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We report on line-width analysis of optical transitions in InAs/GaAs coupled quantum dots as a function
of bias voltage, temperature, and tunnel coupling strength. A significant line broadening up to 100 μeV
is observed at hole tunneling resonances where the coherent tunnel coupling between spatially direct and
indirect exciton states is maximized, corresponding to a phonon-assisted transition rate of 150 ns−1 at 20 K.
With increasing temperature, the linewidth shows broadening characteristic of single-phonon transitions. The
linewidth as a function of tunnel coupling strength tracks the theoretical prediction of line-width broadening due
to phonon-assisted transitions, and is maximized with an energy splitting between the two exciton branches of
0.8 − 0.9 meV. This report highlights the line-width broadening mechanisms and fundamental aspects of the
interaction between these systems and the local environment.
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I. INTRODUCTION

Vertically stacked coupled quantum dot (CQD) pairs em-
bedded in an electric field effect structure allow for wide-
range tuning of atomlike charge and spin states due to an
enhanced quantum confined Stark effect (QCSE)[1–3]. Op-
tically generated electron-hole pairs can be localized in one of
the dots, the electron and hole can be localized in separate
dots, or they can be delocalized in both quantum dots by
forming a molecular exciton state. The coupling between
two dots is quantified by the tunnel coupling strength. The
coherent manipulation of exciton states and control of in-
terdot coupling in CQDs offers advantages for CQD-based
quantum devices for optical sensing and quantum information
processing [4–11]. The pure dephasing, phonon relaxation,
and charges surrounding the quantum dots are a few major
challenges hindering this venture [12–23]. These phenomena
are coupled to the line-width broadening and line profile,
providing details of coupling to the local environment. The
pure dephasing expresses the time scale of coherent inter-
actions of charge states with lattice phonons. Other reports
highlight charge fluctuation-induced broadening of indirect
excitons in CQDs [23–25]. The line-width analysis of differ-
ent charge states and dependence on applied field, including
the tunneling resonances where one charge is delocalized, has
fundamental research interest and is important to understand
the quantum systems for potential quantum computing and
sensing applications. In this paper, we report the detailed
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analysis of line-width broadening of direct and indirect ex-
citons and examine the linewidth as a function of electric
field near tunneling resonances. We investigate the hypothesis
of broadening mechanisms as a function of temperature and
tunnel coupling strength. These measurements explore the
interaction of the optical transitions in quantum system with
the local environment and adjacent charges.

II. EXPERIMENTAL METHODS AND RESULTS

Molecular beam epitaxy-grown, vertically stacked self-
assembled InAs/GaAs quantum dot pairs with 4-nm interdot
barrier thickness embedded in a Schottky diode structure
are used in this study. The Schottky diode structure allows
application of electric field to tune the energy band diagram
by shifting the relative energy levels and favors the tunneling
of charge carriers between the quantum dots. The details of
the fabrication procedure are described elsewhere [26]. A
variable wavelength continuous-wave diode laser operating
at wavelength ∼890 − 950 nm and power density ∼10−4 −
16 Wcm−2 is used to excite the CQDs quasi-resonantly. The
laser beam is focused on the sample at an angle of 45◦ to
minimize the collection of scattered light. The emission from
quantum dot molecules is collected with a 50X magnification
microscope objective, dispersed by a triple spectrometer in
additive configuration, then subsequently collected using a
liquid nitrogen cooled charge-coupled device camera. The
photoluminescence (PL) energy resolution is limited by the
spectrometer response of 30 − 40 μeV for 30 μm slit open-
ing. A 2600 series Keithley sourcemeter with 6.5-digit res-
olution is used to apply the electric field along the growth
direction of the CQD pair. These measurements are done
in a closed cycle helium cooled cryostat at temperatures of
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FIG. 1. (a) Electric field dispersed emission spectra of CQD 1
measured at 20 K near a neutral exciton hole tunneling resonance.
Inset shows CQD geometry with QD heights and interdot barrier
width. (b) Line profiles of direct (X 0, black squares) and indirect
(iX 0, red circles) optical transitions at 1.1 V compared with the upper
branch tunneling resonance (AC, blue triangles) at 1.24 V, with Voigt
fits (solid lines) and full width at half maximum line-width values
indicated.

20 − 80 K, where 20 K is the minimum attainable temperature
of the cryostat.

The characteristic electric field dispersed optical transition
energy map for one of the CQDs is shown in Fig. 1(a). This
map is generated by fine stepping the applied voltage (in
0.2 mV increments) along the growth direction of the self-
assembled CQD and collecting the corresponding PL. The
small separation of 4 nm between the quantum dots allows
electron/hole tunneling when electronic levels are brought in
resonance by applied electric field skewing the band structure
in the intrinsic region of the Schottky-type diode. The PL bias
map of the CQD shows multiple optical transitions appearing

and disappearing as a function of bias. Every single optical
transition is assigned to a charging state based on the spatial
location of charge carrier generated. [2,27] Here, we focus
our analysis on the spectral broadening of the neutral exciton
optical transitions, which generate the two most prominent
lines in the electric field dispersed PL spectrum of Fig. 1(a).
The two transitions form an anticrossing (AC) in the center
of the image. This anticrossing is a result of a hole level
resonance between a direct exciton (X 0), with an electron
and hole in the bottom dot, and an indirect exciton (iX 0),
with an electron in the bottom dot and hole in the top dot.
The PL emission energy of the direct exciton shows a weak
dependence on electric field, while that of the indirect exciton
shows a strong electric field dependence. This difference in
response to the electric field is a result of the static dipole
moment p = ±ed , defined by the elementary charge e and the
spatial separation d of electron and hole. The avoided crossing
is the spectral signature of the formation of molecular states,
i.e., the symmetric and antisymmetric mixing of the direct and
indirect excitons’ wavefunctions, |ψ〉 = α|X 〉 ± β|iX 〉 [28].
The resulting exciton state, |ψ〉, should exhibit properties
in between that of the direct and the indirect exciton. For
example, at the center of the anticrossing the Stark shift is the
average of the Stark shift observed for the direct and indirect
excitons. Likewise, the radiative lifetime at the center of the
anticrossing can be expected to be the arithmetic average of
the lifetimes of both exciton states. Consequently, if we were
to measure the linewidth of the exciton transition as we follow
one of the anticrossing branches through the anticrossing
region, i.e., from the direct exciton to the indirect exciton, we
expect the linewidths to gradually and monotonically decrease
in the absence of nonradiative broadening mechanisms.

The line profiles for three different exciton states X 0, iX 0,
and tunneling resonance are shown in Fig. 1(b). The solid
lines are pseudo-Voigt fits to the experimental data, evaluated
as a linear combination of Lorentzian and Gaussian line
shapes. The linewidth of the direct exciton corresponds to the
resolution limit of our experimental setup, 41.4 ± 0.1 μeV. In
contrast, we find that the PL linewidth of the indirect exciton
is 83 ± 5 μeV, while the linewidth at the upper branch of
the anticrossing is 130 ± 3 μeV. In resonant measurements,
resolution limited by the laser linewidth, such as described
by Czarnocki et al.,[29] we have been able to show that the
actual transition linewidth of the direct exciton is on the order
of a few μeV, consistent with the typical radiative lifetimes
for InAs/GaAs QDs [14]. For the indirect exciton one would
expect a much-reduced linewidth, due to the reduced overlap
of the electron and hole wave functions. That the indirect
exciton transitions exhibit the opposite, a larger linewidth
than the direct exciton transitions, has been attributed to
charge fluctuations near the CQDs and the larger static dipole
moment [1,24,25]. Regardless of this inverted behavior of the
linewidths, we expect a gradual and monotonic change of the
exciton transition linewidth as we follow one of the branches
through the anticrossing.

In contrast to the expected behavior, we find a non-
monotonic change of the PL linewidth. Towards the center of
the anticrossing the linewidth increases to values significantly
above that of the indirect exciton. In the example shown
in Fig. 2(a), the linewidth of the upper branch broadens at
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FIG. 2. (a) Measured linewidth of the lower (black squares) and
upper (red circles) branches of the X 0 anticrossing in CQD 1 at
20 K as a function of bias, with fits to Eq. (17) (solid lines), the
results of numerical simulations (dash-dotted lines), and Gaussian
broadening components (dashed lines). (b) Relative intensity of each
branch, normalized to the sum of the two intensities at each bias
value. (c) Measured bias slope of each branch, with fits to Eq. (5)
(solid lines).

the tunneling resonance to 139 ± 1 μeV compared to 42.5 ±
0.6 μeV in the limit of the direct exciton transition and
80.6 ± 0.6 μeV in the limit of the indirect exciton transition,
with similar values for the lower branch. We investigated
more than 20 molecules and observed linewidth broadening
up to ∼300 μeV at the tunneling resonance. Theoretical work
by Daniels et al. suggests that the line-width broadening at
the anticrossing is the result of enhanced phonon coupling
[23]. They find that at the tunneling resonances where the
two involved exciton states come closest in energy to each
other, transition rates between the two branches assisted by
the emission or absorption of phonons are enhanced.

The relative intensities of the upper and lower exciton
branches are shown in Fig. 2(b). The intensity of each branch
is equal near the tunneling resonance, where the wavefunction
overlap is maximized. The indirect exciton becomes signifi-
cantly weaker in intensity away from the tunneling resonance,
leading to increased uncertainty of line-width fit values. The

FIG. 3. Measured temperature-dependent ZPL linewidths for
(a) CQD 1 and (b) CQD 2 at and away from the center of the
anticrossing, with linear and Bose broadening fits (solid lines).

slope (change in exciton peak energy as a function of applied
bias) of the upper and lower branches is shown in Fig. 2(c),
and follows the predicted dependence of Eq. (5) with equal
slopes at the tunneling resonance.

The temperature dependence of the PL linewidth is shown
in Fig. 3 for two CQDs on the same sample, with the the-
oretical dependence given by Eqs. (12) and (14). At low
temperatures, the linewidth is determined by the one-phonon
transition rate between the lowest two eigenstates, with the
temperature dependence entering through the phonon mode
population nB(T, ω21) at the transition frequency. The energy
splitting h̄ω21 at the anticrossing is significantly smaller than
the thermal energy kBT in these measurements, leading to the
observed linear broadening for the upper branch

∂�2

∂T
≈ π

h̄

kB

h̄ω21
J12(ω21). (1)

The slope of this linear broadening, measured as 7.9 ±
2.1 μeV/K for CQD 1 and 4.5 ± 0.4 μeV/K for CQD 2,
is therefore proportional to the interdot phonon coupling
strength through the spectral density J12(ω21) at the tran-
sition frequency. The difference in broadening slope and
phonon coupling strength between CQD 1 and CQD 2 can be
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FIG. 4. Phonon broadening and corresponding transition rates
of the lower (black squares) and upper (red circles) branches of
the X 0 anticrossing for 7 CQDs at 20 K as obtained from fitting
to Eq. (17), compared with numerical simulations (solid lines) of
perfectly aligned QDs at a fixed interdot barrier width of 4 nm.
Shaded regions show simulations for a range of coupling parameters
matching observations.

explained by a variation of lateral alignment between QDs,
as discussed in Sec. IV. This explanation is supported by
the observation of different tunnel coupling strengths 230 ±
10 μeV and 540 ± 20 μeV of the first two excited states of the
neutral exciton in CQD 1, corresponding to coupling between
the ground state of the bottom QD and the first two excited
states of the top QD with p-like orbitals 8.6 ± 0.1 meV and
14.1 ± 0.1 meV above the ground state, respectively [27]. The
different energies of the px-like and py-like excited states
indicate an elongated top QD, while the larger tunnel coupling
strength of the second excited state indicates a lateral mis-
alignment between QDs along the shorter axis of the top QD.
The measurements were limited to a temperature �20 K due
to the closed cycle cryostat system used. We expect that the
linewidth at the anticrossing would approach a constant value
at lower temperatures between 5−15 K where the thermal
energy decreases below the energy splitting.

The effect of energy splitting between exciton branches on
the phonon-induced linewidth broadening for seven CQDs is
shown in Fig. 4. The value of phonon broadening �

ph
1/2 for each

branch is obtained by fitting the bias-dependent linewidth to
Eq. (17) to remove the effects of Gaussian broadening due to
charge fluctuations and spectrometer resolution. The results
are compared with numerical simulations of perfectly aligned
QDs with an interdot barrier width of 4 nm, predicting a max-
imum broadening of 100 μeV at 0.9 meV for the upper branch
and 60 μeV at 0.8 meV for the lower branch. This corre-
sponds to a maximum transition rate of 150 ns−1 (90 ns−1) for
phonon emission (absorption). The experimental data appears
to follow the simulated curve with variations of up to ±28%
from predictions using average phonon coupling strength. The
inferred transition rates are comparable to measured [21,22]
and calculated [15,17,18,23] electron/hole interdot relaxation
rates in the 0.5 − 1.0 meV energy range, though substantially
lower rates have also been observed [16,19,20].

III. THEORETICAL MODEL

To describe the optical transitions of a tunnel-coupled
CQD in an electric field-effect diode structure near a resonant
tunneling anticrossing, we follow Refs. [17,23] by starting
with a two-band effective mass model to describe bound
charges in the conduction and heavy-hole valence bands. This
gives single-particle wave functions 	α

iσ (�r) = ψα
i (�r)uα

σ (�r)
with band index α = {e, h}, QD location i = {B, T }, spin
state σ , and lattice-periodic Bloch wave functions uα

σ (�r). The
confinement model and resulting envelope wave functions
ψα

i (�r) are detailed in Appendix A.
Near the ground state hole tunneling resonance of the

neutral exciton state, the spatially direct and indirect excitons
expressed in the localized basis as |X 〉 = |eB〉|hB〉 and |iX 〉 =
|eB〉|hT 〉, respectively, are coupled to form new eigenstates

|1〉 = a11|X 〉 + a12|iX 〉
|2〉 = a21|X 〉 + a22|iX 〉. (2)

The coefficients ai j are found by diagonalizing the Hamilto-
nian matrix [11]

HX =
(

EX (U ) −th

−th EiX (U )

)
, (3)

where th is the hole tunnel coupling energy and EX (iX )(U ) is
the experimentally determined energy of state |X 〉(|iX 〉) as a
function of bias voltage U applied to the diode. The eigenstate
energies

E1/2 = EX (U ) + EiX (U )

2

∓
√(

EX (U ) − EiX (U )

2

)2

+ t2
h

(4)

form an avoided crossing, or anticrossing, with the minimum
energy difference at resonance given by �Emin = 2th. Using
the linear approximation of Stark shift near an anticross-
ing centered at UAC, the eigenstate energies are given by
EX (U ) = E0 and EiX (U ) = E0 − p(U − UAC), leading to the
bias-dependent slopes

∂E1/2

∂U
= − p

2

(
1 ± U − UAC√

(2th/p)2 + (U − UAC)2

)
(5)

for each eigenstate.
Coupling between single bound charges and lattice

phonons can be described using the general Hamilto-
nian [15,17,18,23]

He−ph =
∑
s,�q

(bs,�q + b†
s,−�q )

×
⎡
⎣∑

i j

c†
i c jF

e
s,i j (�q) −

∑
kl

d†
k dl F

h
s,kl (�q)

⎤
⎦, (6)

with creation (annihilation) operators b†
s,�q (bs,�q) for phonon

modes with polarization s = {LA, TA1, TA2} and wave vector
�q, c†

i (ci) for electrons in state |i〉, and d†
k (dk) for holes in

state |k〉. The phonon coupling constants are expanded into

085423-4



SPECTRAL BROADENING OF OPTICAL TRANSITIONS AT … PHYSICAL REVIEW B 102, 085423 (2020)

bulk and localized contributions as Fα
s,i j (�q) = gα

s (�q)Fα
i j (�q),

with bulk coupling matrix elements gα
s (�q) depending on

phonon mode and coupling mechanism and geometric form
factors

Fα
i j (�q) = 〈αi|ei �q·�r∣∣α j

〉 =
∫

ψα∗
i (�r)ei �q·�rψα

j (�r) d3�r (7)

describing overlap of the envelope wave functions of involved
states modulated by the phonon mode phase.

Since we are interested in transitions between the two
lowest-energy neutral exciton states near a tunneling reso-
nance, the relevant energy differences are less than 15 meV,
so coupling to optical phonons at energies of 30–40 meV
is neglected. The relevant phonon coupling mechanisms that
contribute to the bulk matrix element gα

s (�q) therefore include
deformation potential (DP) coupling to LA phonons, given by

ge/h(DP)
LA (�q) =

√
h̄q

2ρV cLA
ac/v, (8)

and piezoelectric (PE) coupling to LA and TA phonons,
given by

gα(PE)
s (�q) = −i

√
h̄

2ρV csq

dPe

ε0εr
Ms(q̂). (9)

In Eqs. (8) and (9), ρ is the mass density of the crystal,
V is the crystal volume used for normalization of phonon
modes (cancels out after summation over wave vectors), cs

is the propagation velocity of phonon mode s, ac/v is the
deformation potential of the conduction/valence band, dP is
the piezoelectric constant of the crystal, ε0εr is the electric
permittivity of the crystal, and the directional dependence
Ms(q̂) of the PE coupling is detailed in Appendix B. Note
that these bulk coupling matrix elements assume a constant
value of each material parameter, without taking into account
variations in composition due to the CQD structure. Previous
studies therefore assume that these parameters are determined
entirely by the GaAs barrier material, or by assuming a
uniform effective composition [17,23].

The single-particle phonon coupling Hamiltonian given by
Eq. (6) can be transformed to the diagonalized exciton basis
as

HX−ph =
∑
nm

∑
s,�q

F X
s,nm(�q)|n〉〈m|(bs,�q + b†

s,−�q ), (10)

where the exciton-phonon coupling constants F X
s,nm are ob-

tained by projecting Eq. (6) onto the diagonalized eigenstates.
Transitions between states |1〉 and |2〉 necessarily involve
hole tunneling, such that electron-phonon coupling does not
contribute. Pure dephasing processes |n〉 → |n〉 with no popu-
lation transfer, describing phonon-assisted optical transitions,
can occur by electron- or hole-phonon coupling. Taking
these properties into account, the exciton-phonon coupling
constants are given in terms of the localized single-particle

coupling constants as

F X
s,11 = F e

s,BB − a2
11F h

s,BB − a2
12F h

s,T T − 2a11a12F h
s,BT ,

F X
s,22 = F e

s,BB − a2
21F h

s,BB − a2
22F h

s,T T − 2a21a22F h
s,BT ,

F X
s,12 = − a11a21F h

s,BB − a12a22F h
s,T T

− (a11a22 + a12a21)F h
s,BT . (11)

The rate of phonon-assisted tunneling transitions from state
|n〉 to state |m〉 due to first-order coupling is given by Fermi’s
golden rule as

γnm = 2π

h̄2 [nB(T, |ωnm|) + �(ωnm)]Jnm(|ωnm|), (12)

where the phonon spectral density

Jnm(ω) =
∑
s,�q

∣∣F X
s,nm(�q)

∣∣2
δ(ω − ωs,�q ) (13)

measures the coupling to phonon modes at the transition
frequency ωnm = (En − Em)/h̄ to ensure energy conservation,
the temperature-dependent phonon mode population is given
by the Bose distribution nB(T, ω) = (eh̄ω/kBT − 1)−1, and the
step function �(ωnm) = 0 (1) for phonon absorption (emis-
sion).

The general expression for the energy linewidth of each
exciton state

�n(ω) = 2h̄γ̃n(ω) = h̄
∑
m �=n

γnm + h̄γnn(ω) (14)

contains contributions from real transitions to other states as
well as virtual single-state transitions associated with phonon-
assisted optical absorption, resulting in acoustic phonon side-
bands around the Lorentzian zero-phonon line (ZPL) and pure
dephasing [12,30–32]. Here we consider only the lowest-
energy direct and indirect states, neglecting excited states,
which are expected to be 10 − 20 meV higher in energy
and have a negligibly small tunneling rate. The frequency-
dependent pure dephasing rate is calculated similarly to the
tunneling rate, with the phonon energy determined by the
detuning �ωn = ω − ωn of the optical frequency from res-
onance:

γnn(ω) = 2π

h̄2 [nB(T,�ωn) + �(�ωn)]Jnn(�ωn). (15)

Experimentally, the emission spectrum is detected using a
spectrometer with a finite resolution. As a result, the detected
spectrum is convolved with the typically Gaussian spectrome-
ter response function of width �spect (30 − 40 μeV in these
experiments), leading to a Voigt ZPL profile with phonon
sidebands. In the presence of a fluctuating electric field due
to many charged lattice defects near the CQD, an additional
Gaussian broadening is present, with a width � f luct,1/2 =
�Ufluct|∂E1/2/∂U | proportional to the bias slope of the tran-
sition energy given in Eq. (5). With both of these broaden-
ing mechanisms, the combined Gaussian ZPL broadening is
given by

�g,1/2 =
√

(� f luct,1/2)2 + (�spect )2. (16)
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IV. DISCUSSION

The nonmonotonic bias dependence of linewidth in
Fig. 2(a), together with the additional temperature-dependent
broadening in Fig. 3, indicate a significant enhancement of

phonon-assisted transition rates between eigenstates at tunnel-
ing resonances. The bias-dependent ZPL linewidth can be fit
to the predicted form of Gaussian broadening in Eq. (16) with
an additional phonon-induced broadening with a Lorentzian
shape, resulting in the function

�1/2(U ) =

√√√√(
p�Ufluct

2

)2
(

1 ± U − UAC√
(2th/p)2 + (U − UAC)2

)2

+ (�spect )2 + �
ph
1/2

1 + (U−UAC
2th/p

)2 (17)

for each branch, with fit parameters UAC, th, and p describing
the position and shape of the anticrossing energy levels and
�Ufluct, �spect, and �

ph
1/2 describing the strength of broaden-

ing due to charge fluctuations, spectrometer resolution, and
phonon-assisted transitions, respectively.

The theory predicts an asymmetry in peak linewidths of
the upper and lower branches, with the upper branch being
more broad due to a faster phonon emission process compared
to phonon absorption, resulting in a shorter lifetime for state
|2〉. Fits to observed spectra appear to show an additional
broadening of the lower branch just past the center of the
anticrossing, to a level higher than the peak linewidth of the
upper branch. However, the region with increased fit linewidth
of the lower branch corresponds to where a second faintly
visible peak merges with it. This peak appears to be due to
a weakly allowed recombination from the dark exciton spin
state due to spin-orbit coupling, with an exchange splitting of
225 ± 14 μeV far from the anticrossing [23,34].

Figure 5 shows the calculated phonon-assisted transition
and pure dephasing rates both on and off the anticrossing
resonance for each coupling mechanism at 20 K, as a func-
tion of phonon energy. Transitions between eigenstates are
dominated by piezoelectric coupling at low energies, with
a maximum at 0.8 meV for phonon absorption from the
lower branch. The line-width broadening effect is therefore
predicted to be strongest for CQDs with an anticrossing
splitting energy of 0.8 − 0.9 meV. The sideband-producing
pure dephasing process is dominated by deformation potential
coupling, with a maximum at 1.2 meV. The experimental
spectra should therefore give a measure of piezoelectric cou-
pling strength through the ZPL linewidth at the anticrossing
and deformation potential coupling through the intensity and
distribution of acoustic phonon sidebands, which are more
prominent away from the anticrossing where the ZPL is
narrower. The oscillatory decay of transition and dephasing
rates as a function of phonon energy is a known feature of
CQDs, arising from resonances in the phonon coupling form
factor [Eq. (7)] between phonon wavelength and QD sepa-
ration [15,17,19,20]. The complex oscillation pattern and its
bias dependence are due to the combination of single-particle
coupling components between localized basis states, as cal-
culated from Eq. (11). The phonon coupling strength F X

s,12(�q),
primarily due to the piezoelectric interaction, was initially too
high when calculated using the material parameters for GaAs
listed in Table I. This was reduced to match observed peak
anticrossing linewidths by using effective InxGa1−xAs com-
position values of x = 32 ± 12% when calculating phonon
coupling constants, with material parameters varying linearly

between GaAs (x = 0) and InAs (x = 1). The deformation
potential parameters ac and av were both increased by a
factor between 1.27 and 2.22 relative to the values listed
in Table I to match observed sideband intensities between
0.6% and 1.4% of ZPL intensity, since literature values of
these parameters are highly inconsistent. The resulting values
of InAs composition and phonon coupling strength match
our experimental observations within the two-band effective
mass model and are consistent with reports of In migration

FIG. 5. Simulated (a) transition rate and (b) pure dephasing rate
calculated for CQD 1 at the center of the anticrossing (at 1.24 V, solid
lines) and away from the anticrossing (at 1.10 V, dashed lines), with
contributions from deformation potential coupling (black lines) and
piezoelectric coupling (red lines). Insets depict the selected transition
or dephasing process.
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FIG. 6. (a) Simulated upper branch phonon broadening at 20 K
and 0 nm lateral offset, as a function of anticrossing energy and
interdot barrier width. Dashed line shows anticrossing energy values
expected from previous experimental observations [33]. (b) Sim-
ulated phonon broadening for expected anticrossing energies as a
function of barrier width.

during QD growth [35–38], although inclusion of coupling
with light-hole valence bands may significantly modify these
values [18,39]. The coupling strength could also be modified
more weakly through the form factor Fα

i j (�q) by changing the
QD charge confinement and single-particle wave functions.

The variations in phonon coupling strength can potentially
be explained by differences in CQD geometry throughout the
sample, with simulated dependence on interdot barrier width
shown in Fig. 6 and on lateral misalignment in Fig. 7. While
the interdot barrier width is expected to be quite uniform
throughout each sample, variances in CQD alignment have
been observed and could significantly reduce the phonon
coupling depending on the lateral confinement within each
QD [34]. Since the value of tunnel coupling and anticrossing
energy is proportional to wave-function overlap between lo-
calized states, we calibrate the value of anticrossing energy
expected in each case using previous measurements on a
series of CQD samples grown similarly with different interdot
barrier widths to obtain the curves in the lower plots [33]. The
simulations predict maximum phonon broadening for interdot
barrier widths near 4 nm, and a decrease in phonon broadening
with lateral QD misalignment.

While the data and simulations presented in this report
focus on the hole tunneling resonance of the neutral exciton

FIG. 7. (a) Simulated upper branch phonon broadening at 20 K
and 4 nm barrier width, as a function of anticrossing energy and
lateral offset between QD centers. Dashed line shows anticrossing
energy values expected from previous experimental observations
[33]. (b) Simulated phonon broadening for expected anticrossing
energies as a function of lateral offset.

state, we expect that the enhancement of phonon coupling
at tunneling resonances is a more general effect which can
apply to different charge states as well. The geometric phonon
coupling form factor is increased by the formation of delo-
calized eigenstates, which occurs at any tunneling resonance
regardless of the configuration of resident charges. The bulk
PE coupling constant [Eq. (9)] is equal for electrons and
holes, so the effect can occur regardless of which charge
carrier is tunneling. The only remaining requirement for
strong phonon coupling enhancement is that the AC splitting
energy lies near the maximum of the phonon spectral density
for PE coupling, a condition which depends on the size and
confinement potential of the QDs. Electron tunneling ACs
typically have a much larger energy splitting due to their
lower effective mass, inhibiting this effect since PE coupling
is strongly weighted towards lower phonon energies [33].
The effect might be observed with electron tunneling by
reducing AC splitting energy through proper band engineering
of the interdot barrier[40] or by working with excited-state
ACs [21,22,27]. Initial observations indicate a similar level of
phonon broadening at hole tunneling resonances in positive
trion and neutral biexciton transitions, though the presence
of additional optically active spin states makes the fitting
procedure more complicated and the results less reliable.
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V. CONCLUSION

To conclude, we have measured the linewidths of direct
exciton, indirect exciton, and tunneling resonance states for
CQDs. We find that pure dephasing, phonon relaxation, and
charge fluctuations in the CQDs can explain the observed
linewidth broadening. The existence of phonon transitions
between the molecularlike excitons in the system causes the
linewidth to broaden beyond the charge fluctuation-induced
broadening of the indirect exciton state. The transition of
linewidths from direct to indirect exciton state is nonmono-
tonic near tunneling resonances and phonon-induced broad-
ening up to 100 μeV is reported at 20 K, corresponding
to phonon-assisted transition rates up to 150 ns−1. These
measurements are in good agreement with theoretical cal-
culations of line-width broadening at tunneling resonances
including phonon-assisted transitions due to PE and DP
coupling.

ACKNOWLEDGMENTS

We acknowledge funding from the Defense Threat Re-
duction Agency (Grant No. HDTRA1-15-1-0011). A.S.B.,
S.G.C., and D.G. acknowledge the support of the Office of
Naval Research.

APPENDIX A: SINGLE-PARTICLE WAVEFUNCTIONS

The slowly varying envelope wave functions ψα
i (�r) are

solutions to the Schrödinger equation[−h̄2

2mα

∇2 + Vα (�r)

]
ψα

i (�r) = Eα
i ψα

i (�r) (A1)

with effective mass mα , confinement potential Vα (�r) and
single-particle confinement energies Eα

i .
Equation (A1) can be simplified by modeling the confine-

ment potential of each QD using the cylindrically symmetric
function

Vα (r, φ, z) = Eα�

(
|z| − h

2

)
+ 1

2
mαω2

αr2 (A2)

to describe finite well confinement in the vertical direction due
to band-edge offsets Eα of the heterostructure and harmonic
oscillator confinement in the lateral direction, where �(x) is
the Heaviside step function, h is the height of the QD, and the
angular frequency ωα of the lateral harmonic oscillator is set
by the experimentally determined spacing h̄ωα between the
ground and first excited states. Equation (A1) is then solved
using separation of variables to give envelope wavefunctions
of single-particle localized ground states as

ψα
1 (�r) = Ae−mαωαr2/2h̄Z1(z), (A3)

where A is a normalization constant defined such that∫ |ψα
i (�r)|2 d3�r = 1 and the z-component of the wavefunction

is expressed as the piecewise function

Zn(z) =
{

cos(knz) if |z| � h/2

cos(knh/2)e−κn (|z|−h/2) if |z| > h/2,
(A4)

with wave number kn determined as the nth solution to the
transcendental equation

tan2

(
knh

2

)
= mα,InAs

mα,GaAs

(
k2

0

k2
n

− 1

)
(A5)

due to the boundary conditions for continuity of the wave
function and its first derivative

κ2
n = k2

0 −
(

mα,GaAs

mα,InAs

)
k2

n , (A6)

and k2
0 = 2mα,InAsEα/h̄2. In a coordinate system with the

origin set at the center between the two QDs and assum-
ing no lateral misalignment such that cylindrical symmetry
is preserved, wave functions for particles localized in each
dot are found from Eqs. (A3) and (A4) as ψα

B/T (r, φ, z) =
ψα

1 (r, φ, z ∓ d/2), with the substitution h → hB/T to account
for the different height of each QD and center-to-center QD
separation d .

We note that Refs. [17,23] use a more detailed geometrical
model of the CQD, treating the confinement potential as a
pair of lens-shaped finite wells. They use an adiabatic sep-
aration of variables technique to solve the one-dimensional
Schrödinger equation with finite double well potential in the
vertical direction at each radial distance and use the resulting
radius-dependent confinement energy as an additional poten-
tial term in the radial Schrödinger equation. Finally, the Ritz
variational method is applied to approximate the eigenstates
as linear combinations of the obtained vertical and radial wave
functions which minimize the total energy. Reference [17]
additionally uses a continuum elasticity model to calculate the
strain distribution and obtain spatially dependent components
of the anisotropic effective mass tensor, both of which are used
as inputs to the eigenstate calculations.

APPENDIX B: SIMULATION METHODS

For numerical simulations, each integral is converted to
a sum over a grid of values with a sufficient number of
grid points to achieve satisfactory convergence. Since the
system is assumed to have cylindrical symmetry, single-
particle localized ground state wave functions are calculated
using Eq. (A3) and represented in cylindrical coordinates
�r = (r, φ, z) as a product of r- and z-dependent components
ψα

B/T (�r) = Rα
0 (r)Zα

1 (z∓d/2). Both r and z values are repre-
sented as 100-point grids, covering 30 nm in the r direction
and 20 nm in the z direction. For simulations varying lateral
offset between QDs (Fig. 7), wave functions are represented in
Cartesian coordinates with a 25-point grid in each dimension
since cylindrical symmetry is broken. Due to the δ function
in Eq. (13) which enforces energy conservation, it is most
convenient to express phonon wave vectors in terms of energy
in spherical coordinates �qs = (E/h̄cs, φ, θ ). Both angular co-
ordinates are represented as 200-point grids covering a full 4π

solid angle, with the azimuthal coordinate φ from 0 to 2π and
the polar coordinate θ from 0 to π .

The directional dependence of the PE coupling is given in
terms of the phonon mode polarization vectors ês,�q as

Ms(q̂) = 2[q̂x(ês,�q )yq̂z + q̂y(ês,�q )zq̂x + q̂z(ês,�q )xq̂y]. (B1)
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TABLE I. Numerical values of physical parameters used in all
simulations, except where otherwise noted. Values are taken from
references where specified.

GaAs InAs

Material Parameters
Electron effective mass (m0) [41] me 0.059 0.042
Hole effective mass (m0) [41] mh 0.37 0.34
Conduction band edge (eV) [41] Ec 1.518 1.057
Valence band edge (eV) [41] Ev 0 0.192
CB deformation potential (eV) [17] ac −9.3
VB deformation potential (eV) [17] av −0.7
Piezoelectric constant (C/m2) [17] dP 0.16 0.045
Relative dielectric constant [17] εr 12.9 15.15
Crystal density (kg/m3) [17] ρ 5300 5670
LA phonon velocity (m/s) [17] cLA 5150
TA phonon velocity (m/s) [17] cTA 2800

Quantum Dot Parameters
Bottom QD height (nm) [27] hB 2.9
Top QD height (nm) [27] hT 2.1
QD center separation (nm) d 6.5
e− excited state spacing (meV) h̄ωe 100
h+ excited state spacing (meV) [27] h̄ωh 21.2
h+ tunnel coupling (μeV) th 330.5
Exciton intensity ratio IX /IiX 17.09
Bias fluctuation width (mV) �Ufluct 3.58

Experiment Parameters
Temperature (K) T 20
Spectrometer resolution (μeV) �spect 37.0

Using the phonon mode polarization vectors

êLA,�q ≡ q̂ = (cos φ sin θ, sin φ sin θ, cos θ ),

êTA1,�q = (− sin φ, cos φ, 0),

êTA2,�q = (cos φ cos θ, sin φ cos θ,− sin θ ),

(B2)

Eq. (B1) for each phonon mode becomes

MLA(q̂) = 3
2 sin(2φ) sin(2θ ) sin θ,

MTA1 (q̂) = cos(2φ) sin(2θ ),

MTA2 (q̂) = sin(2φ) sin θ (3 cos2 θ − 1).

(B3)

Due to the cylindrical symmetry, Ms(q̂) is averaged over the

azimuthal coordinate as M̄s(θ ) = (
∫ 2π

0 Ms(φ, θ )2 dφ/2π )
1/2

to obtain

M̄LA(θ ) =
√

9

8
sin(2θ ) sin θ,

M̄TA1 (θ ) = 1√
2

sin(2θ ),

M̄TA2 (θ ) = 1√
2

sin θ (3 cos2 θ − 1).

(B4)

Evaluation of the geometric form factors Fα
i j (�q) defined in

Eq. (7) involves integration over a three-dimensional grid of
spatial coordinates for each value of the phonon wave vector
on a separate three-dimensional grid, thereby constituting a
major bottleneck in numerical calculations. Reference [17]
uses the cylindrical symmetry of the envelope wave func-

tions to simplify these integrals by separating variables and
evaluating the angular integral in terms of mth-order Bessel
functions of the first kind Jm(a). For the separable ground-
state wave functions defined in Eq. (A3) and phonon wave
vectors defined in cylindrical coordinates as �q = (qr, φ, qz ),
this expression becomes

Fα
i j (�q) = 2π

∫ ∞

0
e−mαωαr2/h̄J0(qrr) rdr

×
∫ ∞

−∞
Zi(z)eiqzzZ j (z) dz. (B5)

The form factor is then expressed in spherical coordinates
using the transformations qr = q sin θ and qz = q cos θ .

Finally, single-particle coupling constants Fα
s,i j (�q), calcu-

lated using the obtained form factors and bulk coupling con-
stants given by Eqs. (8) and (9), are represented for each
particle α = {e, h} and set of QD locations {i, j} = {B, T } as
a function of phonon mode s, phonon energy E , and polar
angle θ . The summation over phonon modes is represented in
spherical coordinates as an integral over wave vectors with a
fixed magnitude:

Jnm(ω) = V

(2π )3

∑
s

ω2

c3
s

∫ π

0

∫ 2π

0

∣∣F X
s,nm(ω/cs, φ, θ )

∣∣2

× sin θ dφdθ, (B6)

where the dispersion relation E = h̄ω = h̄csq is used to relate
wave-vector magnitude to the mode-dependent group velocity
cs, and the mode volume V cancels with the corresponding
factor in the bulk coupling constants gα

s (�q).
Reference [23] uses a single-particle Green’s function

description of linear susceptibility within the electric dipole
and rotating wave approximations to obtain an expression
for the optical absorption spectrum as a sum of Lorentzian
contributions

Iabs(ω) ∝
∑

n

|Mn|2 γ̃n(ω)

(ω − En/h̄)2 + γ̃n(ω)2
, (B7)

where Mn is the optical dipole matrix element of transition
|0〉 → |n〉. These matrix elements are expressed in terms of
electron-hole wave-function overlaps

Mi j =
∫

ψe∗
i (�r)ψh

j (�r) d3�r (B8)

of localized exciton states, giving

M1 = a2
11MBB + a2

12MBT ,

M2 = a2
21MBB + a2

22MBT . (B9)

The optical emission spectrum is also calculated similarly
to the absorption spectrum, with only the pure dephasing
rates modified by changing the sign of detuning terms �ωn

to −�ωn to reflect the reversal of phonon absorption and
emission processes.

At each value of the bias voltage U , the tunneling Hamilto-
nian given by Eq. (3) is diagonalized to obtain the eigenstate
coefficients ai j . These are used to obtain the phonon coupling
constants F X

nm and optical dipole matrix elements Mn in the
eigenstate basis. The phonon spectral density can then be
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calculated using Eq. (B6), allowing calculation of the optical
transition rates and absorption and emission spectra using
Eq. (B7). As a final step, Gaussian convolutions are applied to
the optical transition spectra in the energy and bias directions
to reproduce broadening due to the spectrometer response and
local charge fluctuations, respectively.

APPENDIX C: PARAMETER VALUES

Numerical values of parameters used in simulations are
listed in Table I, except where otherwise noted. These values
include material properties, QD structural and confinement
parameters, and experiment parameters.
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