

f (d ) − f (−d )

2d2
. (18)

The corresponding effective axial field strength and the di-
mensionless parameter β are

Ã5,z � ch̄

e
βGbz

| f (d ) − f (−d )|
2d

(19)

and

β �
√

2ce2

π h̄ε∞	2
ed

βGbz
| f (d ) − f (−d )|

2d

≈ 1.6

√
c

	ed

| f (d ) − f (−d )|
2d

, (20)

respectively. As in the case of bending, the relative deforma-
tion | f (d ) − f (−d )|/(2d ) could reach a few percent.

III. RESULTS FOR SURFACE PLASMON POLARITONS

In this section, we discuss the results for the dispersion
relations of SPPs in Weyl and Dirac semimetals and show
how strains affect them. Let us consider first the case of a
Dirac semimetal with b = A5 = 0. Then, it is easy to obtain
that the dispersion of the SPPs coincides with that in ordinary
metals [31,68–70] and is determined by the following relation:

ε1κ0 + κ = 0, (21)

where κ =
√

q2 − ε1ω2/c2 and κ0 =
√

q2 − ω2/c2. The AHE
currents and the corrections due to the axial fields generated
by strains cancel out for Dirac semimetals.

Let us present now the results for Weyl semimetals with
broken T symmetry (b 	= 0). As we will see below and as
was noted in, e.g., Ref. [19], the SPPs in Weyl semimetals re-
semble the magnetoplasmons in conventional metals [28–31].

It is convenient to rewrite Eq. (2) as

∇(∇ · E) − �E = ω2

c2

(
ε1E − iε2[b̂ × E] + iε2

z

bl2
[Â5 × E]

)
,

(22)

where ε1 = ε(ω) + 4π iσ/ω, ε2 = ε∞ωb/ω, and Â5 is the unit
vector in the direction of A5. A nonzero conductivity σ leads
to a dissipation of the SPPs. For the sake of simplicity, we will
ignore it in the rest of the study.

The explicit form of Eq. (22) is

⎛
⎝q2

y − ∂2
z −qxqy iqx∂z

−qxqy q2
x − ∂2

z iqy∂z

iqx∂z iqy∂z q2
x + q2

y

⎞
⎠

⎛
⎝Ex

Ey

Ez

⎞
⎠ = ω2

c2

⎛
⎜⎝

ε1 ib̂zε2 − iz
bl2 Â5,zε2 −ib̂yε2 + iz

bl2 Â5,yε2

−ib̂zε2 + iz
bl2 Â5,zε2 ε1 ib̂xε2 − iz

bl2 Â5,xε2

ib̂yε2 − iz
bl2 Â5,yε2 −ib̂xε2 + iz

bl2 Â5,xε2 ε1

⎞
⎟⎠

⎛
⎝Ex

Ey

Ez

⎞
⎠.

(23)

It is easy to check that the electric field E takes the following form in vacuum:

E0 =
(

Ex(±d ), Ey(±d ),±i
Ex(±d )qx + Ey(±d )qy

κ0

)
eiqxx+iqyy−κ0|z∓d|−iωt . (24)

Here, ± corresponds to the upper (+) and lower (−) vacuum half-spaces.

A. Perpendicular configuration

Let us start our analysis of the SPPs in strained Weyl semimetals with the perpendicular configuration b ⊥ q and b ‖ ẑ [see
Fig. 1(a)]. Without the loss of generality, we set the wave vector of the SPPs pointing in the x direction, i.e., q ‖ x̂. Further,
we assume that Â5 ‖ ẑ. As was discussed in Sec. II B, this axial gauge field could be generated by stretching the sample
inhomogeneously along the z axis with uz ∝ z f (z)/d and f (z) = z.
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It is straightforward to show that the matrix equation (23) can be rewritten as a fourth-order ordinary differential equation

ε1

ε2κ2[1 − z/(bl2)]
E (4)

y + 2ε1

ε2bl2κ2[1 − z/(bl2)]2
E (3)

y + 2ε1

ε2(bl2)2[1 − z/(bl2)]3

[
1

κ2
− (bl2)2

(
1 − z

bl2

)2
]

E ′′
y

− 2ε1

ε2bl2[1 − z/(bl2)]2
E ′

y − 1

ε2[1 − z/(bl2)]3

[
2ε1

(bl2)2
− q2ε1

(
1 − z

bl2

)2
+ ω2ε2

1

c2

(
1 − z

bl2

)2

− ω2ε2
2

c2

(
1 − z

bl2

)4
]

Ey = 0, (25)

where we used

Ex = −ic2
E ′′

y − κ2Ey

ε2ω2[1 − z/(bl2)]
, (26)

Ez = − iqE ′
x

κ2
, (27)

and q = qx. Note that since both Ex and Ez are generically
nonzero, SPPs are not purely longitudinal or transverse waves.

One can check that Eq. (25) reproduces the results obtained
in Ref. [19] in the limit of semi-infinite slab d → ∞ and
vanishing pseudomagnetic field l → ∞. In particular, the
decay constant in ansatz (1) equals

κ2
P = κ2 ± |ωκε2|

c
√−ε1

. (28)

The dispersion relation of the SPPs in the finite slab is
obtained by solving Eq. (25) and requiring the continuity of
the tangential components of the dynamical magnetic field.
The latter condition is equivalent to the continuity of ∂zEy and
∂zEx − iqEz at the boundaries. For fields outside the slab, we
have ∂zEx − iqEz = sgn(z)ω2Ex/(c2κ0). Therefore, since the
tangential components of the electric field are continuous, we
obtain

κ0ε1E ′
x + zqκ0ε2

bl2
Ex + sgn(z)κ2Ex

∣∣∣
z=±d

= 0, (29)

∂zEy + κ0 sgn(z)Ey|z=±d = 0. (30)

The case of a finite slab with nonzero A5 is more com-
plicated. Therefore, we focus on numerical solutions. It is
worth noting, however, that analytical analysis could be still
performed in the case of short and long wavelengths or,
equivalently, q → ±∞ and q → 0, respectively. In the latter
case, since SPPs are gapless collective modes, ε1 → ∞ at
ω → 0 leading to the divergence of the first term in Eq. (29).
Therefore, in order to satisfy the characteristic equation, one
should set κ0 = 0. This leads to the following dispersion
relation at small momenta:

ω(q → 0) = cq, (31)

which is nothing else as the dispersion of light. Thus, neither
chiral shift nor strains affect the SPPs at small q.

Further, let us consider the short-wavelength limit q →
±∞. In this case, Eq. (25) simplifies and can be rewritten as

ε1E (4)
y + 2ε1

bl2[1 − z/(bl2)]
E (3)

y − 2ε1q2E ′′
y

− 2q2ε1

bl2[1 − z/(bl2)]
E ′

y + ε1q4Ey = 0. (32)

Its general solution is

Ey = C1eqz + C2e−qz + C3z
[
3 + qbl2

(
2 − z

bl2

)]
eqz

+C4z
[
3 − qbl2

(
2 − z

bl2

)]
e−qz, (33)

where Ci with i = 1, 4 are constants determined from
the boundary conditions (29) and (30). By substituting

FIG. 2. The dispersion relation of the surface plasmon polaritons in a slab of Weyl semimetal for the perpendicular configuration at β = 0
(red solid lines), β = 0.5 (blue dashed lines), and β = 1 (green dotted lines). Panels (a)–(c) correspond to two SPP branches ω− and ω+, as
well as the lowest bulk mode ωB,1, respectively. We set d = 2c/	e and ωb = 	e.
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FIG. 3. Profiles of the x component of the electric field Ex in the perpendicular configuration. Top and bottom panels correspond to two
SPP branches ω− and ω+, respectively. Strain strength is β = 0 in (a) and (c) as well as β = 1 in (b) and (d). We set d = 2c/	e and ωb = 	e.

solution (33) into Eqs. (29) and (30), we find

ω(q → ±∞) = 	e

√
ε∞

1 + ε∞
. (34)

This result agrees with that for conventional surface plas-
mons [3]. It is clear that strain does not induce nonreciprocity
in this case.

The numerical solutions for dispersion relations obtained
from Eq. (25) with the boundary conditions (29) and (30) are
shown in Fig. 2, where the case β = 0 corresponds to the
absence of strain. The frequencies ω+ and ω− correspond to
two branches of the SPP spectrum. If the width of the slab
is sufficiently large, then these modes can be understood as
a combination of the SPPs localized at the opposite surfaces.
They are hybridized, however, in a thin slab. Nevertheless, we
can still distinguish them by using the symmetry properties
of the field component Ex in the unstrained limit. In this
case, ω+ and ω− correspond to the modes with antisymmetric
and symmetric distributions of the field, respectively. Clearly,
strain decreases frequencies of the SPPs for intermediate

values of q. In agreement with the analytical result (34),
there is no dependence on strain at q → ±∞, however. In
addition to the SPPs, we also present one of the bulk modes
in Fig. 2(c), which is determined as the lowest delocalized
solution. The field profiles of the SPPs are shown in Fig. 3.
Unlike the case of semi-infinite slab, where the electric field
for the surface modes is localized at the boundary, the field
could be relatively large inside a slab of small thickness.
The localization becomes more pronounced as the slab width
increases. Furthermore, we found that the strain enhances
the localization of the SPPs. Depending on its direction, the
modes become localized on either top or bottom surface.
Therefore, deformations can be used to effectively tune the
localization of the SPPs in Weyl semimetals.

B. Voigt configuration

Let us proceed to the Voigt configuration, which is
schematically shown in Fig. 1(b). For the sake of definiteness,
we set q ‖ x̂ and b ‖ ŷ. Further, we assume that Â5 ‖ ŷ. As we
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FIG. 4. The dispersion relation of the surface plasmon polaritons in a slab of Weyl semimetal for the Voigt configuration at β = 0 (red
solid lines), β = 0.5 (blue dashed lines), and β = 1 (green dotted lines). Panels (a)–(c) correspond to two SPP branches ω− and ω+, as well as
the lowest bulk mode ωB,1, respectively. We set d = 2c/	e and ωb = 	e.

discussed in Sec. II B, this axial gauge field can be generated
by bending about the x axis producing A5 ∝ u0byzŷ/d .

Equation (23) takes the following form in the case of the
Voigt configuration:

ε1E ′′
x − Ex

[
ε1q2 − qε2

bl2
− ε2

1ω
2

c2
+

(
1 − z

bl2

)2 ω2ε2
2

c2

]
= 0.

(35)

Note that the y component of the field is decoupled and
does not correspond to plasmon modes. Furthermore, it can
be shown that it vanishes after matching with solutions in
vacuum.

The z component of the electric field is related to Ex

according to

Ez = −i
q

κ2
E ′

x + i
ω2

c2κ2
ε2

(
1 − z

bl2

)
Ex. (36)

Let us check that we reproduce the results obtained in the
literature if strains are ignored. By using ansatz (1) and taking
the limit l → ∞, the following decay constant is obtained:

κ2
V = q2 + ω2

c2

(
ε2

2

ε1
− ε1

)
, (37)

which agrees with the result in Ref. [19].
In general, Eq. (35) should be solved numerically. By

requiring the continuity of the tangential component of the
magnetic field, which is equivalent to the continuity of ∂zEx −
iqEz, the following characteristic equation is derived:

κ0ε1E ′
x − κ0ε2q

(
1 − z

bl2

)
Ex + sgn(z)κ2Ex

∣∣∣
z=±d

= 0.

(38)

Here, the last term stems from the vacuum solution.
Before presenting numerical results, let us investigate the

limit of long and short wavelengths, i.e., q → 0 and q →
±∞, respectively. In the case q → 0, the same simple result
as in the perpendicular configuration can be obtained [see
Eq. (31)]. For short wavelengths (q → ±∞), a solution to
Eq. (35) can be sought as Ex(z) = C1eqz + C2e−qz. Then, by
using Eq. (38) and retaining only the leading in 1/q terms, we
obtain

ω±(q → ∞)

= −ωbε∞
d ∓ bl2

2bl2(1 + ε∞)

+
√

(ωbε∞)2
(
d ∓ bl2

)2 + 4b2l4	2
eε∞(1 + ε∞)

2bl2(1 + ε∞)
,

(39)

ω±(q → −∞)

= ωbε∞
d ± bl2

2bl2(1 + ε∞)

+
√

(ωbε∞)2
(
d ± bl2

)2 + 4b2l4	2
eε∞(1 + ε∞)

2bl2(1 + ε∞)
,

(40)

where subscript ± corresponds to the second (+) and first (−)
branches of the SPP spectrum. As one can see, the spectrum
is nonreciprocal. The magnitude of the nonreciprocity for a
weak strain and a small chiral shift reads as

|ω±(q → ∞) − ω±(q → −∞)| ≈
dωbε∞

[
ε∞ω2

b + 4	2
e (1 + ε∞) + ωb

√
ε∞

√
ε∞ω2

b + 4	2
e (1 + ε∞)

]
bl2

{
1 + ε∞

[
ε∞ + ω2

b + 4	2
e (1 + ε∞)

]}
≈ dωbε∞

bl2(1 + ε∞)
= 2e3Ã5,y

π h̄2c(1 + ε∞)
. (41)

It grows with the magnitude of strain.
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FIG. 5. Profiles of the x component of the electric field Ex in the Voigt configuration. Top and bottom panels correspond to two SPP
branches ω− and ω+, respectively. Strain strength is β = 0 in (a) and (c) as well as β = 1 in (b) and (d). We set d = 2c/	e and ωb = 	e.

Numerical results for the SPP dispersion at a few values
of the strain strength β are shown in Fig. 4. The nonre-
ciprocity of the surface collective modes is clearly evident
at large values of strain quantified by β and agrees well
with the results in Eqs. (39) and (40). The nonreciproc-
ity of the SPPs originates from the broken parity-inversion
symmetry z → −z and the Weyl node separation. In the
case under consideration, a nonuniform strain breaks this
symmetry leading to the dependence of the frequencies on
the sign of the SPP wave vector q. It is worth noting that
the parity-inversion symmetry could be broken also when
the slab of an unstrained Weyl semimetal is surrounded
by dielectrics with different dielectric constant (see, e.g.,
Ref. [21]). Therefore, while the strain is not equivalent to the
nonuniform dielectric constant of the sample, its effect on the
SPPs appears to be qualitatively similar. The same analogy
might be used to explain the decrease of the frequencies at
intermediate q.

The spatial distribution of the electric field inside the slab
is shown in Fig. 5. The surface localization of the lowest mode
is clearly evident from the figure. On the other hand, the field
of the second mode ω+ could become noticeable inside the
slab. We checked that the localization become much more
pronounced in larger samples. It is worth noting also that the
change of the spatial dependence of the field distributions
from the exponentially localized to oscillating one can be
easily inferred by using Eqs. (1) and (37)) in the case A5 = 0.
Indeed, the parameter κV is real and positive in the case of
surface modes. On the other hand, the mixing with bulk modes
leads to an imaginary part of κV . In the strained case, however,
one can rely on the spatial profiles of the fields. As one can
see from Fig. 5, there are no purely surface collective modes
in the slab because there is always a finite overlap between
the surfaces. The localization length, however, depends on the
wave vector. Indeed, it is smallest at small wave vectors and
tends to increase with q.
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FIG. 6. Dispersion relation of the collective modes in a slab of Weyl semimetal for the Faraday configuration at β = 0 (red solid lines),
β = 0.5 (blue dashed lines), and β = 1 (green dotted lines). Panels (a)–(c) correspond to two SPP branches ω− and ω+, as well as the lowest
bulk mode ωB,1, respectively. We set d = 2c/	e, and ωb = 	e.

C. Faraday configuration

Finally, we consider the Faraday configuration. It is
schematically shown in Fig. 1(c), where we set q ‖ b ‖ A5 ‖

x̂. The corresponding strain corresponds to bending about
the y axis producing A5 ∝ u0bxzx̂/d . By using Eq. (23) and
Gauss’s law ∇ · D = 0, we derive the following equation for
Ey:

1

ε2[1 − z/(bl2)]
E (4)

y + 2

ε2bl2[1 − z/(bl2)]2
E (3)

y + 1

ε1ε2[1 − z/(bl2)]3

{
ε1

[
2

(bl2)2
− (q2 + κ2)

(
1 − z

bl2

)2
]

+ ω2

c2

(
1 − z

bl2

)2[
(ε1 − ε2) + z

bl2
ε2

](
ε1 + ε2 − ε2

z

bl2

)}
E ′′

y + ω2

c2bbl2

[
2ε2

ε1
− c2κ2

ε2ω2[1 − z/(bl2)]2

]
E ′

y

− 1

ε2[1 − z/(bl2)]3

{
κ2

[
2

(bl2)2
− q2

(
1 − z

bl2

)2
]

+ ω2

c2
κ2ε1

(
1 − z

bl2

)2
+ ε2

2
ω4

c4

(
1 − z

bl2

)4
}

Ey = 0. (42)

The z and x components of the electric field are determined by

Ez = c2
κ2Ey − E ′′

y

iε2ω2[1 − z/(bl2)]
, (43)

Ex = −ε1E ′
z + iε2Ey/(bl2) − iε2[1 − z/(bl2)]E ′

y

iqε1
, (44)

respectively. The decay constant κF can be obtained analyti-
cally at l → ∞ and d → ∞. It reads as

κ2
F = q2 + ω2

c2

(
ε2

2

2ε1
− ε1

)
± ε2ω

2

2c2|ε1|

√
ε2

2 + 4c2q2ε1

ω2
.

(45)

This result agrees with that in Ref. [19].
Let us analyze the analytical solutions at small and large

wave vectors. The dispersion relation is the same as in the
other two configurations (see Secs. III A and III B), i.e., ω =
cq at small wave vectors. In the case q → ±∞, Eq. (42)
simplifies

E (4)
y + 2E (3)

y

bl2 − z
− 2q2E ′′

y − 2q2E ′
y

bl2 − z
+ q4Ey = 0. (46)

Its general solution is

Ey = C1eqz + C2e−qz + C3eqzz
[
3 + qbl2

(
2 − z

bl2

)]
+C4e−qzz

[
3 − qbl2

(
2 − z

bl2

)]
. (47)

By using this solution and employing the continuity rela-
tions for ∂zEy and ∂zEx − iqEz at the surfaces, we found
that ω(q → ±∞) are given by the same expression as in
Eq. (34). Therefore, the corresponding modes are reciprocal
even in the presence of deformations and the chiral shift. We
present the dispersion relations of the SPPs in Fig. 6 at a few
values of strain strength quantified by β. The effects of strains
are similar to those in the perpendicular configuration (see
Sec. III A).

Finally, let us discuss the profiles of electric field. We
present the corresponding results in Fig. 7. As one can see, the
lowest mode is well localized for small wave vectors. Strain,
however, changes the surface where the mode is localized.
Therefore, the lowest mode could be identified with a sur-
face mode or a short-range surface plasmon [22]. A similar
effect of strain is also present for the second mode ω+. The
field magnitude in the bulk is more pronounced in this case,
however.
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FIG. 7. Profiles of the x component of the electric field Ex in the Faraday configuration. Top and bottom panels correspond to two SPP
branches ω− and ω+, respectively. Strain strength is β = 0 in (a) and (c) as well as β = 1 in (b) and (d). We set d = 2c/	e and ωb = 	e.

IV. SUMMARY

In this study, we investigated the effects of strains on the
surface plasmon polaritons in a Weyl semimetal slab. By using
a low-energy model of a time-reversal symmetry-broken Weyl
semimetal, we found that strain provides an effective means to
control the nonreciprocity and localization of the SPPs. As in
the previous studies, the collective modes strongly depend on
the relative orientation of the chiral shift b, the wave vector
q of collective modes, and the surface normal n̂ for which
the three main configurations can be identified. They are the
perpendicular (b ‖ n̂), Voigt (b ⊥ n̂ and b ⊥ q), and Faraday
(b ‖ q) configurations.

By applying bending and inhomogeneous stretching, a
coordinate-dependent axial gauge field that does not break
the translation invariance along the surface of the slab can
be generated. For the perpendicular and Faraday configura-
tions, this strain-induced field reduces the frequencies of the
collective modes for intermediate values of the wave vector q
(there is no dependence on strain at q → ±∞) and enhances

their localization at the surfaces. Moreover, strain can even
change the localization of the SPPs introducing an asymmetry
in their field profiles. The results for the Voigt configuration
demonstrate that the strain-induced axial gauge field gener-
ated by bending not only reduces the frequency of the modes
but makes the SPPs nonreciprocal even in thin films. The
nonreciprocity of the SPPs originates from the separation be-
tween the Weyl nodes in momentum space and broken parity-
inversion symmetry z → −z due to a nonuniform strain. This
finding is quite interesting since the nonreciprocity is usually
absent in slabs of finite thickness due to the hybridization of
the collective modes at different surfaces.

The proposed effect could have a direct practical ap-
plication. Indeed, strain-induced axial gauge fields provide
an efficient way to create tunable unidirectional optical de-
vices. Among them, we mention nonreciprocal circulators,
nonreciprocal Mach-Zehnder interferometers, and one-way
waveguides. Unlike previous proposals, where the thickness
of a Weyl semimetal, dielectric constants of surrounding
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FIG. 8. Schematic profile of the chiral shift defined in Eq. (A1)
for a few values of the profile curvature s at d = 2c/	e.

media, and the direction of the chiral shift were used, the non-
reciprocity in the proposed setup can be manipulated in situ.
Numerical estimates suggest that the strain-induced effects
could be potentially measured for sufficiently high strain mag-
nitude and thin films. Experimentally, strain-induced modifi-
cations of SPPs could be realized, for example, in the recently
discovered Weyl semimetal EuCd2As2, where only two Weyl
nodes separated in momentum space exist in the vicinity of
the Fermi level [71,72].

Finally, let us comment on the nonuniform profile of the
chiral shift that is realized at the surface of Weyl semimetals
(see Appendix). Contrary to external strains, where the chiral
shift profile is asymmetric inside the slab, a symmetric profile
reduces the localization of the surface collective modes. While
the Weyl node separation is always nonuniform in finite
samples of Weyl semimetals, the corresponding modification
of the anomalous Hall conductivity is estimated to be weak.
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APPENDIX: EFFECTS OF NONUNIFORM CHIRAL SHIFT
PROFILE

In addition to external strain, a nonuniform profile of the
chiral shift b is always present at surfaces of Weyl semimetals.
Indeed, the chiral shift is intrinsically nonuniform in a finite
slab of a Weyl semimetal because the shift vanishes at the
surfaces (see also the discussion in Sec. II). Mathematically, a
nonuniform profile of b can be modeled as

b(z) = b
{

tanh2

[
(z + d )	e

sc

]
+ tanh2

[
(z − d )	e

sc

]

− tanh2

(
2d	e

sc

)}
. (A1)

Here, parameter s defines the curvature of the chiral shift
profile. The chiral shift is uniform inside the slab b(z) →
bθ (|z| − d ) in the limit s → 0 and gradually develops
a nonzero curvature for large s. The profile given in
Eq. (A1) is shown schematically in Fig. 8 for several values
of s.

The calculation of dispersion relations of the collective
mode and the corresponding electric field distributions can be
performed along the same lines as in Sec. III. Technically,
one needs to replace 1 − z/(bl2) with b(z). Therefore, we
present and discuss only the final results. The spectrum of the
lowest SPP branch for the perpendicular, Voigt, and Faraday
configurations is shown in Fig. 9. In general, a nonzero
curvature of the chiral shift profile increases the frequencies
of surface plasmon polaritons and bulk modes. It is interesting
that the lowest branches of the SPPs are the most susceptible
to the nonuniform b(z). In addition, the results depend on
the configuration. For example, the most pronounced effect
of the nonuniform chiral shift profile occurs for the Voigt
configuration. Furthermore, as one can see by comparing the

FIG. 9. Dispersion relation of the lowest SPP branch ω− for the perpendicular (a), Voigt (b), and Faraday (c) configurations at a few values
of the chiral shift profile curvature s. We set d = 2c/	e and ωb = 	e.
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FIG. 10. Profiles of the x component of the electric field Ex for the lowest SPP branch ω− in the perpendicular [(a) and (d)], Voigt [(b) and
(e)], Faraday [(c) and (f)] configurations. Top and bottom panels correspond to steep s = 0.01 and curved s = 0.2 profiles of the chiral shift,
respectively. We set d = 2c/	e and ωb = 	e.

top and bottom panels of Fig. 10, a large curvature s of the
Weyl node separation profile reduces the localization of the
collective modes. This effect is clearly noticeable for the Voigt
configuration shown in Figs. 10(b) and 10(e). These results
suggest that Weyl semimetals might be intrinsically more
prone to the delocalization of the surface collective modes. On
the other hand, axial gauge field induced by external strains
can easily overcome the corrections due to a nonuniform
chiral shift profile. It is important also that, unlike surface-
induced intrinsic profile, strain-induced axial gauge fields can
be easily tuned.

Let us estimate whether the effect is important in real
materials. Since the position of the Weyl nodes in momentum
space derived from the analysis of the surface Fermi arc states
agrees well with the results of the bulk measurements (see,
e.g., Refs. [5–7]), it is unlikely that the characteristic length
scale of the chiral shift profile exceeds a few nanometers. On
the other hand, our calculations suggest that for the effects
of an nonuniform profile to be noticeable, the length scale
should be about 0.1d ≈ 45 nm. Therefore, we conclude that
the intrinsic nonuniform profile of the chiral shift is unlikely
to have a profound effect on the surface collective modes.
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