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Quantum Hall studies of a semi-Dirac nanoribbon
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Here we comprehensively investigate Landau levels, Hofstadter’s butterfly, and transport properties of a semi-
Dirac nanoribbon in a perpendicular magnetic field using a recently developed real-space implementation of the
Kubo formula based on the kernel polynomial method. A Dirac ribbon is considered to compare and contrast our
results for a semi-Dirac system. We find that with the Landau levels being nonequidistant from each other for
the semi-Dirac case (which is true for a Dirac case as well), the flatness of the energy bands vanishes in the bulk
and becomes dispersive for a semi-Dirac ribbon in contrast to a Dirac system. This feature is most discernible
for intermediate values of the external field. We further compute the longitudinal (o, and oy,) and the transverse
or Hall (o) conductivities, where the Hall conductivity shows a familiar quantization, namely, oy, o 2n (the
factor of 2 includes the spin degeneracy), which is highly distinct from a Dirac system, such as graphene. We also
observe anisotropic behavior in magnetotransport in a semi-Dirac ribbon owing to the dispersion anomalies in
two different longitudinal directions. Our studies may have important ramifications for monolayer phosphorene.
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I. INTRODUCTION

In the past few decades, graphene has attracted much
attention due to its peculiar dispersion relation at low energies,
similar to the spectrum of relativistic particles described by
the Dirac theory [1,2]. More precisely, the spectrum has
two cones, the so-called Dirac cones in the vicinity of two
nonequivalent points, K; and K, in the reciprocal space.
Anisotropy in graphene was another interesting aspect which
was discussed long ago by Pauling [3] and could be in-
duced by uniaxial stress or bending of a graphene sheet.
The main motive is to tune the hopping energy between
neighboring carbon atoms with precision, which was later
found to be feasible in optical lattices [4] via controlling
the lattice potential in order to get a handle on the effec-
tive mass in a honeycomb lattice. In a tight-binding model
for graphene, if one of the three nearest-neighbor hopping
energies is tuned, the two Dirac points with opposite chiral-
ities approach each other and merge into one, forming the
so-called semi-Dirac point. The band dispersion simultane-
ously exhibits massless Dirac (linear) and massive fermionic
(quadratic) features along two different directions, thereby
producing a highly anisotropic electronic dispersion [5,6].
The materials that host such anisotropic dispersion are phos-
phorene under pressure and doping [7,8], electric fields [9,10],
TiO,/VO, superlattices [6,11,12], graphene under deforma-
tion [13], and quasi-two-dimensional organic conductor o-
(BEDT-TTF),I5 salt under pressure [14,15]. Experimentally,
semi-Dirac dispersion has been observed in a few-layer black
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phosphorene by means of the in sifu deposition of potassium
atoms [16]. A straightforward approach to realize semi-Dirac
materials can be achieved by breaking the hexagonal sym-
metry of the honeycomb lattice, e.g., by strain. However,
directly applying strain to realize the transition in materials,
such as graphene or silicene, is prohibited by the exorbi-
tant magnitude of the strain required, which would eventu-
ally disintegrate them [17,18]. Some successfully synthesized
graphenelike honeycomb materials, such as silicene [19,20],
germanene [21], and stanene [22], have been found to be eas-
ily oxidized, or they chemically absorb other atoms because
of their buckling geometries [23-26]. It is these absorbed
atoms that will modify the hopping energies in the honeycomb
lattice which is essentially applying a strain that creates a
differential hopping. On the other hand, behaviors of electrons
in graphene exposed to a strong perpendicular magnetic field
played an important role not only in the discovery of the room-
temperature half-integer quantum Hall effect [27-30] but also
in proving the existence of massless Dirac particles [31].
The unconventional Hall conductivity was found to be quan-
tized as o,y =2(2n + 1)62//’1 [29,31], where both the spin
and valley degeneracies are taken into account. Experimental
measurements confirm that the Landau levels of a monolayer
graphene obey the relation E, = sgn(n)+/2hvre|n|B, where
vr = 105m/s is the Fermi velocity, B is the magnetic field,
and n denotes Landau level indices [32,33].

Recently, quite a few studies on Landau levels and trans-
port properties in the presence of a magnetic field in phospho-
rene have been reported [34,35]. More precisely, they have
found that the anisotropic band structure that leads to Hall
quantization in the presence of a perpendicular magnetic field
is similar to that of a conventional two-dimensional electron
gas (2DEG). Since phosphorene may be considered a realistic
material that possesses semi-Dirac properties, it is necessary

©2020 American Physical Society
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FIG. 1. A schematic diagram of the hexagonal lattice geometry
of a semi-Dirac system with different hopping parameters ¢ and #, is
shown. Black corresponds to hopping ¢, whereas green corresponds
to f,. Two sublattices are denoted by two different colors (blue and
magenta). 81,8, and 85 are the nearest-neighbor real-space vectors.

to pursue quantum Hall studies on semi-Dirac systems. As
discussed above, the energy dispersion of phosphorene is
similar to that of semi-Dirac systems, and it is likely that other
properties also show similar characteristics.

In this work, we explore the influence of magnetic field on
a semi-Dirac system using a tight-binding Hamiltonian on a
honeycomb lattice. We study the Landau level spectrum and
Hofstadter’s butterfly using a nanoribbon in order to show
that the semi-Dirac system has properties quite distinct from
Dirac fermions. We also calculate the density of states (DOS)
via the tight-binding propagation method [36,37], which is a

J

sophisticated numerical tool used in large-scale calculations
for any realistic system. We have implemented the recently
developed real-space order-N quantum transport approach
to calculate the Kubo conductivities as a function of the
Fermi energy for moderate as well as very high values of the
magnetic field [38]. The Hall conductivity in a semi-Dirac
system shows the standard quantization, namely, oy, « 2n,
compared to the previously observed anomalous quantization,
that is, o,, o 4(n + 1/2) for a Dirac system. The longitudinal
conductivities show highly anisotropic behavior in one direc-
tion compared to the other, which is obviously absent in Dirac
systems.

This paper is organized as follows. The low-energy tight-
binding Hamiltonian is described in Sec. II. We further study
the Landau level spectra and the Hofstadter’s butterfly for a
nanoribbon in the presence of a magnetic field in Sec. III. The
transport properties are investigated by computing the Hall
and longitudinal conductivities in Sec. IV. We conclude with
a brief summary in Sec. V.

II. MODEL HAMILTONIAN

We study the tight-binding model on a honeycomb lattice
with anisotropic hopping that leads to semi-Dirac electronic
spectra at low energy. More precisely, the hopping energy to
one of the neighbors (1,) is different from the other two (), as
shown in Fig. 1. It is also instructive to look at the full disper-
sion with the following three nearest-neighbor vectors in real

where a is the lattice constant.
The dispersion relation for a semi-Dirac system can be
written as

E(k) = :l:\/2t2 + 1} + 212 cos V3kea + 4t cos(3kya/2) cos(x/gkxa/Z). (D

The above expression is plotted in Fig. 2(a). The Brillouin
zone with high-symmetry points for 7, =¢ is shown in
Fig. 2(b). For the Dirac case (that is, #, = t), the dispersion
shows that the Dirac points touch at the K; and K, points at the
Brillouin zone corners, as shown in Fig. 2(c). With increasing
the strength of the parameter f,, the two Dirac points originally

located at K; (%—Z, %) and K, (—%—Z, %) move closer until

they merge at the M point, resulting in a semi-Dirac spectrum
[see Fig. 2(d)]. As mentioned earlier, such manipulation of the
Dirac points and their eventual merger have been achieved in
honeycomb optical lattices [4]2. Thus, by fixing #, = 2¢ and

focusing on the M point (0, E)’ the low-energy effective

Hamiltonian based on the tight-binding model for a semi-
Dirac system, apart from a constant term, can be written
as [39-41]

2
D0«
Y + Uf PyOy, (2)
where p, and p, are the momenta along the x and the y
directions, respectively. o, and o, are the Pauli spin matrices

in the pseudospin space. The velocity along the py direction

Hy =

(

vr and the effective mass m* corresponding to the parabolic
dispersion along p, are expressed as vp = 3ta/h and m* =
2n/ 3ta®. Henceforth, we set a = 1. The dispersion relation
corresponding to Eq. (2) ignoring a constant shift in energy
can be written as

2712 2
E= :i:\/ (hurk, 2 + (ﬁ> , 3

2m*

where the plus sign denotes the conduction band and the
minus sign stands for the valence band. Equation (3) shows
that the dispersion is linear (Dirac-like) along the y direction,
whereas the dispersion along the x direction is quadratic
(nonrelativistic), the combination of which results in the semi-
Dirac dispersion. The three-dimensional plot in Fig. 2(a) indi-
cates the anisotropic band structure in a semi-Dirac system.

III. THE LANDAU LEVELS

To include a magnetic field, we shall work with a semi-
Dirac nanoribbon which is infinitely long along x but has
a finite width along y. We apply a uniform magnetic field
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FIG. 2. (a) The anisotropic energy band dispersion of a semi-Dirac system is shown. In the side panel, we zoom in on the region near the M
point along the k, and k, directions. The dispersion is linear along the y direction and quadratic along the x direction. Here a is set to be unity.
(b) A Brillouin zone with different high-symmetry points is shown for the Dirac case. (c) and (d) The dispersion along the high-symmetry
points ' — K, - M — K, — T for different strengths of hopping parameters #, = ¢ (Dirac) and 7, = 2¢ (semi-Dirac), respectively.

Here we sett = 2.8eV.

B = BZ perpendicular to the plane of the ribbon. Owing to the
presence of the vector potential A, each tight-binding wave
function picks up an extra phase term. We have chosen the
Landau gauge to be A= (—By, 0,0) such that the transla-
tional invariance along the x direction remains unaltered under
the choice of the gauge. Hence, the momentum along the x
direction is conserved and acts as a good quantum number. To
make k, a dimensionless quantity, we have absorbed the lattice
spacing a into the definition of k,. The ribbon width is such
that it has N unit cells along the y axis (where the index n for
the unit cells takes € 0, ..., N — 1), as shown in Fig. 3. The
tight-binding Hamiltonian in the presence of magnetic field
has the form

H = - (tjab; + Hc.), )
(ij)

where aiT (bj) creates (annihilates) an electron on sublattice
A (B). t;; is the hopping amplitude between nearest-neighbor
sites, which obtain a phase due to the magnetic field by the
Peierls substitution, namely, #;; = t — te*™i (here t denotes

both t and ). ¢;; is the magnetic flux and is given by the line
integral of the vector potential from site i to site j, namely,
¢ij=e/h fij A -dl. The flux is usually denoted in terms of
the flux quantum ¢y = h/e (h is Planck’s constant, and e is
the magnitude of the electron charge). Thus, the tight-binding
Hamiltonian in the presence of the perpendicular magnetic
field can be written in terms of m and n (where m increases
along the x direction and n increases along the negative y
direction; see Fig. 3) [2],

H=— Z [teiﬂ(¢/¢u)"[(1+0t)/2]af(m’ n)b(m, n)

(mn)
+1e O  (m, n)b(m — 1,n — (1 — a)/2)
+1p & @OOM=DRGT (1, m)b(m, n — o) + Hee.],  (5)

where the summation (mn) is over the nearest neighbors.
a'(m,n) and b(m,n) denote the creation and annihilation
operators at the (m, n) site, respectively. « = 1 can be used
for a zigzag semi-Dirac nanoribbon. Using the above Hamil-
tonian in Eq. (5), we numerically calculated the Hofstadter’s
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FIG. 3. The zigzag nanoribbon of a honeycomb lattice is shown.
The magenta and blue circles represent the A and B sublattices,
respectively. d; and d, are the primitive vectors. (m, n) labels the
positions of the unit cells along the x and y directions. The ribbon is
infinite along the x direction, shown by the arrow on both sides.

butterfly [42] as well as the Landau level spectrum for the
number of unit cells N = 100. Figure 4(a) shows fractal
spectra plotted as a function of magnetic flux ¢ /¢, for a semi-
Dirac nanoribbon. It can be seen clearly that an opening of a
central gap with a flat band at zero energy occurs. The gap gets
larger along with the two identical spectra that emerge from
the conduction and valence bands by tuning #,. For compari-
son, the same is plotted for the Dirac system (t, = t), as shown
in Fig. 4(b). We can see that there is no gap at zero energy with
the flat band when one goes from #, = 2¢ to t, = ¢. Figure 5
shows the Landau level spectra for different values of the mag-
netic flux (such as ¢/¢g = 1/100, 1/200, 1/500, 1/1600) for
the semi-Dirac and Dirac systems. Figures 5(a)-5(d) show the
evolution of the energy levels in the presence of the magnetic
field for a semi-Dirac nanoribbon (¢, = 2t). For comparison,
we have also plotted the Landau level spectrum for the Dirac
case (-, =1t) using the same values of the magnetic flux
as shown in Figs. 5(e)-5(h). It should be noted that in a
semi-Dirac system, there is no zero-energy bulk state, which
implies that the zero-energy state in Fig. 5 is an edge state. On
the other hand, zero-energy bulk states exist in a Dirac system.
Further, for t, = 2¢, the Landau levels are not equidistant since

FIG. 4. The Hofstadter’s butterfly spectrum is plotted as a func-
tion of ¢ /¢, for (a) t, = 2¢ (semi-Dirac) and (b) r, = ¢ (Dirac).

their energies vary as (n + %)2/ 3 (with n being the Landau
level index) [6], which is intermediate to the behavior of the
Dirac system and the conventional 2DEG. As a consequence,
the gap between the Landau levels shrinks as one considers
larger n. In the case of a Dirac system, since the energies
of the Landau levels go as /n, its nonequidistant Landau
spectra can have a quantitative behavior different from that
of a semi-Dirac system. For a large value of the flux ¢ such
as ¢ = ¢/100, the flatness of the energy bands is observed
for both the semi-Dirac and Dirac systems owing to the
shrinking of the cyclotron radius [see Figs. 5(a) and 5(e)].
The energy bands become parabolic for ¢ = ¢o/200, as seen
from Fig. 5(b). The flatness of the Landau spectrum in the
bulk completely vanishes in the semi-Dirac system compared
to a Dirac one [see Figs. 5(b) and 5(f)]. With lower values
of ¢/¢o, the Landau levels demonstrate a dispersive behavior
and start getting flatter for large values of n for t, = 2t [see
Fig. 5(c)]. In the case of a Dirac system (f, = t), the Landau
levels show quite a distinct behavior, where the flat bands
become dispersive in the bulk, corresponding to larger values
of n and lower values of ¢/¢ [see Fig. 5(g)]. For a small
value of the magnetic field, such that the flux is given by
¢ = ¢0/1600, the energy bands eventually become flat in the
bulk for the semi-Dirac case, as shown in Fig. 5(d). This is
not the case for a Dirac system [see Fig. 5(h)]. For all values
of ¢/¢y, the zero-energy mode is completely separated from
the bulk bands for a semi-Dirac system compared to the Dirac
case (see any of the panels in Fig. 5).

IV. TRANSPORT PROPERTIES

To study the transport properties in the presence of a
perpendicular magnetic field, we consider a large sample of a
lattice model of the semi-Dirac system consisting of millions
of atoms. The contribution to transport comes from both the
off-diagonal and diagonal terms that appear in the Kubo for-
mula [43]. The former contributes to the Hall conductivity oy,
whereas the latter leads to individual longitudinal conductivity
in different directions (oy, and o).

A. Methodology

In this section, we shall describe the numerical approach
developed by Garcia and coworkers [38], which is based on
a real-space implementation of the Kubo formalism, where
both the diagonal and off-diagonal conductivities are treated
on the same footing. It is known that in momentum space,
the Hall conductivity can be easily obtained in terms of the
Berry curvature associated with the bands [44]. The Kubo
formalism can be implemented in real space to obtain the
Hall conductivity [38], which uses Chebyshev expansions
to compute the conductivities. The components of the dc
conductivity tensor (w — O limit of the ac conductivity) for
the noninteracting electrons are given by the Kubo-Bastin
formula [43,45], which can be written as [38,46,47]

) 00 +
oup(it, T) = % de(e)Tr<va8(8 — H)vg o)
dG~(e)
— dgg Vg —H)>, 6)
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FIG. 5. Evolution of Landau levels for a finite strip with N = 100 unit cells in the presence of a magnetic flux ¢ = 1%, 5%, 500, and 15

for (a)—(d) t, = 2¢ (semi-Dirac) and (e)—(h) t, = ¢ (Dirac).

where T is the temperature, u is the chemical potential, v, is
the & component of the velocity operator, A is the area of the
sample, f(¢) is the Fermi-Dirac distribution, and G* (e, H) =
m are the advanced (+) and retarded (—) Green’s func-
tions. Using the kernel polynomial method (KPM) [48], the
rescaled § and Green’s functions can be expanded in terms of
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FIG. 6. The density of states (in units of 1/eV) is plotted as a
function of energy E (in eV) for (a) r, = 2t (semi-Dirac), (b) 1, =
1.8¢, (¢c) t, = 1.3¢, and (d) , =t (Dirac). We set t = 2.8¢eV in the

calculation.

4¢*h 4
7A (AE)?

the Chebyshev polynomials; hence, Eq. (6) becomes
Z Lo B (H),

/‘ . f®
(7

~2)2
where AFE is the range of the energy spectrum, & is the
rescaled energy whose upper and lower bounds are +1 and
—1, respectively, and H is the rescaled Hamiltonian. T',,,(8)
and pu%P(H) are functions of the rescaled energy and the
Hamiltonian, respectively. The energy-dependent scalar func-
tion I',,,,(8) can be written as

Lo (8) = (& — iny/1 — )@, ()
+ (E +im /l . E‘Z)e_im arccos(?)Tn(g‘)’ (8)

and the Hamiltonian-dependent term which involves products
of polynomial expansions can be written as

oup(u, T) =

8m&n
(1 + 8,0)(1 + 8mo)

where the Chebyshev polynomials 7;,(x) obey the recurrence
relation,

neb(H) = Tr[vy Ty (H g T,(H)],  (9)

Tn(x) = 2xTp—1(x) — T2 (x). 10)

The Jackson kernel g,, is used to smoothen out the Gibbs
oscillations which arise due to the truncation of the expansion
in Eq. (7) [48,49]. The DOS can be calculated using an effi-
cient algorithm based on the evolution of the time-dependent
Schrodinger equation. We use a random superposition of all
basis states as an initial state |¢(0)),

6(0)) = > aili),

where |i) denote the basis states and a; are the normalized ran-
dom complex numbers. Applying the Fourier transformation
to the correlation function (¢(0)|e~"|4(0)), we get the DOS

an
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FIG. 7. The Hall conductivity oy, (in units of 2¢%/h) is plotted as a function of Fermi energy E (in eV) for (a) t, = 2¢ (semi-Dirac) and
(b) 1, =t (Dirac) for a very high field (400 T) and a moderate field (30 and 50 T). Here ¢ is taken to be 2.8 eV.

as [36]

DOS = - / O M pONdr,  (12)
27 J_

o]

where ¢ denotes time.

B. Longitudinal and Hall conductivities

Using the above-mentioned efficient numerical approach,
we calculate the DOS in the absence and the presence of
a magnetic field, the longitudinal conductivity in both the x
(0x) and y (oy,) directions, and the Hall conductivity o,
for the semi-Dirac system (t, = 2¢). To compare the Dirac
and semi-Dirac systems, we also show results for the Dirac
(t, = t) case simultaneously. In our simulation, we consider
a lattice of 5120 unit cells in each of the x and y directions
[that is, a sample size denoted by (L, L,) as (5120, 5120)].
We apply periodic boundary conditions for all our numerical
results. We set the nearest-neighbor hopping parameter ¢ =
2.8eV. We adopt a large number of Chebyshev moments M
since the energy resolution of the KPM and the convergence
of the peaks of o,, depend on M. We use M = 6144 here [38].
The system size and the truncation order can be enhanced to
reduce the fluctuations.

To get a feel for the evolution of the single-particle proper-
ties between the Dirac and semi-Dirac limits, we plot the DOS
in the absence of a magnetic field for different values of #, in
Fig. 6. In the case of a semi-Dirac system (r, = 2¢), the DOS
is proportional to /]E| near E >~ 0 [see Fig. 6(a)], while for
the Dirac case (f, = t), again near zero energy the DOS varies
as |E|, as shown in Fig. 6(d). In the two intermediate values
of t,, namely, t, = 1.8¢ and #, = 1.3t [as shown in Figs. 6(b)
and 6(c)], a kink is visible near E = 0 which disappears for
both the semi-Dirac and Dirac cases.

Next, we show the results for Hall conductivity oy, for
moderate values of the magnetic field as well as extremely
high fields in Fig. 7. Generally higher values of the magnetic
field require a smaller system size, and hence, a smaller
number of Chebyshev moments have to be computed. This
yields faster convergence of the Hall conductivity in the limit

of a large magnetic field. For #, = 2t (semi-Dirac), the Hall
conductivity o,, is plotted as a function of Fermi energy E
for a large value of the field B =400T [as shown in the
main frame of Fig. 7(a)]. To relate this result to recent ex-
periments [50-52] performed for realistic values of magnetic
field on a Dirac system, we also plot the Hall conductivity
for moderate values of the field, namely, 30 T (green curve)
and 50 T (pink curve), as shown in the inset of Fig. 7(a). The
quantization of the plateaus is similar to that of a conventional
2DEG with a parabolic band dispersion in the sense that
the conductance quantization happens at o, = 2ne”/h, where
n takes integer values 0, =1, +2, +3, +4, ... in units of
2¢%/h. The plot in the inset shows that the plateau step can
be obtained with good accuracy even in the case of realistic
values of the magnetic field. The difference between the semi-
Dirac and Dirac cases lies in the fact that the fluctuations in
the plateau step become prominent with the lowering of the
field, especially at higher values of the Fermi energy. Further
lowering of the magnetic field will reduce the sharpness of
the plateaus due to the effect of the finite energy resolution
and finite size of the sample. These are the artifacts of the
method used here. In the Dirac system (f;, = ¢), the well-
known Hall quantization at oy, = 2(2n + 1)e? /h is observed
for very high magnetic field, namely, B = 400T, as shown
in the main frame of Fig. 7(b). The inset shows the same for
realistic values of the magnetic field. The Hall conductivity
plot ensures that there is a transition from a half-integer to
an integer quantum Hall effect as we go from a Dirac to a
semi-Dirac system by tuning #, [Figs. 7(a) and 7(b)]. The
reason can be drawn from the fact that although the band
dispersion in the semi-Dirac is linear in one direction, the
quadratic behavior in the other direction seemingly dominates
over the linear term, which results in a similar characteristic of
conductance quantization of a 2DEG. In Fig. §, we show the
Hall conductivity o,, and the DOS for B = 50 and 400 T in
the same frame. In the presence of the magnetic field, the DOS
consists of peaks of discrete energy levels (Landau levels), as
shown in Fig. 8. The DOS vanishes in the plateau region and
shows a sharp peak corresponding to a Landau level when the
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FIG. 8. The Hall conductivity oy, (in units of 2¢%/h) and the DOS (in units of 1/eV) are plotted as a function of Fermi energy E (in eV)
for different cases: (a)t, =2¢t,B=50T, (b)t, =¢t,B=50T,(c)t, =2t,B=400T,and (d), = ¢, B=400T.

Hall conductivity goes through a transition from one plateau
to another. However, we get broad DOS peaks at lower values
of the magnetic field (B = 50 T), which is particularly visible
for the semi-Dirac case owing to the small energy separation
between the Landau levels (less than 3 meV). Sharper peaks
will require computation of a very large number of Chebyshev
moments. Figure 8(a) shows that there is no Landau level
peak at zero energy for t, = 2¢, which is also characteristic
of a conventional 2DEG, in contrast to the t, = ¢ case, where
the zero-energy peak is well observed [see Fig. 8(b)]. The
presence of a zero-energy peak for the Dirac case is related
to the chiral anomaly present there. Figures 8(c) and 8(d)
show that several Landau levels can be observed with the
same qualitative behavior for very high magnetic field B =
400T for both the semi-Dirac and Dirac systems. The Hall
conductance is quantized due to the quantized Landau level.
It is interesting to note that although the energy does not
depend linearly on the Landau level index n and magnetic
field B in the case of a semi-Dirac system, as stated earlier, the
quantized value of o, of a semi-Dirac material is analogous
to that of a 2DEG. It is once again pertinent to mention that

the Landau level spectra in phosphorene in a perpendicular
magnetic field depending on the index n (an additional factor
of 2 will appear for spin degeneracy) have connections to the
semi-Dirac physics [34,35].

To investigate the magnetotransport, we further calculate
the longitudinal conductivity along the x (o) and y (o)
directions. Figures 9(a) and 9(b) show the longitudinal
conductivities o, (green curve) and o,, (magenta curve) as
a function of the Fermi energy E for moderate values of
the B field B = 50T for a semi-Dirac and a Dirac system,
respectively. The longitudinal conductivity reveals largely
anisotropic behavior owing to the presence of anisotropy
in the dispersion for #, = 2¢. The components of ¢ in the
x (0x) and y (oyy) directions are quantitatively different in
nature. The magnitude of oy, is larger than that of oy,. This
is definitely a contrasting feature compared to the case of a
Dirac system where the magnitudes of o,, and o,, are the
same, as shown in Fig. 9(b). Moreover, the absence of a
zero-energy peak also supports our discussion of the Landau
level results [see Fig. 8(c)] for the semi-Dirac material.
Figures 9(c) and 9(d) show similar results for very high
values of the magnetic field, namely, B = 400T, with the
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FIG. 9. Longitudinal conductivities o, and oy, (in units of 2¢*/h) are plotted as a function of Fermi energy E (in eV) for different cases:
(@)t =2t,B=50T,(b)t, =t,B=50T,(c)t, =2t,B=400T,(d)t, =t,B=400T, (e)t, =2t,B=0T,and (f) 1, =¢t,B=0T.

well-observed sharp peaks at larger values of energy. The
amplitudes increase at large values of the Fermi energy owing
to the increase in the scattering rate of the Landau levels as
one goes to higher values of n for both the semi-Dirac and
Dirac systems. Since the Landau levels are not equidistant

for both cases, the interval between the peaks is not spaced
equally. It can be seen that the longitudinal conductivity
is nonvanishing only when the Fermi energy is within
a Landau band where the backscattering processes are
present.
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To compare and contrast further between the two cases,
we plot the longitudinal conductivities (oy, and o,,) in the
absence of any magnetic field (B = 0) in Figs. 9(e) and 9(f)
for the semi-Dirac and Dirac systems, respectively. Apart
from the suppression of the conductivities by one order of
magnitude by the magnetic field, one can note the linear
dependence of the conductivity on the Fermi energy E for
the Dirac case [31,53], while the conductivity as a function
of E appears with a different exponent for the semi-Dirac
one. The feature is qualitatively the same as that observed for
B # 0. However, the peaks in the conductance spectra vanish
at B = 0 owing to the absence of Landau levels.

V. SUMMARY

In this work, we have studied the influence of a perpen-
dicular magnetic field with a semi-Dirac dispersion within the
framework of a tight-binding model of a honeycomb lattice. In
order to compare and contrast with a prototype Dirac material,
such as graphene, we have presented our results for both
cases. We considered a semi-Dirac nanoribbon with a finite
width and studied the Hofstadter’s butterfly and properties

of the Landau level spectra. We have observed two identical
gapped spectra symmetrically placed above and below £ = 0
along with a zero-energy mode in the Hofstadter’s butterfly
spectrum, in contrast to what is observed for a Dirac system.
The Landau level becomes fully dispersive in the bulk for
moderate values of the magnetic flux, which is not true for
the Dirac case. Furthermore, we explore the magnetotransport
properties using the Kubo formula. We observed that the Hall
conductivity shows standard quantization similar to that of
a conventional semiconductor 2DEG with a parabolic band,
which is highly contrasted with respect to a Dirac system.
The zero Landau level peak is absent in the case of a semi-
Dirac system. The longitudinal conductivities oy, and oy,
show anisotropic behavior due to the distinct dispersion in two
longitudinal directions.
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