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Radiative capture rates at deep defects from electronic structure calculations
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We present a methodology to calculate radiative carrier capture coefficients at deep defects in semiconductors
and insulators from first principles. Electronic structure and lattice relaxations are accurately described with
hybrid density functional theory. Calculations of capture coefficients provide an additional validation of the
accuracy of these functionals in dealing with localized defect states. We also discuss the validity of the Condon
approximation, showing that even in the event of large lattice relaxations the approximation is accurate. We test
the method on GaAs:VGa-TeAs and GaN:CN, for which reliable experiments are available, and demonstrate very
good agreement with measured capture coefficients.
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I. INTRODUCTION

Optical techniques such as absorption, photoluminescence
(PL), PL excitation spectroscopy, and time-dependent PL
are powerful tools for studying defects in semiconductors
and insulators [1]. However, identification of the microscopic
nature of the defects that give rise to specific optical signatures
often requires quantum-mechanical calculations that address
the atomic and electronic structure at the microscopic level.
Specifically, predictive calculations of radiative capture rates
can be compared with rates determined from time-dependent
PL measurements [2–4] to provide a microscopic identifica-
tion of the defects that give rise to optical transitions.

Radiative processes may also be involved in defect-
mediated Shockley-Read-Hall (SRH) recombination [5,6],
particularly in wide-band-gap materials. Ascertaining whether
radiative recombination channels can be detrimental to device
performance requires a quantitative understanding of radiative
capture rates at deep defects.

In the past, calculations of carrier capture coefficients
were based on analytical models [7–10]. Such models do not
account for the complexity of the electronic structure of deep
defects, which involves, e.g., strong lattice relaxations that
often break the local symmetry.

In this paper we demonstrate a first-principles implemen-
tation for the calculation of radiative carrier capture rates at
defects in semiconductors and insulators. We will use two
well-characterized defects as case studies, a Ga vacancy and
Te donor complex in GaAs [2] and a carbon substitutional
impurity on a nitrogen site in GaN [3,11], to show that
calculations based on hybrid density functionals are in ex-
cellent agreement with experimental capture coefficients. We
quantify the errors resulting from key approximations and per-
form comparisons with model calculations. First-principles

calculations of radiative capture at a carbon impurity in GaN
were also reported by Zhang et al. [12]. In our work we
present a detailed derivation of the carrier capture rate and
point out differences with the work of Ref. [12] that are im-
portant for quantitative accuracy, as evidenced by comparison
with experiment.

II. FORMALISM

A. Radiative capture in semiconductors and insulators

Radiative capture in a material with band gap Eg is illus-
trated in Fig. 1(a). Let us consider a single acceptor defect
A with a level in the lower part of the band gap. The optical
process consists of the capture of an electron from the con-
duction band: A0 + e− → A−. EZPL is the zero-phonon line,
given by the position of the (0/−) charge-state transition level
below the conduction-band minimum (CBM). Let N0

A be the
concentration of acceptors in the neutral charge state and n
be the density of electrons. The rate of the radiative process
(i.e., the number of radiative events per unit time per unit
volume) is given by Rn = CnN0

An, where Cn (in cm3 s−1) is
the radiative electron capture coefficient. A similar equation
applies to radiative capture of holes, with a capture coefficient
Cp. Determining Cn and Cp is the main goal of the present
paper. Instead of coefficients C{n,p}, capture cross sections σ

are often used. The two are related via C = vσ , where v is the
characteristic carrier velocity; for nondegenerate carriers v is
the thermal velocity [10].

The radiative transition can also be represented via a
configuration coordinate diagram [Fig. 1(b)]. The two charge
states of the defect give rise to curves that are displaced along
the horizontal axis because, generally, they have different
atomic configurations (here projected on a one-dimensional

2469-9950/2020/102(8)/085305(6) 085305-1 ©2020 American Physical Society

https://orcid.org/0000-0003-0035-7520
https://orcid.org/0000-0001-8023-3055
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.102.085305&domain=pdf&date_stamp=2020-08-27
https://doi.org/10.1103/PhysRevB.102.085305


CYRUS E. DREYER et al. PHYSICAL REVIEW B 102, 085305 (2020)

VBM

CBM

FIG. 1. Illustration of radiative carrier capture in two different
representations: (a) the band diagram and (b) the configuration
coordinate diagram for the case of a single acceptor defect A.

coordinate Q). In the so-called Franck-Condon approxima-
tion, the transition occurs for fixed nuclear coordinates [see
the green arrow in Fig. 1(b)] with energy Eopt. After the tran-
sition the defect is in a vibrationally excited state. This state
will decay to the equilibrium state on the picosecond timescale
via phonon-phonon interactions, losing the relaxation energy
EFC = EZPL − Eopt, called the Franck-Condon energy.

The strength of the electron-phonon coupling associated
with an optical transition can be expressed in terms of the
Huang-Rhys factor S [13], which quantifies the number of
phonons emitted during the transition. In this work, we will
consider defects with strong electron-phonon coupling (S �
1). For such defects, Eopt corresponds to the peak of the
PL spectrum [14]. The general formalism to treat optical
transitions in semiconductors is presented in textbooks ( e.g.,
chapter 5 of Ref. [10] or chapter 10 of Ref. [15]). Here we
will present a derivation of the capture coefficients specif-
ically adapted to our implementation within first-principles
electronic structure theory, focusing on the case of strong
electron-phonon coupling.

We will closely follow the reasoning previously applied in
deriving nonradiative capture coefficients [16] [summarized
in the Supplemental Material (SM) [17], Sec. S1], where it
was shown that, for defects in the dilute limit, the capture
coefficient can be expressed as

Cn = V r, (1)

where r is the capture rate of one electron by one impurity in
the volume V ; the task is to calculate r.

B. Derivation of the capture coefficient

The wave functions describing the defect system are func-
tions of all electronic {x} and ionic {Q} degrees of freedom;
using the Born-Oppenheimer approximation, they can be
written in the form �({Q}, {x})χ ({Q}), where �({Q}, {x}) is
the electronic wave function (which depends parametrically
on {Q}) and χ ({Q}) is the ionic wave function. Let the
electronic wave function of the initial (excited) state, which
in the case of the acceptor in Fig. 1 is the neutral defect
plus the electron in the conduction band, be �i({Q}, {x});
the associated ionic wave functions are χim({Q}), where m
denotes the vibrational state. We will consider only tran-
sitions at low temperature, and therefore, initially, the sys-
tem is in the ground vibrational state (m = 0). The corre-
sponding quantities for the final (ground) electronic state

(the negatively charged defect; Fig. 1) are � f ({Q}, {x}) and
χ f n({Q}). The expressions can be easily generalized to finite
temperatures [15].

Optical transitions occur because of coupling to the
electric field, described by the momentum matrix element
Pi f ({Q}) = 〈�i({Q})|P̂|� f ({Q})〉; the momentum operator is
P̂ = −ih̄

∑
j ∂/∂x j , where the sum runs over all electrons j.

We will use the Condon approximation (CA) [18], in which
the dependence on {Q} is neglected and the momentum matrix
element is taken at a fixed {Q} (which we choose to be the
equilibrium geometry of the initial state); the validity of the
CA will be discussed below.

An additional approximation is that multielectron wave
functions �{i, f } can be replaced with single-particle Kohn-
Sham orbitals ψi and ψ f , with the corresponding momentum
matrix element pi f . In the case of electron capture, ψi is the
perturbed conduction-band state, while ψ f is the defect state.
At finite temperature, electrons occupy a thermal distribution
of states with different momenta; in principle, one has to
average over this distribution. For nondegenerate semiconduc-
tors at room temperature these states are very close to the
CBM, and thus, we will approximate the initial state to be
the CBM.

Within the Born-Oppenheimer approximation and the CA,
the luminescence intensity (number of photons per unit time,
per unit energy, for a given photon energy h̄ω) is given by [15]

I (h̄ω) = e2nrωηsp

3m2ε0πc3h̄
|pi f |2

∑
n

|〈χi0|χ f n〉|2

× δ(EZPL − h̄ω f n − h̄ω). (2)

nr is the index of refraction, h̄ω f n is the energy of the final
vibrational state (with respect to its ground state), and ηsp is
a factor which accounts for the spin selection rule (ηsp = 1
for a transition from a spin singlet to a doublet, ηsp = 0.5 for
a transition from a doublet to a singlet or from a triplet to a
doublet). The total recombination rate is the integral of I (h̄ω)
over energy h̄ω:

r = e2nrηsp

3m2ε0πc3h̄2 |pi f |2〈h̄ω〉, (3)

where 〈h̄ω〉 = ∑
n |〈χi0|χ f n〉|2(EZPL − h̄ω f n) is the average

energy of emitted photons. In the case of strong electron-
phonon coupling, 〈h̄ω〉 coincides with the energy of the
vertical transition Eopt [green arrow in Fig. 1(b)]. For de-
fects studied in this work S > 8, so we will make this
approximation.

Combining Eqs. (1) and (3) gives the capture coefficient if
the quantities in Eq. (3) could be calculated in a large volume
V corresponding to the dilute limit of defects; in practice,
calculations are performed in supercells with much smaller
volumes Ṽ . The limited supercell size is not an issue for
describing capture at neutral defects. However, in the case
of charged defects the initial electronic state is not properly
described. This issue can be accounted for by scaling Eq. (3)
by the so-called Sommerfeld factor f [16,19,20]. In this work,
only neutral centers are considered, so f = 1.
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The final expression for the capture coefficient is

Cn = f ηspṼ
e2nr

3m2ε0πc3h̄2 |pi f |2Eopt

= (5.77 × 10−17)

(
Ṽ f nrηspEopt

|pi f |2
2m

)
cm3 s−1, (4)

where in the second line we have evaluated the material-
independent parameters (assuming Eopt and |pi f |2/2m are
expressed in eV and Ṽ is in Å3) resulting in a simple formula
that can be used to evaluate radiative capture coefficients
based on quantities generated by density functional theory
calculations. Equation (4) agrees with the expression used in
Ref. [12], except for the fact that the spin selection rules are
neglected in that work (e.g., for carbon on the N site in GaN,
this results in an extra factor of 2 in Ref. [12]).

III. RESULTS

A. Computational details

We have calculated Eopt and pi f necessary for Eq. (4) using
density functional theory with the hybrid functional of Heyd,
Scuseria, and Ernzerhof (HSE) [21]. The mixing parameter
was chosen to reproduce the experimental band gaps: 0.30 for
GaAs [22] (giving a band gap of 1.52 eV) and 0.31 for GaN
(giving a band gap of 3.50 eV). Ga 3d electrons were treated
as core states. Defect calculations were performed on 216-
atom zinc-blende supercells for GaAs and 96-atom wurtzite
supercells for GaN. When optimizing the defect geometry,
the Brillouin zone was sampled with a single special k point
(1/4, 1/4, 1/4) [23]. Since for nondegenerately doped GaN
and GaAs the electrons participating in capture originate
from the CBM, momentum matrix elements were evaluated
at the � point. Use of the � point also correctly captures the
symmetries of the system. We used the Vienna Ab initio Sim-
ulation Package (VASP) [24] with the projector augmented-
wave method [25]; for the transition matrix elements, the
methodology of Ref. [26] was used, (i.e., momentum matrix
elements are correctly calculated for the case of nonlocal
potentials). Thermodynamic charge-state transition levels of
the defects (EZPL in Fig. 1) and Eopt were calculated using
the standard methodology described in Ref. [27], where we
use the scheme of Refs. [28,29] to correct for interactions
between charged defects and their periodic images. We use
experimental indices of refraction (3.4 for GaAs [30] and 2.4
for GaN [31], consistently chosen for energies Eopt).

B. Capture coefficients of test-case defects

We test the methodology on two defects for which exten-
sive experimental information is available: the complex be-
tween a Ga vacancy and a Te donor on a nearest-neighbor As
site in GaAs, GaAs : VGa-TeAs [2], and a carbon substitutional
impurity on a nitrogen site in GaN, GaN : CN [3,11] (see
Secs. S2 and S3 of SM [17] for details of the experimental
identification). In both cases, we examine the rate of electron
capture for the neutral charge state.

We calculate the energy of the (0/−) thermodynamic
charge-state transition level [27], at which electron capture
occurs, to be 0.37 eV above the valence-band maximum

TABLE I. Calculated (Calc.) and experimentally measured
(Expt.) optical transition energies EZPL and Eopt and electron capture
coefficients Cn for the two defects in our case studies.

EZPL (eV) Eopt (eV) Cn (10−13 cm3s−1)
Calc. Expt. Calc. Expt. Calc. Expt.

GaAs:VGa-TeAs 1.23 1.38a 1.02 1.18a 3.5 6.5a

GaN:CN 2.48 2.57b 2.01 2.2b 0.7 0.6–1.2b

aReference [2].
bReferences [3,4].

(VBM) for GaAs:VGa-TeAs and 1.02 eV for GaN:CN. The
calculated and experimental optical transition energies are
given in Table I. A detailed description of the electronic
structure of GaN:CN and GaAs:VGa-TeAs is provided in Sec.
S4 of the SM [17].

Our calculated capture coefficients using Eq. (4) are given
in Table I along with experimental values. The calculated
value for GaN:CN of Cn = 0.7 × 10−13cm3 s−1 is in good
agreement with measurements by Reshchikov et al. [3,4]
that yield values of (0.6–1.2) × 10−13 cm3 s−1 for radia-
tive capture coefficients pertaining to yellow luminescence
in GaN (different values are for different samples). There-
fore, our calculations indicate that GaN:CN is the likely
source of the yellow luminescence in the samples studied by
Reshchikov [3].

Our value for Cn is about a factor of 4 smaller than the
one calculated in Ref. [12], which is mainly due to the fact
that ηsp is not included in that work. Additionally, we find a
slightly smaller value of |pi f |2 (0.03 versus 0.05 in Ref. [12]),
and a different value for the refractive index may have been
used. We note that inclusion of ηsp (i.e., application of the
spin selection rules) is important and necessary to obtain
agreement with experiment.

For GaAs:VGa-TeAs, we find that Cn = 3.5 ×
10−13 cm3 s−1, five times larger than for GaN:CN. Our
calculated value is in satisfactory agreement with the
value determined experimentally by Glinchuk et al. [2]
(Cn = 6.5 × 10−13 cm3 s−1).

In order to test convergence with supercell size, we de-
termined Cn for the case of GaN:CN using a matrix element
pi f calculated in supercells with various sizes. A 72-atom
supercell results in Cn = 0.29 × 1013 cm3 s−1, while a 300-
atom supercell gives Cn = 0.90 × 1013cm3 s−1. This indicates
that the results for the supercells used in this study are close
to being converged.

In Sec. S5 of the SM [17], we compare these HSE results
to those obtained using a generalized gradient functional,
demonstrating the necessity of hybrid functionals for such
quantitative accuracy.

IV. DISCUSSION

A. Accuracy of the Condon approximation

As mentioned above, the derivation of Eq. (4) relies on
the validity of the CA, which states that the transition matrix
element does not change with the configuration coordinate.
We now test this assumption for the two case studies by
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FIG. 2. Dependence of the momentum matrix elements
pi f on the configuration coordinate Q for test-case defects:
(a) GaAs:VGa-TeAs and (b) GaN:CN. The blue dashed line represents
a quadratic fit to the data. The gray vertical bar indicates the spread
of Q values that gives rise to 80% of the spectral weight (sw). The
horizontal line indicates the Condon approximation (CA), in which
the matrix element is taken to be constant.

calculating |pi f | for different Q values (Fig. 2). The general-
ized configuration coordinate chosen is a linear interpolation
of all atomic positions between the ground-state structures of
the neutral and negatively charged defects. This choice of Q
has been demonstrated to yield accurate PL line shapes [14],
indicating that it is a good approximation for the sum over all
vibrational degrees of freedom.

In Fig. 2 the CA is indicated by the red horizontal line,
reflecting the |pi f | values at Q = 0 (the equilibrium geometry
of the initial state). In order to estimate the error we make by
using the CA, we must have some measure of the importance
that Q values other than Q = 0 carry in a full determination of
the transition rate. Such a measure is obtained by calculating
the ground-state vibrational wave function in the initial state
[(A0 + e−) in Fig. 1(b)], the square of which is roughly
proportional to the spectral weight of the optical transition at a
given Q. We then consider the variation of the matrix elements
over the region containing 80% of the spectral weight of the
transition (gray shaded region in Fig. 2). We see that most of
the spectral weight of the transition is concentrated near the
vertical transition at Q = 0; this is generally true for defects
with large Huang-Rhys factors, such as the ones considered
here. The matrix element |pi f | varies by ∼14% over the gray
range for both defects (Fig. 2), translating into an error in
Cn of less than 14%, which is acceptable and well within the
experimental uncertainty. It remains to be seen if the accuracy
of the CA holds for other deep defects.

B. Implications for Shockley-Read-Hall recombination

The results in Table I provide important information about
the role of radiative capture in defect-assisted SRH recom-
bination processes. In Ref. [32], it was shown that for de-
fect densities of 1016 cm−3, capture coefficients larger than
10−10 cm3 s−1 are necessary to result in SRH recombination
rates that would compete with electron-hole radiative recom-
bination and significantly impact the performance of light-
emitting diodes. If we use this magnitude as a threshold, we
see that for the defects in Table I the radiative electron capture
rates are much too slow (by three orders of magnitude) to give
rise to detrimental SRH recombination. We suggest that this
conclusion may be more general. Based on the character of

the wave functions, we expect the optical transition matrix
elements for our case-study defects to be fairly strong, and
hence, it seems unlikely that |pi f |2/2m values for other defects
(including in other hosts) would be orders of magnitude larger.
Furthermore, Eq. (4) shows that Cn depends only linearly on
Eopt. Both observations indicate that radiative capture coeffi-
cients are unlikely to be high enough to give rise to strong
defect-assisted SRH recombination.

C. Comparison to model calculations

We now discuss how our methodology and implementation
differ from previous attempts at theoretical descriptions of
optical transitions for defects in semiconductors. Previous
methods relied on models for the defect wave function in order
to determine pi f [10]. An often-used model for deep defects
is the “quantum defect” (QD) model [7–9], where the defect
potential near the core is treated as a square well, while the
long-range part has the form of a Coulomb potential. It can
be shown (see Sec. S6 of the SM [17]) that, for capture of an
electron at a neutral acceptor, the QD model results in a form
of the capture coefficient similar to Eq. (4), but with the key
difference that |pi f |2 is replaced by the momentum matrix el-
ement between the bulk conduction and valence bands |pcv|2.
The matrix element is then scaled by an “effective volume”
describing the spatial extent of the defect wave function. In
addition, the QD model uses the zero-phonon line energy
EZPL of the defect instead of Eopt; that is, the Frank-Condon
relaxation energy, resulting from the coupling with the lattice,
is neglected.

We now compare capture coefficients calculated with the
QD model with our full first-principles results. The equations
and parameters are included in Sec. S6 of the SM [17]. We
find that for GaN:CN, CQD

n = 0.4 × 10−13cm3 s−1, which is
smaller than our first-principles value (Table I) and slightly
below the experimental range. For GaAs:VGa-TeAs, CQD

n =
10.2 × 10−13, slightly larger than the first-principles value
and overestimating the experimental value. While for these
case studies the model agrees reasonably well with first-
principles results, it is important to emphasize the limited
predictive power of models such as the QD model. First, they
require energy levels taken either from experiment or from
first-principles calculations. Second, since |pi f | is replaced by
|pcv|, specific information about the defect electronic structure
is lost, and assumptions about the character of the defect wave
function are required. In our case studies, the assumption that,
as acceptors, the wave functions have valence-band character
turns out to be reasonable, but this will not universally be the
case.

V. CONCLUSIONS

We have demonstrated a methodology for determining cap-
ture coefficients from first principles. For the two case studies
considered, GaAs:VGa-TeAs and GaN:CN, the calculations give
quantitative agreement with experimental measurements. We
also confirmed the validity of the Condon approximation, a
result that can be generalized to all defects with large values
of the Huang-Rhys factor. The procedure outlined in this work
will provide a tool for the identification and characterization
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of defects detected by optical spectroscopy and will aid in
identifying the origins and mechanisms of Shockley-Read-
Hall recombination.
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