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Superconducting dome in LaAlO3/SrTiO3 interfaces as a direct consequence of the
extended s-wave symmetry of the gap
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The two-dimensional electron gas (2DEG) at the LaAlO3/SrTiO3 interface exhibits gate-tunable supercon-
ductivity with a domelike shape of TC as a function of electron concentration. Here, we propose that the
experimentally observed behavior can be explained as a direct effect of the dominant extended s-wave symmetry
of the superconducting gap. Our results agree very well with the experimental data. As shown, neither the
correlation effects nor the spin-orbit coupling significantly influence the physical picture of the paired state
stemming from our analysis.
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I. INTRODUCTION

The two-dimensional electron gas (2DEG) at the interface
between LaAlO3 and SrTiO3 (LAO/STO) has attracted grow-
ing interest as a fundamental system to study the interplay
between superconductivity, spin-orbit interaction, and mag-
netism. It has been well established that LAO/STO exhibits
gate-tunable superconductivity with the domelike shape of
TC as a function of gate voltage [1–7]. The origin of such
behavior still remains unclear and is the subject of an ongoing
debate [8–11], which mainly concentrates around the role of
electronic correlations [4,12], multiband effects [13,14], and
spin-orbit interaction [2,15–18].

It is believed that the low-energy electronic structure of
the LAO/STO interface comes from the t2g = {dxy, dxz, dyz}
orbitals of the Ti atoms [15]. According to the correlation
effect scenario, the interorbital Coulomb repulsion leads to
nonmonotonic population of the low-energy xy mobile band,
resulting in the domelike shape of TC as the electron concen-
tration increases [4]. Within such approach, the xy band con-
tributes significantly to the formation of the superconducting
(SC) state and the maximal TC appears close to the Lifshitz
transition (LT) where the change of electron concentration
monotonicity takes place [19]. Other reports suggest that the
suppression of TC above LT is due to a strong pair-breaking
effect resulting from a repulsive interband interaction [13,20].
The negative influence of LT on the pairing in LAO/STO has
been investigated experimentally in Refs. [3,20]. On the other
hand, according to standard BCS theory, an enhancement of
TC should appear after new states are available for the Cooper
pair formation above the LT [21,22]. This discrepancy has not
been completely resolved so far. Additionally, in contradiction
to the mentioned proposals [4,13,20], some of the experimen-
tal analysis shows that the upper xz/yz bands play the major
role in the formation of the paired state and LT does not
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correspond to maximal TC. Instead, the superconductivity sets
in close to the point where the multiband behavior appears (at
the LT) [5,11].

Finally, one should note that, using magnetotransport mea-
surements, it has been established that the spin-orbit coupling
(SOC) energy follows the nonmonotonic dependence of TC

[2,18,23], which may indicate that SOC constitutes a signif-
icant factor which tunes the pairing strength, leading to the
domelike behavior of TC. However, for some of the interface
orientations, such effect has not been reported [20]. Also, the
interplay between superconductivity and SOC has not been
recognized in detail so far. Therefore, it is not clear if the spin-
orbit energy is in fact the primary cause of the characteristic
shape of the phase diagram or a secondary effect.

In spite of several mentioned proposals aimed at explain-
ing the SC dome in LAO/STO, the satisfactory theoretical
reconstruction of TC as a function of gate voltage has not been
reached so far.

Here, we show that the appearance of the superconducting
dome as a function of gate voltage in the LAO/STO interfaces
can be explained as a sole result of the extended s-wave
superconducting gap symmetry appearing in the range of
relatively low electron concentrations. Our approach leads to
very good agreement with the available experimental data of
the gate voltage dependance of TC. To analyze the influence
of electronic correlations, we carry out calculations with the
inclusion of the Coulomb repulsion terms by using both
the Hartree-Fock method (HF) and statistically consistent
Gutzwiller approximation (SGA) [24,25]. We also provide
the results obtained in the presence of Rashba and atomic
components of the SOC. As shown, neither the correlation
effects nor the SOC influence significantly the physical picture
of the paired state stemming from our analysis.

II. MODEL AND METHOD

We consider the 2DEG at the LAO/STO interface with
(001) orientation. The Hamiltonian of the system is taken as

Ĥ = ĤTBA + ĤU + ĤSC, (1)
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FIG. 1. (a) Band structure and the density of states of the three-
orbital model representing the 2DEG at the LAO/STO interface. The
xy band (red solid line) is 47 meV lower in energy at the � point than
the two hybridized xz/yz bands (black and blue solid lines). (b) The
Fermi surfaces of the system for μ = 20 meV.

where the subsequent terms correspond to the single-particle
part, Coulomb repulsion, and the real-space pairing, respec-
tively. For clarity, in this section we show the HF-BCS treat-
ment of the considered model without the inclusion of the
SOC. The form of ĤTBA with the inclusion of SOC is deferred
to in Appendix A, while the SGA approach as applied to the
considered model is provided in Appendix B.

The single-particle part of Hamiltonian Eq. (1) is expressed
within the three-orbital tight-binding approximation [4,15],

ĤTBA =
∑
klσ

(εl
k − μ)ĉ†

klσ ĉklσ +
′′∑

kll ′σ

εhkĉ†
klσ ĉkl ′σ , (2)

where μ is the chemical potential, ĉ†
klσ (ĉklσ ) are the creation

(annihilation) operators of electrons with momentum k, spin
σ , and orbital index l = xy, xz, yz corresponding to dxy, dxz,
dyz orbitals of the Ti atoms placed on a square lattice. The
double primed summation in the second term is restricted to
the two upper xz and yz bands only, with l �= l ′. The bare
(unhybridized) dispersion relations have the form

ε
xy
k = 4tl − �E − 2tl cos kx − 2tl cos ky,

εxz
k = 2tl + 2th − 2tl cos kx − 2th cos ky,

ε
yz
k = 2tl + 2th − 2th cos kx − 2tl cos ky,

(3)

and the mixing between the xz and yz bands is the following:

εhk = 2td sin kx sin ky, (4)

where the tight-binding parameters have been taken from
Ref. [4] and are tl = 875 meV, th = 40 meV, td = 40 meV,
�E = 47 meV. The resulting band structure of the model is
presented in Fig. 1, and consists of the xy band, which is lower
in energy by �E at the � point than the two hybridized xz/yz
bands. It is worth noting that the density of states in the bottom
xy band is significantly smaller than in the two upper xz/yz
bands (cf. Fig. 1).

The second term of our model Hamiltonian Eq. (1) has the
form

ĤU = U
∑

il

n̂il↑n̂il↓ + V
′∑

ill ′
n̂il n̂il ′ , (5)

where U and V are the intra- and interorbital Coulomb repul-
sion integrals and the primed summation is restricted to l �= l ′.

For simplicity, we take U = V ≡ 2 eV, which corresponds to
the value calculated in Ref. [26].

In our approach, the superconducting state is introduced
by a real-space intersite intraorbital pairing as well as the
interorbital pair-hopping terms,

ĤSC = −J
∑
i jl

ĉ†
il↑ĉ†

jl↓ĉil↓ĉ jl↑ − J ′
′∑

i jll ′
ĉ†

il↑ĉ†
jl↓ĉil ′↓ĉ jl ′↑, (6)

for which the interorbital pair hopping energy, J ′, is one
order of magnitude smaller than the intraorbital coupling
constant, J .

After the application of the standard HF-BCS treatment
of the pairing part and the Coulomb interaction terms, we
express the model Hamiltonian in the following form in
reciprocal space:

Ĥ =
∑

k

f̂†
kĤkf̂k +

∑
kl

ξ l
k − N

∑
l

(
U

n2
l

4
+ V

∑
l ′(l ′ �=l )

nlnl ′

)

+ 16
J2 − (J ′)2

(J − J ′)2(J + 2J ′)
N

∑
l

(
(�s

l )2 + (
�d

l

)2)

+ 16
(J ′)2 − J ′J

(J − J ′)2(J + 2J ′)
N

∑
ll ′(l �=l ′ )

(
�s

l �
s
l ′ + �d

l �
d
l ′
)
,

(7)

where N is the number of atomic sites, nl = 〈n̂il↑〉 + 〈n̂il↓〉,
while �s

l and �d
l are the extended s- and d-wave pairing

amplitudes:

�s
l = 1

4

∑
j(i)

γ s
i j�i jl , �d

l = 1

4

∑
j(i)

γ d
i j�i jl . (8)

The summations above run over the four nearest-neighbor
atomic sites of Ri. These sums do not depend on the position
of Ri since the system is homogeneous. The extended s-wave
and d-wave real-space symmetry factors are γ s

i, j ≡ 1 and
γ d

i, j = 1 (γ d
i, j = −1) for R j = Ri ± x̂ (R j = Ri ± ŷ), while

the �i jl parameters correspond to the combination of the
anomalous superconducting expectation values:

�i jl = −J〈ĉ†
il↑ĉ†

jl↓〉 − J ′ ∑
l ′(l ′ �=l )

〈ĉ†
il ′↑ĉ†

jl ′↓〉. (9)

As one can see, due to the pair-hopping terms, there is a
small contribution to the pairing amplitude between particular
orbitals which comes from the remaining orbitals of the model
(the second term above). Such mechanism connects all the SC
amplitudes and guarantees the appearance of a single critical
temperature. In Eq. (7), we introduced the six-component
composite operator,

f̂†
k ≡ (ĉ†

k,xy↑, ĉ−k,xy↓, ĉ†
k,xz↑, ĉ−k,xz↓, ĉ†

k,yz↑, ĉ−k,yz↓) , (10)
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while the form of the 6 × 6 matrix Hamiltonian is

Ĥk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ
xy
k �

xy
k 0 0 0 0

�
xy
k −ξ

xy
k 0 0 0 0

0 0 ξ xz
k �xz

k εhk 0

0 0 �xz
k −ξ xz

k 0 −εhk

0 0 εhk 0 ξ
yz
k �

yz
k

0 0 0 −εhk �
yz
k −ξ

yz
k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (11)

The diagonal elements in Eq. (11) contain the chemical po-
tential and the effective shift of the atomic energy which
originates from the HF approximation of the Coulomb
interaction terms:

ξ l
k = εl

k + U
nl

2
+ V

∑
l ′(l ′ �=l )

nl ′ − μ. (12)

The k-dependent SC gaps appearing in the Hamiltonian ma-
trix Eq. (11) can be written in the form

�l
k = 4�s

l γ
s
k + 4�d

l γ
d
k , (13)

where the extended s- and d-wave symmetry factors in the
reciprocal space are given below

γ s
k = (cos kx + cos ky)/2, γ d

k = (cos kx − cos ky)/2. (14)

The appearance of both extended s- and d-wave components
in the SC gaps for the xz and yz bare (unhybridized) bands
is the consequence of the C4 symmetry breaking in both
dxz and dyz orbitals. In the xy band which is C4 symmetric,
only one of the mentioned components can appear and the
remaining one needs to be zero. According to our calculations,
only the pure extended s-wave pairing appears in that band
for the parameter range significant for the analyzed system.
Therefore, we obtain

�
xy
k = 4�s

xyγ
s
k . (15)

By carrying out the diagonalization procedure of the xz/yz
mixing part of our Hamiltonian, one can show that in the
resulting hybridized xz/yz bands, the C4 symmetry is restored
both in the dispersion relations,

ε
xz/yz
k = 1

2

((
εxz

k + ε
yz
k

) ∓
√(

εxz
k − ε

yz
k

)2 + 4ε2
hk

)
, (16)

and in the corresponding k-dependent SC gaps,

�
xz/yz
k = 4�s

xz/yzγ
s
k ± 4�d

xz/yzαkγ
d
k , (17)

where �s
xz/yz ≡ �s

xz = �s
yz, �d

xz/yz ≡ �d
xz = −�d

yz, while the
αk factor results directly from the hybridization between the
dxz and dyz bands:

αk = εxz
k − ε

yz
k√(

εxz
k − ε

yz
k

)2 + 4ε2
hk

. (18)

One can check that by carrying out π/2 rotations in reciprocal
space for Eqs. (16) and (17), the same formulas are obtained,
meaning that the C4 symmetry is conserved in spite of the fact
that both extended s- and d-wave pairing amplitudes appear.

As shown above, the Coulomb interaction terms appearing
in Eq. (5) are treated with the use of the HF approximation,
leading to an effective shift of atomic energy, dependant on
the filling of particular bands [cf. Eq. (12)]. Due to the fact

that such a mean-field procedure neglects most of the electron
correlations effects, we also apply the SGA [25,27,28] for
comparison. Within the SGA approach, apart from the stan-
dard mean-field atomic energy shifts, the correlation induced
renormalization of both electron hopping and pairing is taken
into account (cf. Appendix B).

III. RESULTS

We start from the model with no Coulomb repulsion terms
included (U = V = 0) and analyze the superconducting prop-
erties of the 2DEG at the LAO/STO interface as a function
of the chemical potential, μ, or equivalently the filling factor,
ntot = ∑

ilσ nilσ /N (N number of atomic sites). Note that, by
increasing the gate voltage in experiments, one adds electrons
to the system, which leads to an increase of both μ and ntot .
The effect of Coulomb repulsion is analyzed later on both
by the use of HF and SGA approximations. In the end, we
also show the influence of the SOC terms on our results. In
all the calculations, the value of coupling constant has been
set to J = 0.165 eV so as to reproduce the maximal critical
temperature TC ≈ 0.35 K which is measured in experiments.

Results for T = 0 K presented in Fig. 2(a) show that the
extended s-wave pairing amplitude in the two hybridized
bands (�s

xz/yz) constitutes the dominant contribution to the
superconducting phase and it reproduces the domelike shape
of the critical temperature as a function of gate voltage, which
is reported in experiments [3,29] [cf. Fig. 2(b)]. The gap
amplitude in the low-energy band (�s

xy) follows the trend of
the amplitudes in the two upper bands (�s

xz/yz). This results
from the fact that in the former, the density of states is too
low for the pairing to appear naturally at the given value of
J (cf. Fig. 1). Therefore, the gap in the xy band is induced
by the pair-hopping processes from the two upper bands with
significantly higher DOS. Note that the remaining �d

xz/yz gap
amplitude has a negligible influence on the SC properties of
the system being one order of magnitude smaller than �s

xz/yz.
In Figs. 2(c) and 2(d), we present the results for T > 0 K,

which show that indeed the domelike shape of TC as a function
of the filling factor (and chemical potential) is reproduced
in our model and matches very well the experimental data
provided for comparison in Fig. 2(b). Here, we do not show
the gap amplitude in the lower band, �s

xy, as it has virtually
the same behavior as �s

xz/yz. However, the former is scaled
down to approximately three times lower values than the latter
[cf. Fig. 2(a)]. One should note that the fall of both �s

xz/yz
and TC above the optimal μ, for which maximal values are
obtained, is not determined by the structure of density of states
since the latter does not show any peak in the corresponding
energy range between 0 and 60 meV (cf. Fig. 1).

The explanation for the obtained domelike shape of TC

within our approach is the following. As shown in Figs. 2(a),
2(c) and 2(d), the extended s-wave pairing amplitude dictates
the changes of TC as the number of electrons increases. For
such situation, one can distinguish between two regions. The
first one corresponds to very low electron concentrations when
the Fermi surface is contained in the close proximity of the �

point in the center of the Brillouin zone [cf. Fig. 2(e)]. In this
regime, the extended s-wave symmetry factor γ s

k ≈ 1 at the
Fermi surface does not tune the value of the gap significantly.

085420-3



M. ZEGRODNIK AND P. WÓJCIK PHYSICAL REVIEW B 102, 085420 (2020)

FIG. 2. (a) The extended s- and d-wave pairing amplitudes of the xy band and the two xz/yz hybridized bands [cf. Eqs. (15) and (17)]
for T = 0 K as a function of band filling (bottom axis) and chemical potential (top axis). (b) The experimental phase diagram showing how
TC changes as a function of gate voltage (taken from Ref. [3]). (c), (d) The theoretical phase diagrams showing the reconstruction of the
domelike shape of TC as a function of electron concentration; (e) Fermi surfaces of the hybridized band corresponding to two exemplary values
of the chemical potential, μ1 and μ2, marked in (a). The black solid lines in the plot represent the isolines of the extended s-wave symmetry
factor corresponding to γk = 0.9, 0.6, 0.3, 0.0 [cf. Eqs. (14)]. (f) Band-filling components corresponding to the xy band (nxy) and the two
hybridized xz/yz bands (nxz/yz = nxz + nyz).

As one can see in Fig. 2(e) for μ below the optimal value, the
Fermi surface (blue line) is placed inside the closed isoline
representing γ s

k = 0.9. In this regime, a standard behavior of
rising TC with the chemical potential appears, similarly as in
the conventional case of constant SC gap (�k ≡ �) within
the real-space pairing scenario. However, as μ increases, the
Fermi surface expands and moves closer to the nodal lines of
the extended s-wave symmetry factor, where the gap closes
[cf. Fig. 2(e)]. As one can see for μ above the optimal value,
the Fermi surface (red line) reaches the isolines corresponding
to γ s

k = 0.6. At this point, the suppression of the gap at the
Fermi surface resulting from the extended s-wave symmetry
becomes significant. In this regime, superconductivity is grad-
ually weakened as one adds electrons to the system. Between
the two regions, the optimal chemical potential is placed, for
which the maximal TC appears.

In Fig. 2(f), we show how the electrons injected into
the system are distributed between the xy band (red line)
and the two hybridized xz/yz bands (black line). The LT
corresponds to μ = 0, for which the two hybridized bands
begin to be populated and superconductivity sets in [cf.
Fig. 2(a)]. This result is in agreement with the experimental
data presented in Ref. [5], where the transition from the
single to multiband behavior takes place in close proximity
to the transition between the normal and superconducting

state. However, in this respect the experimental situation is
not completely clear, since in Ref. [3] the authors claim that
the maximum TC corresponds to the LT, which would be
in contradiction both to the data presented in Ref. [5] and
with our results. It should be noted that in Fig. 2(f) both nxy

and nxz/yz are monotonically increasing functions of the total
electron concentration. As we show below, the nonmonotonic
behavior of nxy, which is seen in experiments [19], can be
reproduced only after the inclusion of the Coulomb repulsion
terms.

In Fig. 3(a), we show the extended s-wave pairing ampli-
tude �s

xz/yz as a function of the filling factor for the case of
nonzero Coulomb interaction integrals U and V . As one can
see, both HF and SGA methods lead to very similar results,
which additionally are very close to those obtained earlier for
the case of no Coulomb interactions (U = V = 0). Therefore,
one can conclude that the interactions do not influence sig-
nificantly the considered here paired state in the parameter
regime significant for the LAO/STO interfaces. However, the
interorbital Coulomb term makes the carrier density in the
low-energy xy band a nonmonotonic function of band filling in
agreement with the experimental data presented in Ref. [19]
(Fig. 3 in that paper). The influence of that mechanism on
superconductivity, which was proposed in Ref. [4], does not
play a role here because the pairing in our model originates
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FIG. 3. The SC gap amplitude in the hybridized bands as a
function of the filling factor for U = V = 0 eV and for U = V =
2 eV within the HF and SGA approaches. (b) The charge distribution
between the bottom and the two hybridized bands of the model as
we increase the filling factor for the same model parameters and
calculation methods as in (a).

mainly from the two upper xz/yz bands and not from the
bottom xy band.

One should also note that for a relatively small number of
electrons in the system, the number of multiple occupancies
on a single atomic site leading to interactions is very low.
The regime analyzed here corresponds to � 0.1 electron per
lattice site and is far from ntot ≈ 1, 2, 3, ... for which the
electron-electron correlations are enhanced. In such case, the
correlation effects taken into account within the SGA method
are suppressed, making the HF and SGA results very close.

For the sake of completeness, in Fig. 4 we also show the
data obtained with the inclusion of both Rashba and atomic

FIG. 4. The SC gap amplitude in the hybridized bands as a func-
tion of the chemical potential. The results have been obtained with
the inclusion of the atomic (�SO = 30 meV) and Rashba (�RSO =
30 meV) SOC terms. Dashed lines correspond to calculations with
the atomic SOC component only.

SOC terms (cf. Appendix A) with the energies set to �RSO =
30 meV and �SO = 30 meV, respectively. As one can see, the
SC gap amplitudes are slightly suppressed by SOC, as well as
a small anomaly appears for very low electron concentrations.
The latter is caused by the mixing between the bottom xy band
and the two upper xz/yz bands, introduced by the SOC, which
changes the density of states in that electron concentration
region (cf. Fig. 3 from Ref. [3]). Nevertheless, the domelike
behavior shown in Fig. 2(a) remains almost unchanged.

IV. CONCLUSION

As we have shown, the appearance of the superconducting
dome in the LAO/STO interfaces can be explained as a
sole result of the extended s-wave symmetry of the gap,
which appears in the intersite real-space pairing scenario. The
mechanism leading to the SC dome reconstruction is based
on a simple fact that the k-dependence of the gap results in a
significant suppression of the pairing but only when the Fermi
surface is placed relatively far from the � point in the Brillouin
zone. Our theoretical results are in very good agreement with
the available experimental data. To the best of our knowledge,
such a high degree of reconstruction of the TC dome has not
been obtained so far within any other theoretical proposal. It
should be noted that, in our approach, neither the SOC nor the
electron correlation effects are responsible for the SC dome
appearance. Furthermore, the calculations carried out with the
inclusion of the Coulomb repulsion (by using HF and SGA
methods) as well as SOC (Rashba and atomic) terms show
that the two factors do not influence significantly the obtained
phase diagram of the LAO/STO interface.

An important question concerns the origin of the con-
sidered here pairing mechanism described by Eq. (6). In
this respect, an interesting theoretical proposal which can be
related with the scenario analyzed by us has been provided
very recently in Ref. [30]. According to this concept, electron
pairing can be mediated by the ferroelastic domain walls
which are ubiquitous at the LAO/STO interface. Orientation
of these domains is known to couple to the electron den-
sity, leading to the alternatively occurring electron-rich and
electron-poor regions. As shown, the ferroelastic domains
support low-energy excitation at the LAO/STO interface,
resulting in superconductivity around the edges of electron-
rich regions. Such mechanism leads to a real-space intersite
pairing mechanism which can stabilize an extended s-wave
superconducting state similar as in our case.

An even more promising mechanism, which may be com-
patible with the paired state considered here is based on
the fluctuations of momentum-based multipoles as analyzed
in Ref. [31]. Within such a concept, the interaction vertex
under the crystal symmetry corresponding to STO reveals
the extended s-wave symmetry of the electron pairing in
accordance with our assumption.

It should be noted that for particular pairing mechanisms
that are discussed for the LAO/STO interfaces, the strength
of the Cooper pair coupling could depend on the carrier
concentration which would modify the resulting structure of
the phase diagram. However, a detailed analysis of such a
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situation is beyond the scope of this paper. Also, further
experimental exploration needs to be carried out to probe the
pairing symmetry and determine the origin of the electron
pairing mechanism.
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APPENDIX A: SINGLE-PARTICLE HAMILTONIAN WITH
THE INCLUSION OF THE SPIN-ORBIT INTERACTION

The calculations of the superconducting gaps with the
inclusion of SOC follow the same HF mean field procedure
as described in Sec. II. The only difference is the kinetic term
in Eq. (1), which additionally includes the SOC terms. For
the theoretical description, we use a three-band model of the
t2g conduction electrons with Hamiltonian (expressed in the
reciprocal space) given by

ĤTBA =
∑

kll ′σσ ′
ĉ†

k,l,σ

(
Ĥ0 + ĤSO + ĤRSO

)
ĉk,l ′,σ ′ , (A1)

where ĉ†
k,l,σ (ĉk,l,σ ) creates (annihilates) electrons of spin σ

and momentum k in orbitals l = xy, xz, yz and H0 is the tree-
band Hamiltonian,

Ĥ0 =
⎛
⎝ξ

xy
k 0 0
0 ξ xz

k εhk

0 εhk ξ
yz
k

⎞
⎠ ⊗ σ̂0 , (A2)

where the diagonal elements are defined in Eq. (12) while
σ̂x,y,z and σ̂0 denote the Pauli matrices and the identity matrix
acting on the electron spin.

The Rashba spin-orbit HRSO results from the intrinsic elec-
tric field at the interface which breaks the inversion symmetry.
The Hamiltonian ĤRSO is given by [15]

ĤRSO = �RSO

⎛
⎝ 0 i sin ky i sin kx

−i sin ky 0 0
−i sin kx 0 0

⎞
⎠ ⊗ σ̂0, (A3)

where �RSO is the energy of the Rashba SOC.
Another source of SOC results from the atomic positions.

The SOC related with this kind asymmetry (atomiclike SOC)
is described by the Hamiltonian [15],

ĤSO = �SO

3

⎛
⎝ 0 iσ̂x −iσ̂y

−iσ̂x 0 iσ̂z

iσ̂y −iσ̂z 0

⎞
⎠, (A4)

where �SO determines the atomiclike spin-orbit energy.

APPENDIX B: STATISTICALLY CONSISTANT
GUTZWILLER APPROACH TO THE THREE-BAND

MODEL OF THE LAO/STO INTERFACE

Since the HF approximation neglects most of the corre-
lation effects resulting from a significant magnitude of the
Coulomb repulsion, we additionally carry out calculations
with the use of SGA [25,27,28] dedicated to the strongly
correlated electron system. We start from the Gutzwiller-type
projected many-particle wave function of the form

|
G〉 ≡ P̂|
0〉 =
∏

il

P̂il |
0〉 , (B1)

where |
0〉 represents the wave function of uncorrelated state
with nonzero anomalous superconducting expectation values
and the projection operator P̂il has the form

P̂il ≡
∑

�

λ�|il |�〉il il〈�| , (B2)

where λ�|il are the variational parameters determining relative
weights corresponding to |�〉il , representing the states from
the local basis,

|�〉il ∈ {|∅〉il , | ↑〉il , | ↓〉il , | ↑↓〉il} , (B3)

which correspond to empty, singly, and doubly occupied
states on the atomic sites with the three types of orbitals
(l ∈ {dxy, dxz, dyz}). By minimizing the energy of the system
over the variational parameters, one reduces the number of
configurations which correspond to increased interaction en-
ergies, thus, taking into account the many-body correlation
effects.

Equation (B2) represents the general form of the correla-
tion operator. Particularly useful is the form with the following
constraint imposed [32,33]:

P̂2
il ≡ 1 + xil d̂

HF
il , (B4)

where d̂HF
il = n̂HF

il↑n̂HF
il↓, n̂HF

ilσ = n̂ilσ − 〈n̂ilσ 〉0. In such approach,
one can express all λ�|il parameters from Eq. (B2) by
using xil ,

λ2
dl = 1 + xl (1 − 〈n̂ilσ 〉0)2,

λ2
sl = 1 − xl〈n̂ilσ 〉0(1 − 〈n̂ilσ 〉0),

λ2
∅l = 1 + xl〈n̂ilσ 〉2

0,

(B5)

where 〈...〉 denotes the expectation value in the noncorre-
lated state |
0〉 and we assume that we are considering a
homogeneous situation with no magnetic ordering λσ |il ≡ λsl ,
λ↑↓|il ≡ λdl , λ∅|il ≡ λ∅l , and xil ≡ xl . In fact, it is convenient
to treat xl as the variational parameters instead of λ�|il . An
approach based on the constraint Eq. (B4) allows us to signifi-
cantly improve the Gutzwiller approximation and obtain the
full Gutzwiller wave-function solution in the higher orders
of the so-called diagrammatic expansion of the Gutzwiller
wave function (DE-GWF) [34,35]. However, for the purposes
of this analysis, the the zeroth-order expansion, expressed
in Eq. (B8), is sufficient enough and is equivalent to the
Gutzwiller approximation. The latter allows us to cast 〈H〉G =
〈
G|Ĥ |
G〉/〈
G|
G〉 in a relatively compact form. Below
we show the expressions for the expectation values in the
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correlated state from all three terms contributing to the system
energy [cf. Eq. (1)],

〈ĤTBA〉G =
∑
〈i jll ′〉

qlql ′t
ll ′
i j 〈ĉ†

ilσ ĉ jl ′σ 〉0

+ t0
∑

il

(
λ2

sl〈n̂ilσ 〉0 + (
λ2

dl − λ2
sl

)〈n̂ilσ 〉2
0

)
,

(B6)

〈ĤU 〉G =U
∑

il

λ2
dl〈n̂ilσ 〉2

0 + V
′∑

ill ′σσ ′

(
4〈n̂ilσ 〉0〈n̂il ′σ ′ 〉0

+ 2(2 − λ2
sl )

(
2 − λ2

sl ′
)〈ĉ†

ilσ ĉil ′σ 〉0
)
,

(B7)

〈ĤSC〉G = − J
∑
i jl

λ4
sl〈ĉ†

il↑ĉ†
jl↓ĉil↓ĉ jl↑〉0

− J ′
′∑

i jll ′
λ2

slλ
2
sl ′ 〈ĉ†

il↑ĉ†
jl↓ĉil ′↓ĉ jl ′↑〉0,

(B8)

where

ql ≡ λsl (λdl〈n̂ilσ 〉0 + λ∅l (1 − 〈n̂ilσ 〉0)). (B9)

As one can see, the expectation value of system energy in
the correlated state is expressed in terms of the expectation
values in the noncorrelated state but premultiplied by proper
renormalization factors, which are dependant on the varia-
tional parameters and average number of particles in particular
local states.

It has been shown that to ensure the statistical consistency
condition during the energy minimization procedure, one
needs to supply the expression for 〈Ĥ〉G with the Lagrange-
multiplier terms leading to the auxiliary energy operator of
the form [25]

K̂ = 〈Ĥ〉G +
∑
〈i jll ′〉

t̃ l l ′
i j (ĉ†

ilσ ĉ jl ′σ − 〈ĉ†
ilσ ĉ jl ′σ 〉0)

+
∑
〈i jl〉

[�̃i jl (ĉ
†
il↑ĉ†

jl↓ − 〈ĉ†
il↑ĉ†

jl↓〉0) + H.c.],
(B10)

where t̃ l l ′
i j , �̃i jl are the Lagrange multipliers. Summation in

the first term of the above is carried out over the same sites as
the corresponding summation in the electron-hopping term of
ĤTBA. The second summation is carried out over the nearest
neighbors since only such pairing amplitudes are taken into
account here.

The final step of the procedure is the minimization of the
free-energy potential corresponding to the auxiliary energy
operator K̂ over the mean-field hopping and pairing expec-
tation values 〈ĉ†

ilσ ĉ jl ′σ 〉0, 〈ĉ†
il↑ĉ†

jl↓〉0, the respective Lagrange

multipliers t̃ l l ′
i j , �̃ll ′

i j , as well as the variational parameters
xl . Such procedure constitutes the so-called SGA. For mode
details of the method itself, see Refs. [25,27,28].
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