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Hydrodynamic inverse Faraday effect in a two-dimensional electron liquid
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We show that a small conducting object, such as a nanosphere or a nanoring, embedded into or placed in the
vicinity of a two-dimensional electron liquid (2DEL) and subjected to a circularly polarized electromagnetic
radiation induces “twisted” plasmonic oscillations in the adjacent 2DEL. The oscillations are rectified due to
the hydrodynamic nonlinearities leading to the helicity sensitive circular DC current and to a magnetic moment.
This hydrodynamic inverse Faraday effect (HIFE) can be observed at room temperature in different materials.
The HIFE is dramatically enhanced in a periodic array of the nanospheres forming a resonant plasmonic coupler.
Such a coupler exposed to a circularly polarized wave converts the entire 2DEL into a vortex state. Hence, the
twisted plasmonic modes support resonant plasmonic-enhanced gate-tunable optical magnetization. Due to the
interference of the plasmonic and Drude contributions, the resonances have an asymmetric Fano-like shape.
These resonances present a signature of the 2DEL properties not affected by contacts and interconnects and,
therefore, providing the most accurate information about the 2DEL properties. In particular, the widths of the
resonances encode direct information about the momentum relaxation time and viscosity of the 2DEL.
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I. INTRODUCTION

Generation of stationary magnetic moments by circularly
polarized radiation is commonly referred to as the inverse
Faraday effect (IFE) predicted by Pitaevskii [1] and first
observed by van der Ziel et al. [2]. Although this effect is
usually studied in magnetic materials [3–5], it can also be
observed in conventional semiconductor nanostructures such
as quantum dots and nanorings [6–15]. In particular, it was
recently predicted [14,15] that a circularly polarized radiation
with the electric component E = Eω exp(−iωt ) + c.c. can
excite a circular DC current in a nanoring, which, in turn,
generates a magnetic moment:

M ∝ i Eω × E∗
ω. (1)

The proportionality coefficient in Eq. (1) is an odd function of
frequency, so the effect is sensitive to the helicity of polariza-
tion. Remarkably, IFE is dramatically enhanced in the vicinity
of plasmonic resonances [15]. Specifically, adjusting the plas-
monic frequency in the nanoring to match the frequency of
impinging radiation results in a much larger optically induced
stationary magnetic field (up to 0.1 Gauss for typical parame-
ters of a nanoring, see discussion in Ref. [15]). Hence, an array
of nearly identical quantum rings should give rise to large
optically controlled macroscopic magnetization. This opens
a wide avenue for applications in tunable optoelectronics, in
particular, in the terahertz (THz) range of frequencies.

The key feature of the plasmonic-enhanced IFE as com-
pared to other plasma-wave-related effects is the absence of
the symmetry limitations for conversion of incoming radiation
into a DC signal. Indeed, in conventional plasmonic devices,
such conversion requires an asymmetry of the system that de-
termines the direction of the DC current. In two-dimensional

structures, the asymmetry can be created by the boundary
conditions [16] or induced by ratchet effect (see Ref. [17]
for review). The latter implies a special type of grating-
gate couplers that could provide the required asymmetry. By
contrast, IFE exists in fully symmetric rings [14,15] and the
direction of the arising DC current is simply determined by
the sign of the circular polarization. What is also important
in view of possible applications for THz plasmonics is that
the optically induced DC current remains finite even in the
long-wavelength limit, when Eω does not vary within the
dimension of ring. Hence, the quantum nanorings and ring-
based arrays can be used as effective helicity-driven sensors
for THz radiation (see estimates and discussion in Ref. [15]).

In this paper, we discuss the possibility of observing
similar effects in 2D systems. We consider the excitation
of circular plasmonic modes (twisted plasmons) and circular
DC currents in a two-dimensional electron liquid (2DEL).
These modes are excited by a circularly polarized electromag-
netic radiation impinging on the metallic or semiconducting
nanosphere or nanoring embedded into or placed above the
2DEL and inducing rotating dipoles in these nanostructures
[see Fig. 1(a)]. Rectification of the twisted plasmons due
to hydrodynamic nonlinearities leads to a helicity-sensitive
circular DC current and, consequently, to a magnetic moment,
thus demonstrating the hydrodynamic inverse Faraday effect
(HIFE). If the nanospheres form a 2D crystal [see Fig. 1(b)],
only the plasmons with the wave vectors forming inverse
crystal lattices are excited, so excitation spectrum becomes
discrete. When the radiation frequency is close to any of
the discrete plasmonic frequencies, the entire high-mobility
2DEL experiences a resonant circular plasmonic excitation.
The rectification of these oscillations leads to a plasmonic-
enhanced DC current which oscillates in space. The circular
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FIG. 1. Excitation of twisted plasmons in 2D electron liquid by
a single nanosphere embedded into dielectric matrix and excited
by circularly polarized radiation (a) or by an array of nanospheres
forming a plasmonic coupler (b).

DC current and magnetic moment generated by this current
show sharp HIFE resonances. Since the plasma wave fre-
quency is tunable by the gate voltage and by an external
magnetic field, such a system can be used for the optical tun-
able magnetization of 2D systems. The typical 2DEL twisted
plasmon frequencies are in the THz range, and this coupling
system could be used for tunable THz electronic components,
including frequency multipliers, modulators, absorbers, and
mixers. Another key application is in the contactless charac-
terization and parameter extraction of the 2DEL.

Apart from these applications, there are some very interest-
ing fundamental aspects of the HIFE related to hydrodynamic
approach in plasmonics, the field which explores how electro-
magnetic fields can be confined over dimensions much smaller
than the radiation wavelength [18–24]. The hydrodynamic
approach to the description of the electronic systems and,
in particular, the plasma wave excitation, has a long history
which can be traced back to early work by Gurzhi [25] and by
de Jong and Molenkamp [26], where hydrodynamic effects
on the electron and phonon transport were discussed, and
to the work by Dyakonov and Shur [16], which exploited
the analogy between the “shallow water” hydrodynamics and
that of the electron liquid in two-dimensional (2D) gated sys-
tems. Many other beautiful hydrodynamic phenomena such
as choking of electron flow [27], nonlinear rectification of the
plasma waves [28,29], and the formation of plasmonic shock
waves [30] have been subsequently proposed. Possible appli-
cations of these phenomena to the plasma-wave electronics
were intensively discussed (see Refs. [31,32]). More recent

interest to the hydrodynamic phenomena in low-dimensional
transport and plasmonics is driven by the emergence of high-
mobility nanostructures [33–41] and graphene [42–52] where
the electron-electron collision-dominated transport regime
can be reached.

Two issues that have been most actively discussed in
recent years are the emergence of hydrodynamic regimes with
nonzero vorticity (and their manifestation in the transport
properties of the 2DEL) (see Refs. [40,48–52] and references
therein), as well as possible methods for measuring the elec-
tron viscosity by using dynamic excitations of 2DEL [40] and
by nonlocal resistance measurements [48–52].

Here we demonstrate that the electron flow with nonzero
vorticity can be excited by circularly polarized radiation.
Importantly, we find that such states appear even in an ideal
2DEL with zero viscosity. We also find that the main effect
of viscosity is broadening of the plasmonic resonances in the
structure shown in Fig. 1(b). The corresponding contribution
to the resonance width is proportional to the kinematic viscos-
ity and depends on the single geometrical factor—the distance
d between nanospheres. This enables optical measurements of
the electron liquid viscosity.

II. MODEL

A. Basic equations

In this paper, we consider circular (twisted) plasmon exci-
tation through the periodic array of metal objects (or semicon-
ducting objects with high conductivity), such as nanospheres
or nanorings, embedded into or placed in the vicinity of the
2DEL by using insulating matrix transparent for the THz
radiation. To begin, we consider the excitation by a single
nanosphere [see Fig. 1(a)] and then generalize the results
in the case of the grating plasmonic coupler consisting of a
periodic array of nanospheres [see Fig. 1(b)].

Circularly polarized electromagnetic radiation induces a
rotating dipole potential in the nanosphere. As a result, an
inhomogeneous field is formed, which, in turn, acts on the
2DEL. We will find the DC response of the system. We
assume that (i) electron-electron collisions prevail over scat-
tering by phonons and impurities; (ii) the radiation wavelength
is much larger than the radius of the nanosphere, so the
electric field of radiation is uniform; and (iii) the system is
gated. The first assumption allows us to use the hydrodynamic
approximation.

The 2D electron liquid is described by the hydrodynamic
equations for the dimensionless electron concentration n =
(N − N0)/N0 and velocity v:

∂n

∂t
+ div[(1 + n)v] = 0, (2)

∂v
∂t

+ (v∇)v + γ v + s2∇n − ν�v = eE
m

. (3)

Here N0 is equilibrium concentration, s is the plasma
wave velocity, γ is the rate of the momentum re-
laxation, ω is the radiation frequency, m is the elec-
tron mass, and ν is the kinematic viscosity. The field
acting in the 2D plane, E = E0(t ) + E1(t, r), is given
by the sum of the homogeneous field of circularly
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polarized incoming radiation, E0(t ) = E0(cos ωt,− sin ωt ) =
(E0/2)(ex − iey) exp[−iωt] + c.c. and the dipole field

E1(r, t ) = −e∇ rp(t )

(r2 + a2)3/2
, (4)

where p(t ) = p(cos ωt,− sin ωt ) and ep = E0R3 is the dipole
moment of a metallic nanosphere with radius R. (Alterna-
tively, one can use dielectric nanospheres with dielectric con-
stant εR. Then, the dipole moment becomes ep = E0R3(εR +
ε)/(εR + 2ε), where ε is the dielectric constant of the trans-
parent embedding matrix [53].) Here, we assume that internal
plasmonic frequency of the nanospheres is very large as com-
pared to characteristic frequencies of the problem, so spheres
are fully polarized (corresponding estimates are given in
Sec. V B). For a lattice of the nanospheres, one should replace
E1(r, t ) → ∑

i E1(r − ri, t ), where summation is taken over
the lattice nodes.

B. Rectification of the optical signal

The incoming radiation leads to the oscillations of the concen-
tration and velocity, which are rectified due to the nonlinearity
of the hydrodynamic equations. The small signal solution
of hydrodynamic equations Eqs. (2) and (3) can be found
perturbatively by expansion over E0 up to the second order,

n ≈ δn(t, r) + n(r), v ≈ δv(t, r) + v(r),

where δn(t, r) ∝ E0 and δv(t, r) ∝ E0 are oscillations of the
concentration and velocity representing linear response and
n(r) ∝ E2

0 and v(r) ∝ E2
0 are time-independent corrections

arising due to the rectification. We will see that the optically
induced flow of the 2DEL with nonzero vorticity appears
even in an ideal liquid with zero viscosity. Therefore, we will
first put ν = 0 and discuss the viscosity-related effects at the
end of the paper. One of our main findings is that a finite
viscosity leads to a very simple contribution to the width of
the plasmonic resonances and could be extracted from the
measurements of the resonance width.

Due to the rectification, the impinging radiation induces
both a DC current jDC and a static electric potential φDC. To
find the rectified corrections n(r) and v(r) (squared-in-E0),
we average Eqs. (2) and (3) over time, thus arriving at the
following set of the stationary equations:

divv = −divJ1, (5)

γ v + s2∇n = γ J2, (6)

with the rectified sources (we neglect terms of the order E2
0

oscillating at frequency 2ω. Such terms leads to negligible, on
the order of E4

0 , corrections to the circular DC current):

J1 = 〈δnδv〉t , J2 = − 1

γ
〈(δv∇)δv〉t . (7)

To find total radiation-induced DC current, jDC, one should
sum v and the rectified source J1. The radiation-induced po-
tential, φDC which creates static electric field EDC = −∇φDC

is found from the condition e∇φDC/m = s2∇n. Thus, we have
the following set of equations for jDC and φDC :

jDC(r) = N0[v(r) + J1(r)], (8)

eφDC(r) = ms2 n(r). (9)

Hence, the key steps of the calculations are as follows. One
should first linearize hydrodynamic Eqs. (2) and (3) and find
the linear response. The next step is to substitute thus found
δn and δv into the expressions for the nonlinear sources given
by Eqs. (7), perform the time averaging, and find J1,2. Then,
one should calculate n and v by solving Eqs. (5) and (6) and,
finally, find jDC and φDC from Eqs. (8) and (9).

III. LINEAR RESPONSE: DRUDE AND
PLASMONIC CONTRIBUTIONS

Since the electric field entering the right-hand side (r.h.s.)
of Eq. (3) has both homogeneous and inhomogeneous contri-
butions, one can present the velocity oscillations as the sum
of the homogeneous Drude excitation and inhomogeneous
dipole-induced plasmonic term, while

δv = δvD + δvP. (10)

Corrections to the concentration appear only due to the in-
homogeneous perturbation, so δn = δnP. As we demonstrate
below, the presence of these two types of velocity excitations
leads to interference effects and, as a consequence, to the
Fano-like asymmetry of the resonances.

Linearizing Eqs. (2) and (3) and writing δn =
δnω(r)e−iωt + c.c., δv = δvω(r)e−iωt + c.c., after simple
calculations (see Appendix A), we get

δnω(r) = �Z (r), (11)

δvω(r) = iω∇Z (r)︸ ︷︷ ︸
δvP

ω

+eE0(ex − iey)

2m(γ − iω)︸ ︷︷ ︸
δvD

ω

, (12)

where, for the case of a single nanosphere,

Z (r) = −i2π l2
∫

d2q

(2π )2

eiqre−iϕq e−qa

q2 − k2
. (13)

Here e−iϕq = (qx − iqy)/q,

l2 = e2 p

2ms2
(14)

and

k =
√

ω(ω + iγ )

s
= k0 + iQ. (15)

The real and imaginary parts of k, respectively, k0 and Q, have
a physical meaning of the wave vector and the spatial decre-
ment of the optically excited plasma wave. In what follows,
we assume γ 	 ω. Hence, k ≈ (ω + iγ /2)/s, and, conse-
quently, k0 ≈ ω/s, Q ≈ γ /2s. As seen, the spatial decrement
of the wave is small:

Q 	 k0. (16)

For the case of square dipole lattice with the lattice constant
d, Eq. (13) is slightly modified by the replacement (see
Appendix E), ∫

d2q

(2π )2
→ 1

d2

∑
q

,
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where wave vector q runs over the inverse lattice vectors:

qnm = 2π

d
(nex + mey). (17)

Since velocity is given by the sum of two terms [see
Eq. (10)], one can split both of the rectified sources J1,2 into
two contributions—the plasmonic contribution and the mixed
(plasmonic+Drude) contribution:

Ji = JP
i + JM

i (i = 1, 2),

where

JP
1 = 〈δnPδvP〉t , JP

2 = −〈(δvP∇)δvP〉t

γ
,

JM
1 = 〈δnPδvD〉t , JM

2 = −〈(δvD∇)δvP〉t

γ
,

(18)

Equations Eq. (13) and (18) allow us to clarify basic physics
issues in more detail. First, as seen, the integral on the
r.h.s. of Eq. (13) contains a pole in the denominator, which
reflects the plasmonic resonance occurring when ω is equal
to the frequency of the plasma wave with the wave vector
q. However, the pole is smeared out due to the integration
over q. The situation is different for a dipole lattice when
the integration should be replaced with summation. For small
γ , the contributions of the different terms in the sum are
well separated and can give sharp plasmonic resonances. The
resonance condition,

ω = ωnm = (2πs/d )
√

n2 + m2, (19)

is satisfied for several pairs (n, m). For example, the funda-
mental plasmonic resonance with the frequency

ω0 = 2πs

d
(20)

corresponds to the sum over four pairs (1, 0), (−1, 0), (0, 1),
and (0,−1), yielding

Z0(r) ∝ 1

ω2
0 − ω2 − iωγ

, (21)

with the frequency-independent coefficient of proportionality.
Then, rectified DC currents have the resonance dependence
JP

i ∝ |Z (r)|2, JM
i ∝ Z (r). As a result, in the vicinity of the

resonance, the expression for the circular DC current can be
approximately presented as follows:

jDC ≈ π(r)

�2 + 2/4
+

[
μ(r)

� + i/2
+ c.c.

]
, (22)

where

� = ω − ω0

ω0
,  = γ

ω0
, (23)

are, respectively, the dimensionless detuning and damping of
the fundamental resonance, while the terms proportional to
vectors π(r) and μ(r) represent the plasmonic and mixed
contributions, respectively [exact expressions for these coef-
ficients will be given below, see Eqs. (40), and (41)]. Due to
the interference of these terms, the resonance in jDC and φDC

has an asymmtric Fano-like shape. Interestingly enough, the
degree of asymmetry depends on the coordinate r.

FIG. 2. Different scales of the problem. We predict sharp plas-
monic resonances for λ0 < d <

√
λ0/Q.

Different scales of the problem are illustrated in Fig. 2.
The smallest scale is the size of the sphere, R, which is on
the order or smaller than the distance from spheres to the
plane of 2D gas, R � a. We assume that the wavelength of
the plasma excitations, λ0 = 2π/k0, is much larger than a
but smaller than the plasma wave damping length: a 	 λ0 	
Q−1. For d 
 Q−1, the spheres are fully independent and
it is sufficient to calculate the response of a single sphere.
With decreasing d, the spheres begin to influence each other.
One can easily estimate characteristic d corresponding to the
onset of plasmonic resonances. To this end, we estimate the
volume in the momentum space corresponding to a plasmonic
resonance as k0Q. When this volume becomes smaller than the
volume of the unit cell of the inverse lattice, k0Q 	 (2π/d )2,
the resonances cease to overlap. The fundamental mode cor-
responds to a smaller intersphere distance: d = λ0. The total
number of well-resolved resonances that can be observed is
proportional to k0/Q = ω/γ and is thus determined by the
quality factor. It is worth noting that sharp resonances exist in
the finite range of d: λ0 � d �

√
λ0/Q.

An important comment is related to the radiation-induced
vorticity of the 2DEL. On the formal level, function Z (r) is a
Green’s function of hydrodynamic equations describing the
plasmonic excitation caused by a pointlike rotating dipole.
Due to this rotation, an angular moment ±1 is transferred
to the liquid with the sign determined by the sign of the
helicity. The information about this moment is encoded in
the phase factor exp[−iϕq] in Eq. (13). This means that the
plasma waves circulate around the nanospheres and that the
direction of circulation changes with changing the sign of
the radiation polarization. We call such excitations twisted
plasmons. The rectification of these plasmons leads to DC
current with nonzero vorticity, which is also determined by
the helicity sign.

IV. CIRCULAR DC CURRENT INDUCED BY
A SINGLE DIPOLE

Performing integration over ϕq in Eq. (13), we get

Z (r) = l2(x − iy) f (r), (24)

where function f depends only on r = |r|. The analytical
expressions for f and its asymptotes are presented in the
Appendix A together with expression of δnω and δvω in terms
of f . It is convenient to present Ji as follows:

Ji = Rier + �ieφ, (25)

085402-4



HYDRODYNAMIC INVERSE FARADAY EFFECT IN A … PHYSICAL REVIEW B 102, 085402 (2020)

FIG. 3. Dependence of the circular current density, jDC, created
in 2D liquid by a rotating dipole moment of a single nanosphere.
Main contribution to this current comes from mixed term [see
Eq. (28)] .

where er = r/r, eϕ = ez × er and functions Ri = RP
i + RM

i ,

and �i = �P
i + �M

i , depend only on r = |r| and contain both
plasmonic and mixed contributions. Here, vector r is counted
from the center of nanosphere [see Fig. 1(a)].

Provided that Ri and �i are known, the solution of Eqs. (5)
and (6) can be found by expanding v over er and eϕ and
assuming n = n(r). We find for the total circular radiation-
induced DC current, jDC = jDCeϕ and the radial electric field,
EDC = EDCer:

jDC = N0(�1 + �2), (26)

eEDC

m
= γ (R1 + R2 ) (27)

Expressions for plasmonic and mixed contributions, RP
i ,�

P
i ,

and RM
i ,�M

i , are presented in Appendixes B and C, respec-
tively, as well as expressions for asymptotical behavior of jDC

[see Eq. (D1)] and EDC [see Eq. (D2)], accounting for both
plasmonic and mixed contributions. As seen, for the most
realistic case (R 	 a 	 k−1

0 	 Q−1), the mixed contribution
dominates. Neglecting plasmonic contribution, we find that

jDC ≈ − j∗

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

C
(

r
a

)
, r 	 1/k0

√
2πk3/2

0 a2
√

r
e−Qr/2 sin(k0r + π/4),

1/k0 	 r 	 ln [k0/Q]
Q

6a2

k2
0 r2 ,

ln [k0/Q]
Q 	 r,

(28)

where

j∗ = ωl4N0

k2
0R3a2

, (29)

and C(x) is given by Eq. (D4). Schematic dependence of jDC

on r is shown in Fig. 3. The static optically induced field is
linked to the DC circular current by a simple relation:

jDC = −eEDCN0

mω
. (30)

A. Dipole lattice

For a lattice of dipoles, we write the Fourier components
of the nonlinear sources J1 and J2 as follows:

Jiqω = Riqn‖
q + �iqn⊥

q , i = (1, 2), (31)

where n‖
q = q/q and n⊥

q = ez × q/q. The Fourier transform
of Eqs. (5) and (6) yields expressions similar to Eqs. (26) and
Eq. (27):

jDC
q = N0(�1q + �2q)n⊥

q , (32)

eEDC
q

m
= γ (R1q + R2q)n‖

q. (33)

The Fourier components of the DC current and static field
can be presented as sums over the plasmonic and mixed
contributions: Riq = RP

iq + RM
iq,�iq = �P

iq + �M
iq.

We consider the simplest case of a square lattice with the
lattice constant d. In this case, all the integrals over q should
be replaced with the sums over the vectors of the inverse
lattice [see Eq. (17)] and function Z (r) becomes

Z (r) = − i2π l2

d2

∑
q

eiqr

q2 − k2
e−iϕq e−qa. (34)

Using this equation, we find

δnω = 2iπ l2

d2

∑
q

eiqre−iϕq q2e−qa

q2 − k2
, (35)

δvω = 2iπ l2

d2

∑
q

eiqre−iϕqωqe−qa

q2 − k2
(36)

+ eE0(ex − iey)

2m(γ − iω)
.

The rectified currents JP,M
i can be calculated using

Eqs. (18), (35), and (36). Corresponding analytical expres-
sions are given in Appendix E. Resulting equations for jDC

and EDC are given, respectively, by Eqs. (E9) and (E10).
In Fig. 4, we plotted the x component of the DC current in

units of

j0 = N0
4π2l4s

d4
,

in a certain point in the plane (we used x = y = d/8) as a
function of the radiation frequency for different damping rates
(picture for the y component of the current looks analogous).
As seen, with decreasing the γ , sharp resonances appear on
the top of the smooth dependence. Due to the interference of
the plasmonic and mixed contributions, the resonances have
an asymmetric shape. The degree of asymmetry is smaller
for small γ because the symmetric plasmonic contribution
dominates at γ → 0. Figure 5 illustrates the asymmetry of the
peaks for fundamental mode. To demonstrate vorticity of the
current, we also plotted the calculated current vector density
in Fig. 6.

B. Excitation of the fundamental mode

The smallest resonant frequency, ω0, is given by Eq. (20).
This frequency corresponds to the contribution of four terms,
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FIG. 4. Frequency dependence of x− component of the current
density for x = y = d/8, R = a/2, d = 5a: onset of plasmonic
resonances at large γ ; (a) strongly asymmetric resonances at inter-
mediate values of γ , (b) weakly asymmetric resonances at very small
γ (c).

with

(n, m) = (1, 0), (0, 1), (−1, 0), (0,−1). (37)

For all these terms, we have q = q0 = 2π/d. The fre-
quency of the next resonance is given by

√
2ω0. It corre-

sponds to the other four terms with (n, m) = (±1,±1). For
sufficiently high-quality factors,

ω0/γ 
 1,

these two resonances are well separated. Hence, for ω close
to ω0, only four terms corresponding to Eq. (37) contribute
to the sum over qnm, while terms with other n and m can be
neglected (this corresponds to the resonance approximation).

FIG. 5. Fundamental plasmonic peak in x component of DC
current for x = y = d/8, R = a/2, d = 5a and different values of
γ . The asymmetry of the peak decreases with decreasing of γ .

Within the resonance approximation, the concentration and
velocity are given by

δnω = 4π l2

d2

q2
0e−q0a[i sin(q0y) − sin(q0x)]

q2
0 − k2

, (38)

δvω = 4π l2

d2

ωq0e−q0a[iex cos(q0x) + ey cos(q0y)]

q2
0 − k2

+ eE0(ex − iey)

2m(γ − iω)
. (39)

Using the equations given in Appendix F, we find that the
circular current can be presented in the form of Eq. (22), with

π(r) = π0[sin(q0y) cos(q0x)ex

− sin(q0x) cos(q0y)ey], (40)

μ(r) = μ0[sin(q0y)ex − sin(q0x)ey], (41)

where

π0 = 8π2N0sl4

d4
e−2q0a, μ0 = N0sl4

dR3
e−q0a. (42)

As seen, divπ = divμ = 0, so jDC is purely circular current,
divjDC = 0, with nonzero vorticity:

∇ × jDC = −ez
2q0

�2 + 2/4
{π0 cos(q0x) cos(q0y)

+μ0�[cos(q0x) + cos(q0y)]}. (43)

Two interfering contributions, plasmonic and mixed, have dif-
ferent frequency dependencies in the vicinity of the resonance,
symmetric and asymmetric ones, respectively. Interestingly,
the degree of asymmetry depends on coordinate. For example,
at the line cos(q0x) + cos(q0y) = 0, the vorticity is a symmet-
ric function of �, while for cos(q0x) = 0 or cos(q0y) = 0,

the vorticity is described by an asymmetric mixed term. The
vector density plot of the rectified current jDC is plotted in
Fig. 6 for different values of parameter,

α = 2�μ0

π0
= d3�

4π2R3
eq0a, (44)

which depends on the dimensionless deviation from the res-
onance, �. Hence, changing radiation frequency, one can
qualitatively change the spatial distribution of the DC current.
To understand this dependence better, we rewrite Eq. (22) as
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FIG. 6. Vector density plot of the rectified current density jDC

for different values of parameter α = 2�μ0/π0 (here, x and y are
measured in units of d).

follows:

jDC

j0
= 2e−2q0a

�2 + (/2)2
{ex sin(q0y)[α + cos(q0x)]

− ey sin(q0x)[α + cos(q0y)]}. (45)

As seen, the key parameter which determines the current
distribution is α. Below, we will analyze the vector structure
of this equation. For brevity, we skip common coefficient
2 j0e−2q0a/[�2 + (/2)2] in the expressions for current.

For α 	 1, we get

jDC ∝ ex sin(q0y) cos(q0x) − ey sin(q0x) cos(q0y)

j2
DC ∝ 1 − cos(2q0x) cos(2q0y)

2
.

From these equations, we find that the current reaches
its maximum absolute value at points rI

nm = (xI
n, yI

m) =
(d/2)(n + 1/2, m) and rII

nm = (xII
n , yII

m) = (d/2)(n, m + 1/2)
(here and below, n and m are integer numbers). These points
correspond to centers of red circles in Fig. 6(a). From Eq. (45),
we find values of currents, jI

DC and jII
DC, exactly at rI and rII,

respectively, and their variations, δjI
DC, δjII

DC, in the vicinity of
these points

jI
DC ∝ −ey(−1)n+m,

δjI
DC ∝ (−1)n+mq2

0

(
ey

δx2 + δy2

2
− exδxδy

)
,

jII
DC ∝ ex(−1)n+m,

δjII
DC ∝ (−1)n+mq2

0

(
−ex

δx2 + δy2

2
+ eyδxδy

)
.

Here, δr = (δx, δy) is a small deviation of r from point rI or
rII (q0δr 	 1). Analyzing these equations and Fig. 6(a), we
see that there are eight current maxima (per unit cell of arising
periodic structure) with different current behavior. Here δx
and δy are counted from rI or rII. For α 
 1, we find that
the current is given by

jDC ∝ α[ex sin(q0y) + ey sin(q0x)],

j2
DC ∝ α2[sin2(q0y) + sin2(q0x)].

We see that dependencies on x and y fully decouple. The
current is maximal at points (xn, ym) = (d/2)(n + 1/2, m +
1/2), corresponding to centers of the red circles in Fig. 6(c).
Close to these points, we get

jDC ∝ (−1)mα ex

(
1 − q2

0δy2

2

)

+ (−1)nα ey

(
1 − q2

0δx2

2

)
. (46)

Hence, in this case, there are four maxima with different cur-
rent behaviors per unit cell of the periodic current structure.

The vector density plots for α 	 1 and α 
 1 are essen-
tially different. The transition between these plots happens
at α ∼ 1. Let us consider, for example, the quadrant of the
unit cell of the periodic structure of the current, correspond-
ing to 0 < x < d/2 and 0 < y < d/2 (behavior in the re-
maining three quadrants can be considered analogously). For
α = 0, j2

DC has four maxima of equal heights at points
rII

00, rI
00, rI

01, and rII
10 [see Fig. 6(a)]. With increasing α, the first

two maxima increase by a factor (1 + α)2, while the second
two decrease by a factor (1 − α)2. Also, for α <

√
8/3 there
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is a saddle point in this quadrant at

x = y = d

2π
arccos

(
2

α + √
α2 + 8

)
. (47)

The squared current at the saddle point is

j2
DC ∝ 4(2 + a(a + √

8 + a2))3

(a + √
8 + a2)4

. (48)

At α >
√

8/3, the saddle point transforms to a maximum and
the amplitude of this maximum becomes higher than for the
maxima at points rII

00, rI
00. With further increase of α, the new

maximum moves to the point (x, y) = (d/4, d/4), and stops
at this position for α → ∞. The behavior of current in the
vicinity of this maximum at α 
 1 is described by Eq. (46).
It is also worth noticing that for α ∼ 1, the value given by
Eq. (48) is close to the value of maxima at points rII

00, rI
00.

Therefore, the vector density plot shows a red circular band
[see Fig. 6(b)].

Analogously, one can calculate the optically induced static
potential:

eφDC

m
= 2π2l4s2

d4

e−2q0a

�2 + 2/4
{cos(2q0x) + cos(2q0y)

− 4α[cos(q0x) + cos(q0y)]}. (49)

As one can see from this equation, the maximal optically
induced voltage drop across different points of the unit cell of
the periodic voltage structures is proportional to the amplitude
of the circulating DC current eδφmax

DC ∼ jDCs/N0.

C. Optically induced magnetic field

The stationary radiation-induced magnetic field obeys

[∇ × H] = 4πejDC(r)

c
δ(z). (50)

Substituting H = [∇ × A] (divA = 0) and making Fourier
transform over r, we find

k2Ak − d2Ak

dz2
= 4πejk

DC

c
δ(z). (51)

Finite at |z| → ∞ solution of this equation reads Ak(z) =
(2πe/ck)jk

DC exp(−k|z|). Hence, the Fourier transform of the
vector potential (and, consequently, of the magnetic field) is
proportional to the Fourier transform of the DC current. In the
vicinity of plasmonic peaks, only several k satisfying resonant
conditions contribute to the current and magnetic field, so
spatial dependence of the field is found by the summation over
these discrete set of k.

Let us, for example, calculate the perpendicular component
of the field, Hz, in the fundamental mode within the resonance
approximation. In this case, k runs over (±q0,±q0) for the
plasmonic contribution and over (±q0, 0) and (0,±q0) for
the mixed contribution [see Eqs. (40) and (41)]. Instead of
summation over these k, one can take into account that all
terms in π (r) and μ(r) are eigenfunctions of the Laplace
operator, �, and present the field in the operator form as

Hz(r, z) = e−√−�|z|
√−�

2πeez[∇ × jDC(r)]

c
. (52)

From this equation and Eq. (43), we find

Hz(r, z) = −4πe

c

1

�2 + 2/4

×
{

π0 cos(q0x) cos(q0y)
e−√

2q0|z|
√

2

+ μ0�[cos(q0x) + cos(q0y)]e−√
q0|z|

}
. (53)

Figure 7 shows the density plot of the magnetic field in the
2DEL plane:

Hz(r, 0) = −
√

32πe j0
c

e−2q0a

�2 + 2/4

{
cos(q0x) cos(q0y)

+ α√
2

[cos(q0x) + cos(q0y)]

}
. (54)

For α 	 1, the field has maxima (within
the area 0 < x < d, 0 < y < d) at the points
(0, 0), (d, 0), (0, d ), (d/2, d/2), (d, d ) where cos(q0x)
cos(q0y) is maximal [these maxima have equal heights
and correspond to centers of red circles in Fig. 7(a)]. With
increasing α, the amplitude of the central maximum at
(d/2, d/2) decreases by the factor 1 − 2α (for α > 1 this
maximum transforms into minimum), while the amplitude
of the other four maxima is increased by the factor 1 + 2α.

Hence, for α 
 1, the field has four equivalent maxima at
the points (0, 0), (d, 0), (0, d ), (d, d ) corresponding to the
maxima of both cos(q0x) + cos(q0y) and cos(q0x) cos(q0y)
[the maxima correspond to centers of red circles in Fig. 7(c)].

V. DISCUSSION

A. Finite viscosity, external magnetic field, and finite size effects

Above, we presented calculations for zero external mag-
netic field for an ideal infinite 2DEL with zero viscosity. The
detailed analysis of different magnetoresponse regimes of the
viscous electron liquid in the system under discussion is out of
the scope of this paper and will be presented elsewhere. Here,
we limit ourselves to the simplest but at the same time the
most interesting case of the resonant excitation, when some
of the plasmonic modes with wave vectors given by Eq. (17)
satisfy the resonance condition: ω ≈ ωnm, where ωnm is given
by Eq. (19). In this case, within the resonant approximation,
the effect of a weak magnetic field, B, with ωc 	 ω (ωc =
eB/mc is the cyclotron frequency) can be accounted for by
replacing ω2

nm with

ω2
nm(B) = ω2

nm + ω2
c . (55)

Hence, a weak magnetic field shifts the positions of the
resonances shown in Fig. 4, thus giving an additional way to
control the DC current and magnetization.

Within the same resonance approximation, the effect of
a weak viscosity, satisfying the inequalty νq2

nm 	 ω, is
accounted by replacing elastic damping γ with

γnm = γ + νq2
nm. (56)
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FIG. 7. Density plot of Hz(r, 0) for different values of parameter
α = 2�μ0/π0 (here, x and y are measured in units of d).

The resonance is described by Eq. (22) with

� ≈ ω − ωnm(B)

ωnm(B)
,  ≈ γnm

ωnm
. (57)

As seen from Eq. (56), the measurement of widths of two
plasmonic resonances with different resonance frequencies

(ωn1m1 �= ωn2m2 ) allows one to extract the value of ν:

ν = (γn1m1 − γn2m2 )d2

(2π )2
(
n2

1 + m2
1 − n2

2 − m2
2

) . (58)

Evidently, one can also extract the momentum relaxation
time by measuring γn1m1 and γn2m2 . It is worth noting that
Eq. (58) does not include any characteristic of the material and
depends on a single geometrical factor—the distance between
nanospheres, which can be well controlled in experiment.
Hence, the HIFE gives a direct way to extract the electron
viscosity.

In this paper, we considered an infinite 2D system. An
interesting question is related to finite-size effects, i.e., to the
behavior of the current and magnetic field at the boundary
of the system. A detailed discussion of this issue is beyond
the scope of this paper and will be studied elsewhere. Here
we restrict ourselves to a few comments. One can consider
the situation when a diffraction square lattice having a fi-
nite size L = Nd, (here N 
 1 is an integer number) is
located over an infinite 2D plane. Then, when calculating
the function Z (r) in integrals over dqi (i = x, y), the factors
sin(qiL/2)/ sin(qid/2) appear, which describe the smearing
of q around the quantized vectors of inverse lattice of qnm

[see Eq. (17)] by values of the order of δqi ∼ 1/L. Consider-
ing the fundamental mode and calculating the corresponding
integrals, one can show that outside of the region covered
by diffraction lattice, the plasmonic and mixed contributions
exponentially decay with different exponents,

π (r) ∝ exp(−δr/Lπ ), μ(r) ∝ exp(−δr/Lμ),

where δr is distance from the edge of the diffraction region,
Lπ = 1/

√
k0Q = s/

√
ω0γ , and Lμ = 1/Q = s/γ . It is worth

noting that for a small damping rate, both Lπ and Lμ might
become on the order or even larger than L, which means that
for sufficiently clean 2DEL the circular current and magnetic
field can appear well beyond the region covered by diffraction
lattice.

B. Estimates of relevant parameters for various structures

In this section, we present some estimates of the relevant
physical parameters for various materials and briefly discuss
applicability of our approximations for realistic structures. We
use the following geometrical parameters: d = 250 nm, a =
50 nm, R = 25 nm. The plasma wave velocity is estimated
by using a standard equation [16] and assuming that there
is the back gate in the system. The barrier (spacer) width
given in Table I corresponds to the typical values for each
material system. The electric field of the incoming radiation is
taken as E0 = 105 V/cm. We estimate both current j0, which
characterizes the current flow for the nonresonant case when
the quality factor is on the order of unity, and also the current

jm
DC = 8 j0

2
exp−4πa/d , (59)

which is much larger than j0 for sharp resonances, when
 	 1 [see Eq. (45)]. For estimates of plasmonic-enhanced
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TABLE I. The estimated parameters for different structures.

Barrier thickness (nm) T(k) 2D carrier density (1/cm2) f = ω0/2π (THz) γ /ω0 e j0 (A/m) jm
DC/ j0 e jm

DC (A/m) Hm(Gs)

GaN 20 300 1013 7 0.087 0.1 87 9 0.086
GaN 20 77 1013 7 0.005 0.1 21897 2299 20.4
Si 4 300 2 × 1012 2.3 0.4 0.84 3.5 3 0.025
Si 4 77 2 × 1012 2.3 0.03 0.84 657 550 4.9
InGaAs 20 300 2 × 1012 6.4 0.089 0.89 84 74 0.64
InGaAs 20 77 2 × 1012 6.4 0.03 0.88 701 618 5.5
p diamond 4 300 2 × 1012 1 0.08 0.8 112 89 0.78
p-diamond 4 77 2 × 1012 1 0.01 0.8 4815 3814 34

magnetic field, we use

Hm = 16
√

2πe j0
c2

exp−4πa/d (60)

[see Eq. (54)].
Table I lists the calculated values of the most important

parameters, i.e., fundamental frequency, quality factor, char-
acteristic value of the DC current, and maximal magnetic
field. For all the materials listed in this table, the frequency
of the fundamental plasmonic mode is in the THz range. The
value of the optically induced magnetic field can be suffi-
ciently large at not-too-low temperatures, 77 K, especially in
the GaN and p-diamond-based structures. For these estimates,
we used material parameters listed in Table II with references
to corresponding experiments and/or numerical simulations.
Using the numbers, presented in the tables, we can discuss
validity of approximations used in our calculations.

In our model, we assumed that the spheres comprising
the plasmonic coupler are fully polarized. This implies that
internal plasmonic frequency of the nanospheres is very
large compared to characteristic frequencies of the problem.
The condition is well satisfied, provided that frequency of
three-dimensional plasma oscillations in the metal, which the
spheres are made from, ω3D, is large as compared to typical
plasmonic frequency in our problem, which is the fundamen-
tal frequency ω0 [see Eq. (20)]. For typical values of plasma
wave velocity in 2D gated InGaAS-based structure, [16], and
d = 250 nm, we get f0 = ω0/2π = 6.4 THz (see Table I and
Fig. 8). At the same time, the 3D plasmonic frequencies in
metal are at least two orders of magnitude higher due to very
high electron concentration. For example, a simple estimate
for silver, with 3D concentration 6 × 1022 cm−3, yields for
ω3D value about 1016 s−1.

Let us now estimate spatial scales shown in Fig. 2. As-
suming the frequency of the radiation to be ω = 3 × 1013 s−1

(which corresponds to f = ω/2π = 5 THz), and using the

estimate for typical plasma wave velocity 1.6 × 108 cm/s,
we find λ0 = 250 nm. Rewriting damping length as Q−1 =
λ0(ω0/γπ ) and using data of Table I for InGaAs at T =
77 K, we estimate Q−1 ≈ 3500 nm. This justifies ordering of
the spatial scales in Fig. 2. As seen from Table I, for other
materials we also have Q−1 
 λ0.

Finally, we present a picture of the current for parameters
of an InGaAs-based structure with d = 5a = 10R = 250 nm,
for two temperatures, 300 and 77 K (see Fig. 8). We see
resonance at the fundamental frequency f = f0 = ω0/2π and
the next one at the frequency

√
2 f0. As expected, the quality

factor of plasmonic resonances increases with decreasing
temperature.

VI. CONCLUSION

To conclude, we predicted excitation of circular plasmonic
modes (twisted plasmons) in 2DEL by circularly polarized
electromagnetic wave via a plasmonic coupler made of pe-
riodically placed nanospheres. We demonstrated that rectifi-
cation of the plasmons leads to a helicity-sensitive circular
DC current, and consequently, to a magnetic moment, thus
demonstrating the HIFE. This effect is dramatically increased
in the vicinity of plasmonic resonances, so the DC current
shows sharp plasmonic peaks. There are two interfering con-
tributions to the peaks, the plasmonic contribution and the
contribution involving both the plasmonic and the Drude
excitations. As a result, plasmonic resonances have an asym-
metric Fano-like shape. The suggested system can be used for
optical tunable magnetization of 2D systems for many opto-
electronic devices operating in the THz range of frequencies
and for the characterization and parameter extraction of 2D
electron liquids. In particular, measuring the widths of differ-
ent plasmonic resonances allows one to extract the electron
viscosity.

TABLE II. Material parameters used in the calculations.

Effective mass Mobility cm2/Vs (77k) Mobility cm2/Vs (300k) Dielectric constant of material Dielectric constant of barrier

Silicon 0.19 [62] 20000 [60] 1450 [59] 11.9 [62] 3.9
GaN 0.23 [64] 31700 [55] 2000 [56] 8.9 [62] 8.9
InGaAs 0.041 [63] 35000 [61] 12000 [61] 13.9 [62] 12.1
p diamond 0.663 [58] 35000 [57] 5300 [57] 5.7 [62] 5.7
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FIG. 8. Current-frequency dependence for parameters of
InGaAs-based structure with d = 5a = 10R = 250 nm at
x = y = d/8, for two temperatures, 300 and 77 K.
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APPENDIX A: LINEAR RESPONSE
(TECHNICAL DETAILS)

Linearizing Eqs. (2) and (3) and making a Fourier trans-
form, we get

−iωδnωq + iqδvωq = 0, (A1)

iqs2δnωq + (γ − iω)δvωq = e(E0 + E1)ωq

m
, (A2)

where (
eE0

m

)
ωq

= eE0

2m
(ex − iey)(2π )2δ(q), (A3)

(
eE1

m

)
ωq

= −πqe2 p

m
e−iϕq e−qa, (A4)

and e−iϕq = (qx − iqy)/q
The solution of Eqs. (A1) and (A2) reads

δnωq = 2π il2 q2

q2 − k2
e−iϕq e−qa, (A5)

δvωq = 2π il2 ωq
q2 − k2

e−iϕq e−qa

+ eE0(ex − iey)

2m(γ − iω)
(2π )2δ(q), (A6)

where l and k are given by Eqs. (14) and (15) of the main
text. Next, we find the Fourier transform of the velocity and
concentration:

δnω(r) = �Z (r), (A7)

δvω(r) = iω∇Z (r) + eE0(ex − iey)

2m(γ − iω)
, (A8)

where

Z (r) = −i2π l2
∫

d2q

(2π )2

eiqre−iϕq e−qa

q2 − k2

= l2(x − iy) f (r). (A9)

Function f (r) is given by

f (r) =
∫ ∞

0

dqqJ1(qr)e−qa

r(q2 − k2)

≈ π

2r
[H−1(kr) + iJ1(kr)] − 1

r

(
1 − r

a + √
a2 + r2

)
,

(A10)

where H−1 and J1 are the Struve and Bessel functions. Here
we assumed Q 	 k0 	 1/a [54].

The asymptotes of the function f are given by

f ≈
{√

π
2kr3 ei(kr−π/4)

(
1 + 3i

8kr

) − 1
k2r3 , r 
 1/k0

1
a+√

a2+r2 + iπk
4 , r 	 1/k0.

(A11)
From Eqs. (24), (A7), and (A8), we get

δnP
ω(r) = l2(x − iy)

[
f ′′ + 3 f ′

r

]
, (A12)

δvP
ω(r) = ωl2(x − iy)

[
i
(r f )′

r
er + f

r
eϕ

]
, (A13)

δvD
ω (r) = eE0(ex − iey)

2m(γ − iω)
. (A14)

As seen, the velocity oscillations can be presented as a
sum of the f −dependent inhomogeneous contribution and
the homogeneous Drude contribution, given, respectively, by
Eqs. (A13) and (A14).

APPENDIX B: EXPRESSIONS FOR RP
i AND �P

2 FOR A
SINGLE NANOSPHERE

Using Eqs. (A10)–(A14) and (18), we find

RP
1 = −iωl4(r f ′′ + 3 f ′)(r f ∗)′ + c.c. ≈ πωl4

{
k2

0
r e−Qr, r > 1/k0

k0r
2(r2+a3 )3/2 , r < 1/k0,

(B1)

�P
1 = ωl4(r f ′′ + 3 f ′) f ∗ + c.c. ≈ πωl4

{− k0
r2 e−Qr, r > 1/k0

− 2
π

r
(r2+a2 )3/2(a+√

r2+a2 )
, r < 1/k0,

(B2)
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RP
2 = −ω2l4

γ
[(r f ∗)′(r f )′′ + f ∗ f ′] + c.c.

≈ πω2l4

γ

{
k0

2r2 (1 + Qr)e−Qr, r > 1/k0
2
π

r
(a+√

r2+a2 )3

[
a3

(a2+r2 )2 + r2+3a2

(a2+r2 )3/2

]
, r < 1/k0,

(B3)

�P
2 = 0. (B4)

APPENDIX C: EXPRESSIONS FOR RM
i AND �M

i FOR A SINGLE NANOSPHERE

By direct averaging of δnPδvD over time, we get

RM
1 − i�M

1 = 2l4s2

R3

r f ′′ + 3 f ′

γ + iω
. (C1)

In the limiting cases, assuming ω 
 γ and taking in all terms in lowest nonzero order with respect to γ /ω, we get

RM
1 = 2l4s2

R3

{√
πk3/2

0 e−Qr/2 cos (k0r+ π
4 )

ω
√

2r
, r > 1/k0

− γ

ω2
r

(r2+a2 )3/2 , r < 1/k0

(C2)

and

�M
1 = −2l4s2

ωR3

{√
πk3/2

0 e−Qr/2 sin (k0r+ π
4 )√

2r
, r > 1/k0

r
(r2+a2 )3/2 , r < 1/k0.

(C3)

Finally, from Eqs. (18), (A13), and (A14), we find (in lowest order with respect to γ /ω)

RM
2 = − l4s2

γ R3
(r f ′′ + 3 f ′) + c.c.

= 2l4s2

γ R3

⎧⎨
⎩

√
πk3/2

0 e−Qr/2 sin
(

k0r+ π
4

)
√

2r
, r > 1/k0

r
(a2+r2 )3/2 , r < 1/k0,

(C4)

�M
2 = 0. (C5)

APPENDIX D: ASYMPTOTICAL VALUES OF jDC AND EDC FOR A SINGLE NANOSPHERE

Using Eqs. (B1)–(B4) and (C2)–(C5), we find asymptotical behavior of jDC and EDC, accounting both plasmonic and mixed
contributions,

jDC = −ωl4N0

a3

⎧⎪⎪⎨
⎪⎪⎩

A
(

r
a

) + a
R3k2

0
C

(
r
a

)
, r 	 1/k0

πa3

r3

[
k0re−Qr +

√
2

πk0r

(
r
R

)3
e−Qr/2 sin

(
k0r + π

4

)]
, 1/k0 	 r 	 ln[k0/Q]

Q

6a3
( − 1

k7
0 r7 + 1

R3k4
0 r4

)
,

ln [k0/Q]
Q 	 r,

(D1)

eEDC

m
= −ω2l4

a3

⎧⎪⎪⎨
⎪⎪⎩

πB
(

r
a

) + a
R3k2

0
C

(
r
a

)
, r 	 1/k0

πa3

r3

[ k0r
2 e−Qr +

√
2

πk0r

(
r
R

)3
e−Qr/2 sin

(
k0r + π

4

)]
, 1/k0 	 r 	 ln[k0/Q]

Q

6a3
(

5
k7

0 r7 + 1
R3k4

0 r4

)
,

ln[k0/Q]
Q 	 r,

(D2)

where

A(x) = 2x

(1 + x2)3/2(1 + √
1 + x2)

, (D3)

B(x) = 2x

(1 + √
1 + x2)3

1 + (3 + x2)
√

1 + x2

(1 + x2)2
,

C(x) = 2x

(1 + x2)3/2
. (D4)
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APPENDIX E: EXPRESSIONS FOR JP
i , JM

i FOR PERIODIC
ARRAY OF NANOSPHERES

For a periodic array of nanospheres, one should replace
Z (r) with the following sum:

∑
n,m

Z (r − rnm) =
∑
n,m

∫
d2q

(2π )2
Zqe−iqrnm eiqr, (E1)

where Z (r) is given by Eq. (13) and

rnm = d (nex + mey) (E2)

are lattice vectors of the squared array. Next, we use the
Poisson summation formula:∑
n,m

e−iqrnm =
∑

n

e−idqxn
∑

m

e−idqym

=
(

2π

d

)2 ∑
m

δ

(
qx − 2πm

d

)∑
n

δ

(
qy − 2πn

d

)
.

(E3)

Substituting Eq. (E3) into Eq. (E1) and integrating over d2q,
we get

∑
n,m

Z (r − rnm) = 1

d2

∑
q=qnm

Zqeiqr, (E4)

where inverse lattice vectors qnm are given by Eq. (17).
The rectified currents JP

i are given by double sums over q, q′ (both q and q′ run over values qnm), while JM
i by ordinary ones.

For convenience of further calculations, in plasmonic contribution we a introduce Kronecker symbol δQ,q−q′ and sum over Q:

JP
1 (r) =

∑
Q

eiQrJP
1Q + c.c. = 4π2l4

d4

∑
Q

eiQr
∑
q,q′

δQ,q−q′
e−i(ϕq−ϕq′ )−a(q+q′ )ωqq′2

(q2 − k2)(q′2 − k∗2)
+ c.c., (E5)

JP
2 (r) =

∑
Q

eiQrJP
2Q + c.c. = 4iπ2l4

d4γ

∑
Q

eiQr
∑
q,q′

δQ,q−q′
e−i(ϕq−ϕq′ )−a(q+q′ )ω2(qq′)q′

(q2 − k2)(q′2 − k∗2)
+ c.c., (E6)

JM
1 (r) =

∑
Q

eiQrJM
1Q + c.c. = 2iπ l4s2

d2R3

1

γ + iω

∑
Q

eiQr−iϕQ−aQQ2

(Q2 − k2)
(ex + iey) + c.c., (E7)

JM
2 (r) =

∑
Q

eiQrJM
2Q + c.c. = 2π l4s2

d2R3γ

1

γ + iω

∑
Q

eiQre−aQωQQ

Q2 − k2
+ H.c. (E8)

Using Eqs. (31) and (32), we find expressions for the optically induced DC current, which includes both plasmonic and mixed
contributions:

jDC = N0
4π2l4

d4

⎧⎨
⎩ω

∑
q,q′

[ez × (q − q′)]
|q − q′|

(
[ez × (q − q′)]q

|q − q′|
)

q′2ei(q−q′ )re−i(ϕq−ϕq′ )−a(q+q′ )

(q2 − k2)(q′2 − k∗2)

+ is2d2

2πR3

1

γ + iω

∑
Q

[ez × Q]

Q

(
[ez × Q](ex + iey)

Q

)
Q2eiQr−iϕQ−aQ

Q2 − k2

⎫⎬
⎭ + c.c., (E9)

eEDC

m
= γ

∑
Q

Q
Q

{
Q
Q

[
JP

1Q + JP
2Q + JM

1Q + JM
2Q

]}
eiQr + c.c., (E10)

≈ (for γ 	 ω) ≈ γ
∑

Q

Q
Q

{
Q
Q

[
JP

2Q + JM
2Q

]}
eiQr + c.c., (E11)

= 4π2l4

d4

⎧⎨
⎩iω2

∑
q,q′

q − q′

|q − q′|
[

(q − q′)q′

|q − q′|
]

(qq′)ei(q−q′ )re−i(ϕq−ϕq′ )−a(q+q′ )

(q2 − k2)(q′2 − k∗2)
− i

s2d2

2πR3

∑
Q

QQeiQr−aQ

Q2 − k2

⎫⎬
⎭ + c.c. (E12)

APPENDIX F: EXPRESSIONS FOR RECTIFIED CURRENTS IN THE FUNDAMENTAL PLASMONIC MODE

For (n, m) = (1, 0), (0, 1), (−1, 0), (0,−1), we have q = q0 = 2π/d. Simple calculations yield

JP
1 = 32π2l4

d4

ωq3
0[sin(q0y) cos(q0x)ex − sin(q0x) cos(q0y)ey]

|q2
0 − k2|2 e−2q0a, (F1)

JP
2 = 32π2l4

d4

ω2q3
0[sin(q0x) cos(q0x)ex + sin(q0y) cos(q0y)ey]

γ |q2
0 − k2|2 e−2q0a, (F2)
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JM
1 = 4π l4

d2R3

q2
0ω

k2∗ (q2
0 − k2)

[i sin(q0x) + sin(q0y)](ex + iey)e−q0a + c.c., (F3)

JM
2 = 4π l4

d2R3

q2
0ω

2

γ k2∗ (q2
0 − k2)

[sin(q0x)ex + sin(q0y)ey]e−q0a + c.c. (F4)

Next, we substitute these equations into Eqs. (32) and (33). The latter can be written in the operator form

jDC = N0
−∇ div + �

�

(
JP

1 + JM
1

)
, (F5)

eEDC

m
= γ

∇
�

div
(
JP

1 + JM
1 + JP

2 + JM
2

)
, (F6)

eφDC

m
= γ

1

�
div

(
JP

1 + JM
1 + JP

2 + JM
2

)
. (F7)

From Eqs. (F1)–(F7), we find

jDC = N0

{
16π2l4

d4

ωq3
0e−2q0a[sin(q0y) cos(q0x)ex − sin(q0x) cos(q0y)ey]

|q2
0 − k2|2

+4π l4

d2R3

ωq2
0e−q0a[sin(q0y)ex − sin(q0x)ey]

k2∗ (q2
0 − k2)

}
+ c.c. (F8)

Close to resonance, this equation can be simplified and written in the form of Eq. (22) with π and μ given by Eqs. (40) and (41),
respectively. We also find (for γ 	 ω)

eEDC

m
=

{
16π2l4

d4

ω2q3
0e−2q0a[sin(q0x) cos(q0x)ex + sin(q0y) cos(q0y)ey]

|q2
0 − k2|2 + 4π l4

d2R3

ω2q2
0e−q0a[sin(q0x)ex + sin(q0y)ey]

k2∗ (q2
0 − k2)

}
+c.c.,

(F9)

eφDC

m
=

{
4π2l4

d4

ω2q2
0e−2q0a[cos(2q0x) + cos(2q0y)]

|q2
0 − k2|2 + 4π l4

d2R3

ω2q0e−q0a[cos(q0x) + cos(q0y)]

k2∗ (q2
0 − k2)

}
+ c.c. (F10)
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