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Many-body exchange-correlation effects in MoS2 monolayer:
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We calculate the quasiparticle properties of MoS2 monolayer at T = 0 considering the dynamical electron-
electron interaction effect within random-phase-approximation (RPA). The calculations are carried out for
an electron-doped slab of MoS2 monolayer using a minimal massive Dirac Hamiltonian and the quasi-two-
dimensional nature of the Coulomb interaction in this system is taken into account considering a modified
interaction of Keldysh type. Having calculated the real and imaginary parts of the retarded self-energy, we
find the spectral function and discuss the impact of extrinsic variables such as the dielectric medium and the
charge carrier density on the appearance and position of the quasiparticle peaks. We also report the results of the
renormalization constant and the effective Fermi velocity calculations in a broad range of the coupling constant
and carrier density. We show that the effective Fermi velocity obtained solving the self-consistent Dyson equation
has an absolutely different behavior from the one found from the on-shell approximation. Our results show that
the nonlocal dielectric screening of the monolayer tends to stabilize the Fermi liquid picture in MoS2 monolayer
and that the interaction strength parameter of this system is a multivariable function of the coupling constant,
carrier density, and also the screening length.
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I. INTRODUCTION

Following the growing interest in new two-dimensional
materials inspired by the discovery of graphene, monolayer
of molybdenum disulfide (MoS2), a prototypical member of
transition metal dichalcogenides (TMDs), has attracted a great
deal of attention for about fifteen years due to its distinguished
electronic and optoelectronic properties such as high mobility
[1], valley Hall effect [2], strong photoluminescence [3], and
emergence of tightly bound neutral and charged excitons
[4]. Composed of a hexagonal plane of molybdenum atoms
sandwiched between two hexagonal layers of sulfur atoms,
MoS2 monolayer is a direct band gap semiconductor [5] in
contrast to its indirect gap bulk counterpart [6] which has
been known for almost five decades. The sizable band gap
of MoS2 located at K, K′ points in the Brillouin zone ranges
from visible to IR [7], and it is the privileged feature of MoS2

in comparison with graphene which makes it appropriate for
electronic and optoelectronic-based technologies.

A great deal of research has been conducted in the past
couple of years in order to reveal the interesting and peculiar
characterizations of MoS2 among which the optoelectronic
and optical studies have received much consideration [8–11].
Many groups have also worked on the electronic and quasipar-
ticle properties of MoS2 both theoretically and experimentally
[12–16]. One of the appealing features of MoS2 and TMDs
in general which motivates a deeper understanding of the
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electronic properties, is their external controllability of the
quantum many-body properties. In particular, the environmen-
tal sensitivity of the Coulomb interaction in these materials is
remarkable. It has been shown that the dielectric feature of
the surrounding medium has influential effects on the many-
body screening and thereby on the electronic properties and
enables us to engineer some quasiparticle characterizations
[17]. On the other hand, doping as a typical task in two-
dimensional (2D) semiconductors has crucial consequences
in the determination of the quasiparticle properties through
further screening effects caused by doped carriers. This effect
has also been discussed in the case of MoS2 [18].

Accordingly, it became evident that at this point a sys-
tematic investigation of the quantum many-body effects in
this system can be of interest from both fundamental and
application aspects. The main purpose of this paper is to
present a theoretical analysis in order to determine a com-
prehensive picture of the quasiparticle features of MoS2 and
also of the extrinsic variables affecting them. In doing so,
we carry out a full random-phase-approximation (RPA) self-
energy calculation in the framework of Landau Fermi liquid
theory for an electron-doped (no photoexcited carriers) slab of
MoS2 monolayer.

The well-established RPA self-energy formulation used
in this paper was first discussed by Quinn and Ferrell in
their celebrated paper in order to find the correlation en-
ergy of a degenerate electron gas [19]. Since then, the
method has been widely used by many authors to describe
the quasiparticle-quasiparticle interactions in several elec-
tronic systems ranging from metals to semiconductors in all
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dimensions and in a broad range of interaction strengths.
Using this method, Lundqvist calculated the single-particle
spectrum of a three-dimensional electron gas in the range
of metallic densities, and he found an extra low-energy
peak (plasmaron) corresponding to the plasmon-hole coupling
aside from the typical quasiparticle peak in the spectral func-
tion [20–22]. Similar studies were also performed widely for
2D and quasi-2D electron gas after its realization in II-VI and
III-V semiconductor heterostructures [23–26]. The method
was also used for many other individual systems such as
quasi-one-dimensional electronic systems known as quantum
wires [27] and ultracold dipolar Fermi liquids [28] to name a
few. In recent years, the RPA self-energy calculations have
been successful in theoretical description of the quasiparti-
cle properties and spectral function of graphene and Dirac
materials [29–32]. The same calculations are done here in
order to precisely describe the quantum many-body effects
in MoS2 monolayer. In particular, in this work, we consider
the important quasi-2D nature of the MoS2 monolayer using
a modified Coulomb interaction with a nonlocal momentum-
dependent dielectric function. In short, the contributions of
the current study are: (1) Evaluation of some many-body
properties of MoS2 monolayer using a modified Coulomb
interaction such as quasiparticle energy, spectral function,
renormalization constant, and renormalized Fermi velocity.
(2) Exploring the impact of external variables namely doped
carrier density, surrounding medium, and screening length on
the quasiparticle features of the system.

The paper is organized as follows. In Sec. II we focus
on preliminaries and theoretical structure we have used in
our calculations and introduce the model Hamiltonian for
MoS2, the quasi-2D Coulomb interaction, and the perturbative
self-energy formalism within RPA. In Sec. III we define some
quantum many-body properties of Fermi liquids and present
our main numerical results of the real and imaginary parts
of the self-energy, the spectral function, the renormalization
constant, and the effective Fermi velocity in a broad range
of density and coupling constant. Section IV contains our
summary and conclusions.

II. THEORY AND FORMALISM

In this section, we briefly present the theoretical assump-
tions and framework of our paper including the low-energy
model Hamiltonian and the Keldysh Coulomb potential as
well as the quasiparticle self-energy formalism.

A. Effective low-energy Hamiltonian

We consider an electron-doped monolayer of MoS2 on a
substrate with long-range electron-electron interaction. Ne-
glecting the intervalley scattering the total Hamiltonian at K
point is given by

Ĥ =
∑
k,σ

ψ̂
†
k,σ

(a0tk · σ̂ + �σ̂z − σλ
σ̂z − 1

2
)ψ̂k,σ

+ 1

2S

∑
q �=0

V (q)ρ̂qρ̂−q, (1)

where ψ̂
†
k,σ

= (â†
k,+σ

, b̂†
k,+σ

) is the pseudospin operator, ρ̂q =∑
k,σ ψ̂

†
k−q,σ

ψ̂k,σ is the density operator, and V (q) is the
quasi-2D electron-electron interaction.The first term is the
noninteracting minimal two band Hamiltonian of the massive
Dirac fermions proposed for the monolayer of MoS2 which is
written in lowest order k · p theory [33,34]. Here σ̂ denotes the
Pauli matrices acting in pseudospin space, σ is the real spin,
t = 1.10 eV is the hopping matrix element, a0 = 3.193 Å is
the lattice constant, 2� = 2.7 eV is the electronic energy gap
between the valence and conduction bands [18,35], and 2λ =
0.15 eV is the spin splitting of the valence band. Having an
electron-doped system, we thus ignore this term for the sake of
convenience, since it is much smaller than the electronic band
gap and has minor effect on the quasiparticle properties of the
system (λ ≈ 0.06�). The eigenvalues of this noninteracting
term of the Hamiltonian are given by Es

k = s
√

(h̄vF k)2 + �2,
where vF = a0t/h̄ ≈ 5.33 × 105 m/s is the Fermi velocity
and s = +/− denotes the conduction/valence band. The sec-
ond part of Eq. (1) is the long-range Coulomb interaction
which will be treated perturbatively.

B. Quasi-2D Coulomb interaction

In ordinary 3D materials the effect of lattice screening is
simply a rescaling of the interaction strength by a static dielec-
tric constant. In 2D materials with finite width, however, the
nonlocal dielectric screening leads to the modified Coulomb
interaction of the form [36,37]

V (q, a) = 2πe2

ε(q + aq2)
, (2)

where a is related to the polarizability of the 2D layer through
a = 2πα2D [36] and ε = (ε1 + ε2)/2 is the average dielectric
constant of the environment. The Fourier transform of this
interaction is no longer e2/r, however, it is

V (r, a) = e2π [−Y0(r/a) + H0(r/a)]

2aε
, (3)

where the Bessel function of the second kind is defined as

Yn(x) = Jn(x) cos(nx) − J−n(x)

sin(nx)
, (4)

where Jn(x) is the Bessel function of the first kind and
the Struve function Hn(x) solves the inhomogeneous Bessel
equation. It can be shown that for r → ∞ the interaction
reduces to the formal Coulomb interaction and it shows a
weaker logarithmic divergence as r → 0. This potential was
first proposed in the Keldysh model [38] for a geometry in
which a slab of thickness d and isotropic in-plane dielectric
constant ε‖ is assumed to be sandwiched between materials
with dielectric constants ε1 and ε2. In this model the screening
length is approximated as a = dε‖/(ε1 + ε2). For an in-plane
dielectric constant of ε ≈ 12 and a slab thickness of d ≈ 6,
Zhang et al. [39] found that the screening length is a ≈ 36 Å
for a freestanding MoS2 monolayer (a = 36/ε Å in general).
This is in good agreement with a = 35 Å found by Qiu et al.
[13] fitting the Keldysh model to their ab initio effective
dielectric function at small q.
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C. Many-body self-energy within RPA

In order to find quasiparticle properties of an interacting
system we should have information of the Green’s function
or equivalently from the self-energy of the system. Here we
have used the G0W self-energy which is based on two main
approximations: First, the self-energy is written in leading
order in the dynamical interaction and the vertex corrections
are neglected and second, the interacting Green’s function of
the system G is replaced by the noninteracting one G0. In this
regard, at zero temperature, T = 0, the retarded self-energy

s of the quasiparticles in the conduction band (s → +) or
the valence band (s → −) is given by [40,41]


s(k, ω) = −
∑

s′

∫
d2q

(2π )2
F ss′

k,k+q

×
∫ ∞

−∞

d�

2π i

Vq

ε(q,�)
G0

s′ (k + q, ω + �), (5)

where Vq is the short form of V (q, a) given by Eq. (2) and
ε(q,�) = 1 − Vqχ

0(q,�) is the dynamical dielectric func-
tion within RPA and χ0(q,�) is the noninteracting polariza-
tion function of the system [42]. F ss′

k,k+q is the wave function
overlap factor of the states s and s′ and is given by [32]

F ss′
k,k+q = 1

2

(
1 + ss′ h̄2v2

F (k · k + q) + �2

EkEk+q

)
. (6)

The noninteracting Green’s function of the system is defined
as

G0
s (k, ω) = 1 − nF (ξ s

k )

ω − ξ s
k + iη

+ nF (ξ s
k )

ω − ξ s
k − iη

, (7)

where η is an infinitesimal positive constant and
ξ s

k = Es
k − EF is the noninteracting energy measured from

Fermi level. Here we assume an electron-doped system with
the Fermi energy EF =

√
(h̄vF kF )2 + �2. nF (ξ s

k ) is the Fermi
distribution function and at T = 0 we have nF (ξ s

k ) = �(−ξ s
k )

with �(x) being the Heaviside function. In this work, we
consider an experimentally accessible density range (up to
n = 5 × 1013 cm−2) for which the Fermi energy does not
exceed 1.42 eV showing the electron gas is confined at
the bottom of the conduction band. Increasing the carrier
density to much larger values, the system can get closer to
a gapless Dirac system, but the density range in this case is
experimentally inaccessible.

The retarded self-energy in Eq. (5) can be decomposed into
the static exchange part 
ex

s and the dynamical correlation part

cor

s


s(k, ω) = 
ex
s (k) + 
cor

s (k, ω). (8)

The exchange self-energy is simply given by


ex
s (k, ω) = −

∑
s′

∫
d2q

(2π )2
VqF ss′

k,k+q�
( − ξ s′

k+q

)
. (9)

The � integration on the real axis in the correlation part of
Eq. (5) encounters some difficulties owing to the poles of
1/ε(q,�). This problem is avoided by closing the integration
contour in the first and third quadrants using two circular con-
tours. Then we are left with the sum of the Green’s function
residues in the first and third quadrants plus an integration
on the imaginary axis [43]. Note that the circular contours

do not contribute to the integration because of the decaying
behavior of the integrand at � → ∞. Following these steps,
the correlation part of the self-energy can be written as the
sum of a line and a residue term


cor
s (k, ω) = 
line

s (k, ω) + 
res
s (k, ω), (10)

where


line
s (k, ω) = −

∑
s′

∫
d2q

(2π )2
VqF ss′

k,k+q

×
∫ ∞

−∞

d�

2π

[
1

ε(q, i�)
− 1

]
1

ω + i� − ξ s′
k+q

,

(11)

and


res
s (k, ω) =

∑
s′

∫
d2q

(2π )2
Vq

[
1

ε(q, ω − ξs′ (k + q))
− 1

]

× F ss′
k,k+q

[
�

(
ω − ξ s′

k+q

) − �
( − ξ s′

k+q

)]
. (12)

We can see that the line contribution to the correlation
self-energy is completely real since ε(q, i�) is a real quantity.
Therefore, the only contribution to the imaginary part of the
self-energy comes from the residue term.

III. QUASIPARTICLE PROPERTIES

In this section we address the main quasiparticle properties
defined in normal Fermi liquid formalism and report our
numerical results. We consider an electron-doped monolayer
of MoS2 and all the results and figures are related to the con-
duction band where s = +1. All the energies and self-energies
are scaled with εF = h̄vFkF and h̄ = 1 in all calculations.
The coupling constant appearing in calculations is defined
as αee = ge2/ε h̄vF (as in graphene) with g = 4 the band
degeneracy factor and vF ≈ 5.33 × 105 m/s for MoS2 and ε

the average dielectric constant of the surrounding medium.
The numerical value of the αee in MoS2 is found to be αee ≈
16.4/ε.

A. Quasiparticle self-energy and spectral function

In Fig. 1 we plot the real and imaginary parts of the
self-energy in the conduction band as functions of the scaled
momentum k/kF at the single-particle energy ω = ξ+

k and for
ε = 2.5 (SiO2 substrate) and ε = 5 (Al2O3 substrate). Here
we use the on-shell approximation [41] where the quasiparti-
cle excitation energy with respect to the interacting chemical
potential is given by

E s
Q(k) � ξ s

k + Re 
̄s(k, ω)|ω=ξ s
k
, (13)

where Re 
̄s(k, ω) = Re 
s(k, ω) − Re 
s(kF, 0)
(note that the exact quasiparticle energy
E s

Q(k) = ξ s
k + Re 
̄s(k, ω)|ω=Es

Q(k) is found from the
self-consistent solving of the Dyson equation). We can see
that the real part of the self-energy has a strong dip at a special
momentum consistent with the strong peak in the imaginary
part of the self-energy at the same momentum. This special
point is the smallest momentum for which a new quasiparticle
decaying channel opens in the system which is the inelastic
scattering of quasiparticles into plasmon. Bearing in mind that
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(a)

(b)

FIG. 1. (a) The real part of the self-energy with respect to the
interacting chemical potential Re 
̄+(k, ω) and (b) the absolute value
of the imaginary part of the self-energy |Im
+(k, ω)| as functions of
k/kF at ω = ξ+

k for ε = 2.5 (red lines) and ε = 5 (blue lines). The
inset shows the enlarged plot of |Im
+(k, ω)| near k = kF which
is almost the same in all cases. The solid lines correspond to the
modified Coulomb interaction while the dashed lines show the results
obtained using the bare Coulomb interaction. The figures are plotted
for n = 1013 cm−2.

the quasiparticle lifetime is connected to the imaginary part
of the self-energy through 1

τ
= − 2

h̄ Im 
(k, ξk), it is evident
from the inset of Fig. 1(b) that at k = kF, we have the most
long-standing quasiparticles as expected. On the other hand,
not only the wave vector at which the plasmon dip occurs
changes with the interaction strength but also the nonlocal
dielectric screening can abruptly push this point into smaller
wave vectors. This change is more pronounced for stronger
interactions or smaller dielectric constants of the surrounding
medium. For k < kF, the behavior of the self-energy is almost
the same for the bare and modified Coulomb interactions
and different dielectric medium, however, the effect of the
functional form of the interaction and the interaction strength
come into sight as we move away from the Fermi surface
and proceed toward larger wave vectors. The calculation of
the real and imaginary parts of the self-energy enables us
to find several quasiparticle features of the system among
which the single-particle spectral function A(k, ω) is of
particular importance. The spectral function is a probability
density function representing the probability of finding a
quasiparticle with wave vector k and energy ω and as a
probability density function, it should satisfy the sum rule

∫ ∞
−∞(dω/2π )A(k, ω) = 1. For a noninteracting system,

we have A(k, ω) = 2πδ(w − εk ) which guarantees that an
excitation of the system (generated by adding or removing
an electron to or from the Fermi sea) can still be described
by a noninteracting particle. When the interaction is turned
on, the modification of the Green’s function of the system
renormalizes the spectral function as [40,41].

As(k, ω) = 1

π

|Im
s(k, ω)|
[ω − ξ s

k − Re 
̄s(k, ω)]2 + [Im
s(k, ω)]2

(14)

The quasiparticle peaks in this case occur at
ω = ξ s

k + Re 
̄s(k, ω) [and infinitesimal Im
s(k, ω)] which
are the solutions of the Dyson equation. In Fig. 2 the typical
behavior of the self-energy of the system as well as the
spectral function are illustrated. The figures are plotted
for two fixed values of the wave vector k/kF = 0.2 and
k/kF = 1.2 and the modified Coulomb interaction Eq. (2).
The straight line is ω − ξ+

k and the intersections between this
line and Re 
̄+(k, ω) are solutions of the Dyson equation
and represent the quasiparticles of the system provided
that Im
+(k, ω) at these points is extremely small. For
k/kF = 0.2, we have three solutions, two of which are
undamped (the first and the third one) while for the second
one Im
+(k, ω) is very large and therefore it has no
contribution in the spectral function of the system. The first
solution is the regular quasiparticle and the third one describes
the plasmaron in the system which arises due to the coupling
between a hole and a cloud of plasmons. For k/kF = 1.2 the
plasmaron peak disappears because it enters to the region
where the decay process into plasmons is of much importance
and the higher energy solutions are also damped leaving
only the usual quasiparticle peak in the spectral function. On
the other hand, we can see that the dielectric characteristics
of the surrounding medium have the slightest impact on
the usual quasiparticle peak for both values of momentum,
however, for k/kF = 0.2 it has considerably changed the
energy of the plasmaron peak from ω = −0.880 εF for
ε = 2.5 to ω = −0.628 εF for ε = 5. If we had performed
our calculations with the bare Coulomb interaction instead
of the modified one, the plasmaron peaks would emerge
in higher energies such that for ε = 2.5, ω = −0.980 εF

and for ε = 5, ω = −0.681 εF. Along with the interaction
strength and the screening length, the density can also affect
the quasiparticle properties. We have performed the spectral
function calculations for different carrier densities and we
find that changing the carrier density, the position of the
regular quasiparticle peak also changes as well as that of the
plasmaron peak such that for higher densities both of the
peaks move to higher energies.

B. The renormalization constant and the effective Fermi velocity

In general, when the interaction is turned on, the quasi-
particle peak acquires a finite width and the spectral weight
reduces because of the electron-electron interaction. This
reduction is of most importance at the Fermi surface and is
parametrized by a renormalization constant Z which is given
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(a)

(c)

(b)

(d)

FIG. 2. (a), (b) The self-energy and (c), (d) the spectral function A+(k, ω) as functions of the scaled energy ω/εF for k/kF = 0.2 and
k/kF = 1.2. The dash-dotted line in (a) and (b) corresponds to ω − ξ+

k whose intersections with Re 
̄+(k, ω) are solutions of the Dyson
equation and show quasiparticle peaks when Im
+(k, ω) is infinitesimal. The figures are plotted for ε = 2.5 (red dashed lines) and ε = 5
(blue solid lines) and n = 1013 cm−2.

by [40,41]

Z = (1 − ∂ωRe 
+(k, ω)|k=kF ,ω=0)−1. (15)

It also measures the discontinuity of the occupation number
at k = kF and equals to unity for a noninteracting system and
0 < Z < 1 for an interacting system for which the Landau
Fermi liquid picture holds. In order to satisfy the sum rule
mentioned earlier, the rest of the spectral weight (given by
1 − Z) is spread incoherently in the background. In Fig. 3
we show how the renormalization constant Z varies with
the electron density and also with the coupling constant
αee. We assume that the variation in coupling constant is
caused by changing the surrounding environment. The vari-
ation of Z versus αee is plotted for high and low densities
n = 3.5 × 1013 cm−2 and n = 5 × 1012 cm−2 and also for the
bare and modified Coulomb interactions. As expected, for
αee → 0 the renormalization constant equals unity and the
system becomes noninteracting which is the case for both
high and low carrier densities. However, as we increase the
coupling constant, its impact on low-density system is much
more pronounced such that in the low-density case for αee =
4, we have Z = 0.246 (the bare Coulomb interaction) and
Z = 0.283 (the modified Coulomb interaction) while for n =
3.5 × 1013 cm−2 and at the same coupling constant we have
Z = 0.468 and Z = 0.394, respectively. On the other hand,
we can see that the inclusion of nonlocal screening increases

the Z factor and therefore protects the normal Fermi liquid
in both cases though the region of the effectiveness depends
upon the density and the high-density system is clearly more
affected. For small coupling constant (depending upon the
density) the two curves of the bare and modified Coulomb
interactions coincide because as we decrease the coupling
constant the screening length also decreases and therefore in
this limit, the bare and the modified Coulomb interactions act
the same. We can also see in Fig. 3(b) that increasing the
density, an asymptotic value of renormalization constant is
reached whose value is a function of the dielectric constant
of the surrounding medium.

In the case of massive Dirac systems the effec-
tive Fermi velocity of a quasiparticle can be defined
as v∗

F = α|∂EQ(k)/∂k|k=kF with α = EF/εF. This can be
achieved by expanding the quasiparticle energy EQ(k) to first
order in (k − kF) [41]. The constant α is set to guarantee
the equality of v∗

F with vF when the interaction is turned off.
We remember that the exact quasiparticle energy measured
from the chemical potential μ of the interacting system is
E s

Q(k) = ξ s
k + Re 
̄s(k, ω)|ω=Es

Q(k). Differentiating this equa-
tion, the effective velocity v∗D

F (in conduction band or +
channel) in the context of the Dyson equation is given by

v∗D
F

vF
= Z

(
1 + α

vF
∂kRe 
+(k, ω)

∣∣
k=kF ,ω=0

)
. (16)
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(a)

(b)

FIG. 3. (a) The renormalization constant Z as a function of the
coupling constant αee for n = 3.5 × 1013 cm−2 (red lines) and n =
5 × 1012 cm−2 (blue lines). (b) The renormalization constant Z as a
function of the electron density n for ε = 2.5 (red lines) and ε = 5
(blue lines). n ranges from 2 × 1012 cm−2 to 5 × 1013 cm−2. The
solid lines correspond to the modified Coulomb interaction while
the dashed lines show the results obtained using the bare Coulomb
interaction.

On the other hand the effective Fermi velocity can also be
written based on the on-shell approximation Eq. (13) as

v∗OS
F

vF
= 1 + α

vF
∂kRe 
+(k, ω)

∣∣
k=kF ,ω=0

+ ∂ωRe 
+(k, ω)
∣∣
k=kF ,ω=0. (17)

The two definitions give the same results for very weak
interactions, however, as we increase the interaction the dis-
tinction grows. There has been a long-term dispute on the
validity of these approaches when an approximate form of
the self-energy is employed [23,43–47]. It was shown that
the cancellation of higher-order corrections favors the on-shell
approximation for weak interactions [43]. Even in the case
of stronger interactions where the mentioned argument does
not hold anymore, the two approaches are still controversial
[23,47]. In Fig. 4 we compare the effective velocity found
using the Dyson equation and on-shell approximation. The
velocities are plotted versus the coupling constant αee and
the electron density n. In Fig. 4(a) we can see that for
weak enough interactions the two effective Fermi velocities
coincide as expected. But upon increasing the interaction the
effective Fermi velocity decreases in the case of the on-shell

(a)

(b)

FIG. 4. The dimensionless effective Fermi velocity of the con-
duction band v∗

F/vF as a function of (a) the coupling constant αee

and (b) the charge carrier density n obtained using the on-shell
approximation (blue lines) and the Dyson equation (red lines).
n = 3.5 × 1013 cm−2 in the top panel while ε = 5 and n ranges from
2 × 1012 cm−2 to 5 × 1013 cm−2 in the bottom panel. The solid lines
correspond to the modified Coulomb interaction while the dashed
lines show the results obtained using the bare Coulomb interaction.

approximation (to less than 0.8 vF for αee = 10) while at the
same time v∗D

F reaches a constant value of about 0.92 vF.
Upon increasing the coupling constant to larger values, a
slight upturn in v∗D

F starts to show up (quite similar to the
decline reported in m∗ of 2DEG at very large rs [47]). The
impact of the finite thickness of the slab is also illustrated in
this figure which leads to larger effective velocities especially
for the one found using on-shell approximation. This effect
is suppressed for αee → 0 as in the case of the Z factor but
increasing the coupling constant the difference between the
velocities found using bare and modified interactions grows
such that we have an approximately 24% increase in v∗OS

F
for αee = 10 when nonlocal screening effect is considered.
Note that in this figure as well as Fig. 3(a), αee = 6.56 and
αee = 3.28 are related to the cases where SiO2 and Al2O3 are
used as substrate. The difference between v∗D

F and v∗OS
F can

also be noticed in Fig. 4(b) where we can see that the Fermi
velocity is strongly suppressed at low density reminiscent of
the effective mass enhancement in 2DEG. Here again, we
can see the softening of the Coulomb interaction which leads
to a larger effective Fermi velocity when nonlocal screening
effect is considered which is stronger in the case of on-
shell approximation. We have summarized our results for the
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TABLE I. The calculated effective Fermi velocity and renormalization constant of MoS2 monolayer.

Modified interaction Bare interaction

αee n (1012 cm−2) v∗D
F /vF v∗OS

F /vF Z v∗D
F /vF v∗OS

F /vF Z

0.2 5 1.008 1.010 0.784 1.007 1.009 0.782
35 1.021 1.024 0.894 1.020 1.023 0.892

1 5 0.909 0.808 0.476 0.904 0.792 0.462
35 0.961 0.942 0.666 0.951 0.923 0.640

3 5 0.886 0.639 0.315 0.874 0.555 0.283
35 0.931 0.862 0.503 0.908 0.791 0.440

6 5 0.890 0.554 0.246 0.874 0.378 0.203
35 0.924 0.820 0.423 0.897 0.691 0.336

9 5 0.896 0.517 0.215 0.879 0.278 0.167
35 0.923 0.799 0.384 0.895 0.633 0.286

renormalization constant and effective Fermi velocity in Ta-
ble I for some coupling constants and high and low densities.

IV. SUMMARY AND CONCLUSIONS

In summary, including the dynamical effects of the
electron-electron interaction, the quasiparticle properties of
MoS2 monolayer are found within G0W and RPA. Following
the calculation of the real and imaginary parts of the self-
energy in the first place, we find the dynamical structure factor
of the system. We have shown that the inclusion of the non-
local dielectric screening in the form of a modified Coulomb
interaction and dielectric features of the surrounding environ-
ment have important effects on the form of the structure factor
such that they can clearly change the position of the plas-
maron peak, although the typical quasiparticle peak remains
almost unchanged. In principle, the predicted quasiparticle
peaks should be detectable in photoemission and tunneling
measurements. Meanwhile, we should note that although the
plasmaron peak is a long-standing theoretical prediction in
condensed matter physics [20], its experimental observation
is rarely achieved [30,48,49]. This is because (as our results
show) the appearance and position of the plasmaron peak
are very sensitive to the physical parameters of the system
and a small change in the self-energy (caused for example
by phonons, defects, or temperature increase) can lead to its
loss in the spectral function. Besides the spectral function
properties, the quasiparticle lifetime [τ−1(k) ∼ |Im 
(k, ξk|)]
or damping rate [�(k) = |Im 
(k, ξk )|] and also inelastic
mean free path [l (k) ∼ k�(k)] are parameters of particular
interest which can be tested experimentally using electron
spectroscopy methods.

We have also obtained the effective Fermi velocity and
the renormalization constant of the system. The calculations
are performed in a broad range of coupling constant as well
as the density of the electrons in the conduction band. In
the case of the renormalization constant, we find that it
reduces (with respect to 1 for the noninteracting system) as the
interaction increases and this reduction is more pronounced
for lower densities. On the other hand, we can see that the
Z factor grows with the electron density and reaches an
asymptotic value (depending on the surrounding environment)
for very large densities which is far from unity showing that
although the density of carriers is an effective parameter for

the electron-electron interaction in MoS2, it cannot solely
describe the interacting character of the system. We recall
that in the case of 2DEG, for very large values of density
(or equivalently rs → 0) we have Z → 1 [23,26]. The reason
behind this lies in the fact that there are two scales of energy
in the Hamiltonian of this system, namely εF(h̄vFkF) and �.
Therefore for a constant value of the gap, the �/εF ratio is an
important parameter such that for lower densities the system
acts more or less like a 2DEG, but increasing the density
we gradually come closer to a graphenelike system and the
interaction features deviate from those of a 2DEG.

In the case of the effective Fermi velocity, we present
our results within both the self-consistent Dyson equation
and the on-shell approximation. The effective Fermi velocity
predicted by the on-shell approximation v∗OS

F is almost always
less than v∗D

F and its behavior is completely distinct compared
to v∗D

F . Increasing the coupling constant, v∗D
F approaches a

constant value not much less than the noninteracting Fermi
velocity vF while v∗OS

F reduces to much smaller values (de-
pending upon the electron density) without indicating a satu-
rating behavior up to almost large coupling constants. In all
the calculations we can trace the crucial impact of nonlocal
dielectric screening leading to the softening of the Coulomb
interaction and stabilizing the Fermi liquid picture especially
at larger coupling constants. The predicted behavior of the
effective Fermi velocity of MoS2 is experimentally testable
through cyclotron resonance or Shubnikov-de Haas experi-
ments.

To some up, our calculations show that the interaction
strength of a MoS2 monolayer is not simply a function of
coupling constant αee (as in graphene), but it is a multivariable
function of αee, n, and also a, the screening length. On this
account, it is hard to comment on the accuracy of the RPA cal-
culations, which is a leading order theory with respect to the
interaction strength (αee for graphene and rs for 2DEG), and it
is accurate for the effective interaction strength much smaller
than unity. Yet, the RPA calculations have been widely used
in the literature [22,43,50] for rs ≈ 6 − 7 and even larger cou-
pling constants [47]. In order to go beyond RPA, we need to
account for the vertex corrections in the self-energy and also
the dielectric function. Since a precise inclusion of the vertex
terms in self-energy calculations is an unfeasibly formidable
task, approximate forms of vertex corrections should be con-
sidered among which the ladder diagrams are of the most
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importance. Typically this is done by introducing a vertex
function �(k, ω) into the definitions of the self-energy and
polarization function whose approximate form can be found
in terms of a local field factor G(k, ω) such that �(k, ω) =
1/(1 + G(k, ω)Vqχ (k, ω)) [40,41]. This approximate vertex
correction is the result of replacing the average electron-
electron interaction with an effective screened interaction. Ob-
viously, the local field factor modifies the interaction in order
to account for the role of exchange-correlation hole around
electrons. The first and most popular local field factors were
the static field factors introduced by Hubbard [51,52]. But it
has been shown that inclusion of the vertex corrections in the
form of Hubbard-type local field factors does not change the

quasiparticle properties significantly [50,53,54] and in order
to find corrections to RPA calculations of quasiparticle prop-
erties, some more precise local field factors are needed which
is beyond the scope of this paper. Some other improvements to
this study can be achieved using a more realistic Hamiltonian
for MoS2 monolayer as well as incorporating electron-phonon
interaction in the electronic self-energy or performing finite
temperature quasiparticle calculations.
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