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Many-body theory of the optical conductivity of excitons and trions in two-dimensional materials
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The optical spectra of two-dimensional (2D) materials exhibit sharp absorption peaks that are commonly
identified with exciton and trions (or charged excitons). In this paper, we show that excitons and trions in doped
2D materials can be described by two coupled Schrödinger-like equations—one two-body equation for excitons
and another four-body equation for trions. In electron-doped 2D materials, a bound trion state is identified
with a four-body bound state of an exciton and an excited conduction-band electron-hole pair. In doped 2D
materials, the exciton and trion states are the not the eigenstates of the full Hamiltonian and their respective
Schrödinger equations are coupled due to Coulomb interactions. The strength of this coupling increases with the
doping density. Solutions of these two coupled equations can quantitatively explain all the prominent features
experimentally observed in the optical absorption spectra of 2D materials, including the observation of two
prominent absorption peaks and the variation of their energy splittings and spectral shapes and strengths with the
electron density. The optical conductivity obtained in our paper satisfies the optical conductivity sum rule exactly.
A superposition of exciton and trion states can be used to construct a solution of the two coupled Schrödinger
equations and this solution resembles the variational exciton-polaron state, thereby establishing the relationship
between our approach and Fermi polaron physics.

DOI: 10.1103/PhysRevB.102.085304

I. INTRODUCTION

Optical absorption and emission spectra of two-
dimensional (2D) materials, most notably transition-metal
dichalcogenides (TMDs), exhibit distinct peaks that are
attributed to neutral and charged excitons (or trions) [1–5].
Trions have been discussed extensively in the literature
[2,6–14]. In electron-doped materials, a trion state has been
described in many different ways: (i) as a bound state of two
conduction band (CB) electrons and a valence band (VB) hole
or an electron bound to an exciton [3,6,7], (ii) as a bound state
of two CB electrons and a VB hole plus a CB hole [2,9,14],
(iii) as an attractive exciton-polaron [8], and (iv) as a bound
molecular state similar to the one that appears in the literature
on Fermi polaron physics [10,27]. The relationship between
these different pictures is not clear. Sidler et al. considered
attractive exciton-polarons to be different from trions and
claimed to have seen optical signatures of both in experiments
[10]. Efimkin et al. identified the lower (higher) energy peak
appearing in the absorption spectra of 2D materials (TMDs
in particular) with attractive (repuslive) exciton-polarons [8].
Earlier, Suris et al. explained these two absorption peaks in the
context of 2D quantum well physics as mixed exction-trion
states [13]. The trion state considered by Combescot and
Betbeder-Matibet [6], which consisted of a bound state of two
CB electrons and a VB hole and resembled a bound molecular
state that appears in the literature on Fermi polarons [27],
were deemed to have negligible optical matrix element with
the ground state by Sidler et al. [10]. The variational trion
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state used previously by the authors [2], which consisted of a
bound state of two CB electrons and one VB hole plus a CB
hole, reproduced the measured trion optical absorption spectra
in 2D TMDs with fairly good accuracy in the low electron
density limit but it could not explain the splitting of the trion
and exciton absorption peaks as a function of the electron
density, nor could it explain the transfer of the spectral weight
in the optical absorption spectra from the exciton to the
trion with the increase in the electron density. Diagrammatic
perturbation theory involving summation of ladder diagrams
corresponding to exciton-electron interactions as well as
variational ansatz have been used to describe excitons
interacting with electrons in electron-doped semiconductors
[8–10]. The solutions correspond to states that describe
screening of the exciton by the electrons, or what are also
called exciton-polarons. Exciton-polaron solutions have been
successful in capturing the variations of the energy splittings
as well as the spectral weight transfers observed in the
optical absorption spectra as the electron density is varied.
On the other hand, the three-body trion physics has been
fairly successful in predicting the experimentally observed
exciton-trion splittings (or the trion binding energies) in
the limit of vanishing electron density [2,3,11,12]. The
connection between all the above pictures of a trion remains
unclear.

In this paper, we use the many-body density matrix tech-
nique to describe excitons and trions in electron-doped 2D
materials [20]. Our main results are summarized below.

Excitons and trions in doped materials can be described by
two coupled Schrödinger-like equations. One is the standard
two-body Schrödinger equation of a CB electron interacting
with a VB hole (or an exciton) [20] and the other is a
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FIG. 1. Bound exciton (left) and bound trion (right) states in an
n-doped 2D material are depicted. A bound trion is a four-body state
and consists of two conduction band (CB) electrons, a valence band
(VB) hole, and a CB hole. When the background electron density is
nonzero, these two states are coupled due to electron-electron and
electron-hole Coulomb interactions.

four-body Schrödinger equation of two CB electrons interact-
ing with a VB hole and a CB hole (see Fig. 1). A trimmed
version of the latter, obtained by dropping the CB hole, is the
standard three-body Schrödinger equation that is commonly
used to describe trions [2,3,6,7,11,12]. The CB hole is created
when an electron is scattered out of the Fermi sea. Trions
states are therefore identified with the eigenstates of this four-
body Schrödinger equation. These two Schrödinger equations
emerge naturally from the density-matrix approach. The most
interesting fact is that these two equations are coupled via
Coulomb matrix elements that result from electron-electron
and electron-hole interactions. Therefore, exciton and trion
states are not independent excitations in doped materials.
The solution of these two coupled equations provide a sim-
ple but exact description of an exciton interacting with CB
electrons (within the purview of an exciton exciting only
single electron-hole pairs at a time in the CB). Solutions of
these two coupled equations can quantitatively explain all
the prominent features experimentally observed in the optical
absorption spectra of 2D materials, including the observation
of two prominent absorption peaks and the variation of their
energy splittings, spectral strengths, and spectral linewidths
with the electron density. Interestingly, the exact solution of
these two equations resembles the variational exciton-polaron
solution [9,10], thereby establishing the relationship between
the two approaches. The solutions obtained in this paper also
explicitly satisfy the optical conductivity sum rule exactly at
all carrier densities.

The eigenspectrum of the four-body Schrödinger equation
has bound states, which are bound states of an exciton and a
CB electron-hole pair, and unbound states, which are exciton-
electron scattering states. However, these eigenstates of the
four-body Schrödinger equation as well as the eigenstates
of the two-body Schrödinger equation are not eigenstates of
the full Hamiltonian in the presence of a nonzero electron
density because of Coulomb interactions. The eigenstates
of the full Hamiltonian are more accurately superpositions
of two-body exciton and four-body trion states. The two
prominent peaks observed in the optical absorption spectra
of doped 2D materials correspond to these superposition
eigenstates. The essential physics is as follows. An exciton
can Coulomb excite a CB electron-hole pair and bind it to
form a trion. But it is energetically favorable for the exciton

to release this bound CB electron-hole pair and excite another
CB electcron-hole pair and bind it (or scatter from it). These
virtual transitions can occur at the lowest electron densities,
even when the Fermi energy is much smaller than the binding
energy of the four-body trion state. The energy thus gained is
responsible for the observed near-linear increase in the energy
splitting of the two absorption peaks with the Fermi energy
[1,5]. The picture described here also captures the essential
physics associated with the exciton-polarons. The main two
peaks observed experimentally in the optical absorption spec-
tra result from the coupling between the two-body exciton
and four-body trion states and have also been identified as
the repulsive and attractive exciton-polarons absorption peaks
by Efimkin and MacDonald [8]. A complete and accurate
description of the problem requires using both the bound and
the unbound states of the four-body Schrödinger equation.
Exciton-electron scattering is thereby also included in our
analysis.

In this paper, we have focused on single CB electron-
hole pair excitation by an exciton and have ignored multiple
electron-hole pair excitations that are expected to become
important when the Fermi energy approaches the exciton
binding energy [8]. Effects related to Fermi edge singularities
[15,16], which involve multiple electron-hole pair excitations
and are expected to become important if the hole mass or the
exciton mass were much bigger than the electron mass (which
is not the case in most 2D materials, including TMDs), are
therefore also ignored. Our paper shows that a description
based on single pair excitations can adequately explain the
prominent features of the experimentally measured optical
absorption spectra of 2D materials.

In the light of the introductory discussion above, the name
trion seems like a misnomer since the involved states are either
two-body or four-body states. But given the long history of
the use of this terminology, in this paper we will use the term
trion for the eigenstates of the four-body Schrödinger equation
(Fig. 1). Recently, we became aware of an earlier work by
Suris [14] in which mixed exciton-trion modes had been in-
troduced to account for the coupling between the excitons and
the trions resulting from Coulomb interactions. Suris was also
the first one to argue that it would be energetically favorable
for the CB hole to bind to the two CB electrons and one VB
hole in a bound trion state as a result of trion-exciton coupling.
The work presented here is conceptually along the same lines,
but our approach is different in many ways. The use of coupled
two-body and four-body Schrödinger equations enables one to
include the effects of the electron density, as well as the effects
of exciton-trion coupling, on the wave functions and the bind-
ing energies of excitons and trions. Our approach, which does
not involve wave-vector-independent Coulomb potentials and
artificial cutoffs of momentum integrals [8,10,13] enables us
to obtain quantitative results for excitons and trions in 2D
materials. Suris had also ignored direct Coulomb interactions
between the CB hole and the three other particles in a bound
trion state. Our four-body Schrödinger equation includes these
interactions which cannot be ignored at the moderate to high
electron densities at which trion signatures are experimentally
observed in 2D materials. In agreement with the reported
experimental results on 2D materials, but not in agreement
with the conclusions drawn by Suris, we do not find any broad
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absorption bands in the optical absorption spectra associated
with trions states that do not have a bound CB hole. In
contrast to other previous works [8–10], our approach also
explicitly takes into account the electron’s spin and valley
degrees of freedom and exchange interactions. Finally, our
approach also sheds light on the debated question of whether
or not trions have appreciable optical oscillator strength. Our
results show that the trion states, defined in this paper as the
eigenstates of the four-body Schrödinger equation, have no
optical oscillator strength and their optical activity results only
from their Coulomb coupling to the exciton states.

II. THEORETICAL MODEL

In this section, we set up the Hamiltonian and derive the
main equations. Although the focus is on electron-doped 2D
TMD materials, the arguments are kept general enough to be
applicable to any 2D material.

A. Hamiltonian

We consider a 2D TMD monolayer at z = 0. In-plane
polarized light with a small in-plane momentum �Q is incident
on the layer. The Hamiltonian describing electrons and holes
in the TMD layer (near the K and K ′ points in the Brillouin
zone) interacting with each other and with the optical mode in
the rotating wave approximation is [2,17–19]

H =
∑
�k,s

Ec,s(�k)c†
s (�k)cs(�k) +

∑
�k,s

Ev,s(�k)b†
s (�k)bs(�k)

+ 1

A

∑
�q,�k,�k′,s,s′

U (q)c†
s (�k + �q)b†

s′ (�k′ − �q)bs′ (�k′)cs(�k)

+ 1

2A

∑
�q,�k,�k′,s,s′

V (q)c†
s (�k + �q)c†

s′ (�k′ − �q)cs′ (�k′)cs(�k)

+ h̄ω( �Q)a†( �Q)a( �Q)

+ 1√
A

∑
�k,s

(gsc
†
s (�k + �Q)bs(�k)a( �Q) + H.c.). (1)

Here, Ec,s(�k) and Ev,s(�k) are the conduction and VB energies.
s, s′ represent the spin/valley degrees of freedom in the 2D

material, and we assume for simplicity that the electron and
hole effective masses are independent of the spin/valley. U (�q)
represents Coulomb interaction between electrons in the CB
and VB and V (�q) represents Coulomb interaction among the
electrons in the CB. h̄ω( �Q) is the energy of a photon with
in-plane momentum �Q and gs is the electron-photon coupling
constant. Other than for phase factors that are not relevant in
the discussion that follows, gs for electron states near the band
edges in 2D TMDs can be given by [18,19]

gs = ev

√
h̄

2〈ε〉ω( �Q)
χ (z = 0), (2)

where v is the interband velocity matrix element [2,17–19]
and χ (z) describes the amplitude of the optical mode in the z
direction.

B. Density-matrix approach

We use a many-body density-matrix approach which has
been fairly successful in modeling exciton physics [20,21]
and it has also been previously used for trions in the limit of
vanishingly small electron densities [22].

We start from the Heisenberg equation for the photon
operator, which after averaging, is [20,21]

[
h̄ω( �Q) + ih̄

∂

∂t

]
〈a†( �Q, t )〉 = − 1√

A

∑
�k,s

gsP�Q(�k, s; t ). (3)

The polarization P�Q(�k, s; t ) equals the equal-time two-body

correlation 〈c†
s (�k + �Q, t )bs(�k, t )〉. Assuming from now on-

ward that in the steady state all the relevant equal-time cor-
relation functions have the time dependence e±iωt , the above
equation becomes

[h̄ω( �Q) + iε − h̄ω]〈a†( �Q)〉 = − 1√
A

∑
�k,s

gsP�Q(�k, s), (4)

where P�Q(�k, s; t ) = P�Q(�k, s)eiωt . The equation for P�Q(�k, s) is

[Ec,s(�k + �Q) − Ev,s(�k) + iγex − h̄ω]P�Q(�k, s) = − 1√
A

g∗
s〈a†( �Q)〉[1 − fc,s(�k + �Q)]

+ 1

A

∑
�q

U (�q)P�Q(�k + �q, s)[1 − fc,s(�k + �Q)] − 1

A

∑
�q, �p,s′

U (�q)

× T c
�Q (�k + (ξ + η) �Q − ξ �p, s; (ξ + η) �p − ξ �Q − �q, s′; �p, s′) + 1

A

∑
�q, �p,s′

V (�q)

× T c
�Q (�k + (ξ + η) �Q − ξ �p + �q, s; (ξ + η) �p − ξ �Q − �q, s′; �p, s′). (5)

Here, 〈c†
s (�k)cs(�k)〉 = fc,s(�k) is the electron occupation prob-

ability, γex is a phenomenological decoherence rate for the
polarization that includes dephasing due to all processes other

than exciton-electron scattering. The energies Ec,s(�k) include
renormalizations due to exchange at the Hartree-Fock level
(−(1/A)

∑
�q V (�q) fc,s(�k − �q)). λh = 1 − λe = mh/mex (mex =
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FIG. 2. A sampling of diagrams and processes that connect
two-body and four-body correlations in Eqs. (5) and (8). Coulomb
interactions are depicted by the vertical lines. The horizontal lines are
electron and hole propagators. Diagrams corresponding to exchange
processes are not shown.

me + mh), where me (mh) is the electron (hole) effective mass.
Equation (5), without the first term and the last two terms on
the right hand side (RHS), is the standard eigenvalue equation
for excitons [20,21]. Equation (5) is not Hermitian but it
can be converted into a Hermitian equation by rescaling the
eigenfunctions (see Appendix A). The Hermitian equation has
eigenvalues E ex

n ( �Q, s) and eigenfunctions φex
n, �Q(�k + λh �Q). The

eigenfunctions form a complete set.
The last two terms in Eq. (5) on the RHS contain four-

body correlations T c
�Q and correspond to the diagrams shown

in Figs. 2(a) and 2(b). Assuming that mtr = 2me + mh, ξ =
me/mtr, and η = mh/mtr, we define a four-body equal-time
correlation T�Q(�k1, s1; �k2, s2; �p, s2; t ) as follows:

〈
c†

s1
(�k1, t )c†

s2
(�k2, t )bs1 (�k1 + �k2 − ( �Q + �p), t )cs2 ( �p, t )

〉
. (6)

The underlined vector �k stands for �k + ξ ( �Q + �p). T�Q describes
the correlations arising from Coulomb interactions among
four particles: two CB electrons, a VB hole, and a CB hole. �Q
is the total momentum of this four-body state. We also define a
fully connected four-body correlation (as defined in the cluster
expansion technique [21]):

T�Q(�k1, s1; �k2, s2; �p, s2; t ) = T c
�Q (�k1, s1; �k2, s2; �p, s2; t ) − fc,s2 ( �p)P�Q(�k1 − �Q, s1; t )δ�k2, �p + fc,s2 ( �p)P�Q(�k2− �Q, s2; t )δs1,s2δ�k2, �p. (7)

The equation for the connected correlation T c
�Q (�k1, s1; �k2, s2; �p, s2) is found to be[

Ec,s1 (�k1) + Ec,s2 (�k2) − Ev,s1 (�k1 + �k2 − ( �Q + �p)) − Ec,s2 ( �p) + iγtr − h̄ω
]
T c

�Q (�k1, s1; �k2, s2; �p, s2)

= − 1

A

∑
�q

V (�q)T c
�Q (�k1 + �q, s1; �k2 − �q, s2; �p, s2)

[
1 − fc,s1 (�k1) − fc,s2 (�k2)

]

+ 1

A

∑
�q

U (�q)T c
�Q (�k1 + �q, s1; �k2, s2; �p, s2)

[
1 − fc,s1 (�k1)

] + 1

A

∑
�q

U (�q)T c
�Q (�k1, s1; �k2 − �q, s2; �p, s2)

[
1 − fc,s2 (�k2)

]

+ 1

A

∑
�q

V (�q)T c
�Q (�k1 + (ξ + η)�q, s1; �k2 − ξ �q, s2; �p + �q, s2) × [

fc,s2 ( �p) − fc,s1 (�k1)
]

+ 1

A

∑
�q

V (�q)T c
�Q (�k1 − ξ �q, s1; �k2 + (ξ + η)�q, s2; �p + �q, s2)

[
fc,s2 ( �p) − fc,s2 (�k2)

]

− 1

A

∑
�q

U (�q)T c
�Q (�k1 − ξ �q, s1; �k2 − ξ �q, s2; �p + �q, s2) fc,s2 ( �p) + fc,s2 ( �p)

A

∑
�q

V (�q)
[
1 − fc,s1 (�k1) − fc,s2 (�k2)

]

× [
P�Q(�k1 − �Q + �q, s1)δ�k2−�q, �p − P�Q(�k2 − �Q − �q, s2)δ�k1+�q, �pδs1,s2

]
− fc,s2 ( �p)

A

∑
�q

U (�q)
{
P�Q(�k1 − �Q, s1)δ�k2−�q, �p

[
1 − fc,s2 (�k2)

] − P�Q(�k2 − �Q, s2)δ�k1+�q, �pδs1,s2

[
1 − fc,s1 (�k1)

]}
. (8)

In deriving the above equation, all six-body correlations are
reduced to four-body correlations using the cluster expansion
[21]. By ignoring higher order correlations, we are ignoring
the generation of multiple particle-hole pairs in the CB. Here,
γtr is a phenomenological decoherence rate. If �re1, �re2, �rh1,
are �rh2 the coordinates of the two electrons, the VB hole
and the CB hole, respectively, then �k1, �k2, �Q, and �p are the

momenta associated with the coordinates �re1 − �rh1, �re2 − �rh1,
�R = ξ (�re1 + �re2) + η�rh1, and �R − �rh2, respectively. Here, �R is
the center-of-mass coordinate of the two electrons and the
VB hole. Ignoring the last two terms on the RHS in Eq. (8)
that involve P�Q, Fourier transform of the remaining terms will
result in a four-body Schrödinger equation. Each term on the
RHS in the above equation (except the last two) describes
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Coulomb interaction between two of the four particles.The
last two terms involving P�Q capture the generation of four-
body correlation from two-body correlation or the creation of
an CB electron-hole pair by an exciton and correspond to the
diagrams shown in Figs. 2(c) and 2(d). We should mention
here that an equation similar to Eq. (8) was obtained by Esser
et al. [22], but in that work the connected nature of T c

�Q was
overlooked, the terms containing interactions with the CB
hole were ignored, the phase-space restricting factors were
ignored too, and, most importantly, the terms containing the
polarization P�Q were also missed. Ignoring the coupling to P�Q
in Eq. (8) is equivalent to ignoring exciton-trion coupling via
Coulomb interactions.

Equations (5) and (8) are a closed system of coupled
Schrödinger equations for two-body and four-body systems.

C. Trion states

The trion states are defined here as the eigenstates of the
four-body Schrödinger equation given in Eq. (8). Equation (8)
is not Hermitian but it can be converted into a Hermitian equa-
tion (see Appendix B) with a few suitable approximations and
the eigenfunctions therefore form a complete set. The eigen-
functions are written as φtr

m, �Q(�k1, s1; �k2, s2; �p, s2). The corre-

sponding eigenenergies are E tr
m ( �Q, s1, s2). The eigenstates in-

clude bound four-body states, unbound exciton-electron scat-
tering states, and completely unbound four-body states. The
latter have high energies and may be ignored here. The eigen-
functions φtr

m, �Q(�k1, s1; �k2, s2; �p, s2) are either symmetric or

antisymmetric in �k1 and �k2 depending on the values of s1 and
s2 and on the spin state of the two electrons (singlet or triplet).

D. The fate of the conduction band hole

The fourth, fifth, and sixth terms on the RHS in the four-
body Schrödinger equation include interactions involving the
CB hole that is generated when an electron is scattered out

of the Fermi sea by the exciton to form a trion. The CB hole
wave function can have a radius no smaller than ∼1/kF in
real space and therefore it can be much larger than the exciton
and the three-body trion radii at small electron densities. For
this reason, interactions involving the CB hole have been
ignored in previous works [8–10,14]. Here we argue that the
CB hole needs to be taken into account in bound trion states.
Signatures of bound trion states are observed only at moderate
to high electron densities in 2D materials (n > 1012 cm−2) at
which Fermi energy can be appreciable. The left hand side
(LHS) of Eq. (8) has the energies of the photoexcited CB
electron, the VB hole, and the initial and final energies of
the CB electron scattered out of the Fermi sea. All energies
include renormalization due to exchange. An electron within
the Fermi sea has a larger energy renormalization than an
electron well outside the Fermi sea [20]. Consequently, when
an electron is scattered out of the Fermi sea to bind to an
exciton and form a tightly bound trion state, the difference
in its initial and final exchange energies, as given by the
terms on the LHS of Eq. (8), can be pretty large—so much
so that a bound trion state may not even be energetically
possible except at very small electron densities. The inclusion
of the terms on the RHS of Eq. (8), which include Coulomb
interactions involving the CB hole, make up for this energy
difference and make bound trion states possible and energet-
ically favorable provided the CB hole, along with the CB
electron, gets bounded to the exciton to make a four-body
bound state depicted in Fig. 1. In addition to direct Coulomb
interactions involving the CB hole, and as shown in the earlier
work of Suris [14], exciton-trion coupling, and the energy
gained therewith, also favors the binding of the CB hole to
the exciton and the CB electron in a four-body bound state.

E. Exciton self-energy and optical conductivity

A formal solution of Eq. (8) can be written in terms of its
eigenfunctions as

T c
�Q (�k1, s1; �k2, s2; �p, s2) = −(1 + δs1,s2 )

∑
m

√
fc,s2 ( �p)

[
1 − fc,s1 (�k1)

][
1 − fc,s2 (�k2)

] φtr
m, �Q(�k1, s1; �k2, s2; �p, s2)

h̄ω − E tr
m ( �Q, s1, s2) − iγtr

× 1

A4

∑
�k′

1, �p′,�q
φtr∗

m, �Q(�k′
1, s1; (ξ + η) �p′ − ξ �Q + �q, s2; �p′, s2)

√
fc,s2 ( �p′)

[
1 − fc,s2 ( �p′ + �q)

]

×
⎧⎨
⎩

√
1 − fc,s1 (�k′

1)V (�q)P�Q(�k′
1 − �Q + �q, s1) − U (�q)

P�Q(�k′
1 − �Q, s1)√

1 − fc,s1 (�k′
1)

⎫⎬
⎭. (9)

The summation over m above implies a summation over all bound and unbound trion states consistent with the values of s1 and
s2. The above solution can be used in Eq. (5) to obtain the polarization,

P�Q(�k, s) = g∗
s√
A

〈a†( �Q)〉
∑

n

√
1 − fc,s(�k + �Q)

φex
n, �Q(�k + λh �Q)

h̄ω − E ex
n ( �Q, s) − iγex − �ex∗

n,s ( �Q, ω)

×
∫

d2�k′

(2π )2
φex∗

n, �Q(�k′ + λh �Q)
√

1 − fc,s(�k′ + �Q). (10)

Here, the summation over n implies a summation over all bound and unbound exciton states. The expression for the exciton
self-energy �ex

n,s( �Q, ω) is given below. The above result can be used in Eq. (4) to obtain an expression for the optical conductivity
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σ �Q(ω) of the 2D material:

σ �Q(ω) = i
e2v2

ω

∑
n,s

∣∣∣∣∣
∫

d2�k′

(2π )2
φex

n, �Q(�k′ + λh �Q)
√

1 − fc,s(�k′ + �Q)

∣∣∣∣∣
2

h̄ω − E ex
n ( �Q, s) + iγex − �ex

n,s( �Q, ω)
. (11)

The exciton self-energy can be expressed as

�ex
n,s( �Q, ω) =

∑
m,s′

(1 + δs,s′ )|Mm,n( �Q, s, s′)|2
h̄ω − E tr

m ( �Q, s, s′) + iγtr

. (12)

The summation over m above implies a summation over all
bound and unbound trion states consistent with the values of
s and s′. Mm,n( �Q, s, s′) equals

1

A3

∑
�k, �p,�q

φtr∗
m, �Q(�k − ξ ( �p + �Q), s; (ξ + η) �p − ξ �Q + �q, s′; �p, s′)

×
√

fc,s′ ( �p)[1 − fc,s′ ( �p + �q)]

× {√
[1 − fc,s(�k)][1 − fc,s(�k + �q)] V (�q)

×φex
n, �Q(�k − λe �Q + �q) − U (�q)φex

n, �Q(�k − λe �Q)
}
. (13)

It is evident from the above expression that the coupling term
Mm,n( �Q, s, s′) increases with the electron density. The self-
energy expression in Eq. (12) assumes that an exciton state
does not couple to a different exciton state due to Coulomb
interactions via an intermediate trion state. Given that the
energy separation between the lowest energy exciton state and
the higher energy exciton states in 2D materials can be in the
hundreds of milli electron volts range [4], the approximation
made in this assumption is expected to be very good for the
lowest energy exciton state.

The expressions in Eqs. (11) and (12) constitute the main
results of this paper. The optical conductivity in Eq. (11)
corresponds to the diagrams and processes shown in Fig. 3.
Only fully connected diagrams contribute to the optical con-
ductivity. Diagrams with multiple particle-hole excitations at
the same time are not included in this paper.

F. Unbound trion states: Exciton-electron scattering

The expression for the exciton self-energy in Eq. (12)
includes coupling with all bound trion states as well as
unbound trion states. The latter are just exciton-electron
scattering states and need to be treated carefully. The
symmetric/antisymmetric four-body wave function, with cen-
ter of mass momentum �Q, of a state consisting of an exciton
scattered from initial momentum �Q to �Q − �qo, and an elec-
tron scattered from initial momentum �po inside the Fermi
sea to momentum �po + �qo outside the Fermi sea, can be

approximated as

φtr
m, �Q(�k1, s1; �k2, s2; �p, s2)

≈
[√

A

2
φex

n, �Q−�qo
(�k1 + (ξ − λe) �Q + ξ �po + λe �qo)

× δ�k2,(ξ+η) �po−ξ �Q+�qo
± {�k1 ↔ �k2}

]

×
√

A fc,s2 ( �po)δ �po, �p. (14)

The summation over the index m in Eq. (12) would now
involve a summation over all momenta �po inside the Fermi
sea and all transferred momenta �qo, as well as all symmetric
and antisymmetric states consistent with the values of s and s′.
The energy of the above state, for small values of �Q and �qo, is

E tr
m ( �Q, s1, s2) → E ex

n ( �Q = 0, s1, s2) + h̄2q2
o

2mT

− h̄2

(
�Q

mex
− �po

me

)
· �qo. (15)

Here, E ex
n ( �Q = 0, s1, s2) = 0.5(E ex

n ( �Q = 0, s1) + E ex
n ( �Q =

0, s2)). mT = mexme/(mex + me), is the reduced mass of
the exciton and the electron. Use of the state in Eq. (14)
to evaluate exciton-electron scattering contributions to the
self-energy in Eq. (12) is equivalent to the use of the Born
approximation in exciton-electron scattering [23]. The

FIG. 3. A sampling of diagrams and processes that contribute to
the optical conductivity. Curved horizontal lines represent electron
and hole propagators. The double horizontal line is the photon
propagator. Coulomb interactions are depicted by the vertical lines.
The small circles represent electron-hole pairs excited in the conduc-
tion band by the photogenerated exciton. Only fully connected dia-
grams contribute to the optical conductivity. Diagrams with multiple
electron-hole pair excitations in the conduction band are not included
in this paper.
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contribution of exciton-electron scattering to the exciton self-energy is found to be

�ex
n,s( �Q, ω)|ex−e =

∑
u,s′

∫
d2 �qo

(2π )2

∫
d2 �po

(2π )2
fc,s′ ( �po)

(1 + δs,s′ )|hn,u( �Q, �po, �qo, s, s′)|2
h̄ω −

[
E ex

n ( �Q = 0, s, s′) + h̄2q2
o

2mT
− h̄2

( �Q
mex

− �po

me

)
· �qo

]
+ iγtr

. (16)

The summation over the variable u = ±1 involves a sum-
mation over all symmetric and antisymmetric unbound trion
states (or exciton-electron scattering states) consistent with
the values of s and s′. The expression for hn,u( �Q, �po, �qo, s, s′)
is given in the Appendix.

G. Optical conductivity sum rule

This optical conductivity sum rule for 2D TMDs can
be derived from the restricted Thomas-Reiche-Kuhn optical
conductivity sum rule [24] and, assuming a full VB, can be
expressed as [24]∫ ∞

0
ωRe{σ �Q(ω)} dω

2π
= e2v2

2h̄

∑
s

∫
d2�k

(2π )2 (1 − fc,s(�k)). (17)

Here, v is the interband velocity matrix element between
the VB and CB Bloch states (see Sec. II A). Band filling is
incorporated into the above sum rule. The completeness of the
exciton eigenfunctions φex

n, �Q(�k) can be used to show that the
derived optically conductivity in Eq. (11) satisfies the above
sum rule exactly.

III. VARIATIONAL EIGENSTATES AND CONNECTION
WITH EXCITON-POLARON STATES

Variational states for exciton-polarons have been con-
structed in previous works [9,10]. These variational states
resemble the Fermi polaron states of an impurity atom in
a cold Fermi gas [25–27]. Here we show that variational
states can be constructed using the eigenstates of the two-
body and four-body Schrödinger equations in Eqs. (5) and
(8), respectively, and which give results for the eigenenergies
in exact agreement with the exciton self-energy given in
Eq. (12). The eigenenergies can be obtained from the poles of
the exciton Green’s function and these energies are the roots
of the equation,

h̄ω − E ex
n ( �Q, s) + iγex − �ex

n,s( �Q, ω) = 0, (18)

where the exciton self-energy is as given in Eq. (12). Since the
two-body and four-body Schrödinger equations are coupled
via the Coulomb matrix elements, one can construct approx-
imate eigenstates of the Hamiltonian (within the purview of
single CB electron-hole pair excitations) by a simple superpo-
sition as follows:

|ψn,s( �Q)〉 = αn√
A

∑
k

φex∗
n, �Q(�k)

Nex

× c†
s (�k + λe �Q)bs(�k − λh �Q)|GS〉

+
∑
m,s′

βm√
A3

�k1,�k2 
= �p∑
�k1,�k2, �p

φtr∗
m, �Q(�k1, s; �k2, s′; �p, s′)

Ntr

× c†
s (�k1)c†

s′ (�k2)bs(�k1 + �k2

− ( �Q + �p))cs′ ( �p)|GS〉, (19)

where |GS〉 is the ground state of the electron doped material.
The above state resembles a Fermi-polaron variational state
[10,25–27]. The normalization terms are

Nex =
√

1 − fc,s(�k + λe �Q),

Ntr =
√

(1 + δs,s′ ) fc,s′ ( �p)[1 − fc,s(�k1)][1 − fc,s′ (�k2)]. (20)

The underlined vectors, �k1 and �k2, are defined as earlier
in Sec. II B. The states in the superposition are properly
normalized and are orthogonal. The restrictions �k1, �k2 
= �p in
the summations in the second term follow from the fact that
the states of the four-body Schrödinger equation correspond
to fully connected diagrams and should have no direct optical
matrix element with the ground state |GS〉. This restriction
also keeps the superposed trion states in the variational state
orthogonal to the exciton states. When the variational state
given above is used to minimize energy with respect to
the Hamiltonian given earlier in Eq. (1), the eigenfunctions
φtr

m, �Q(�k1, s; �k2, s′; �p, s′) and φex
n, �Q(�k), as expected, are found to

obey the coupled two-body and four-body Schrödinger equa-
tions, the trion states are found to be coupled to the exciton
states via the Coulomb matrix elements Mm,n( �Q, s, s′) given
earlier [see Eq. (13)], and the energy eigenvalues h̄ω are found
to obey Eq. (18) provided γex and γtr are set to zero. There-
fore, the same physics is captured by our coupled two-body
and four-body Schrödinger equations and the exciton-polaron
formalism. Furthermore, the optical conductivity calculated
using the above variational state also matches the one found
earlier in Eq. (11). The formalism presented here shows that
the variational polaron state can be written in terms of the
eigenstates of the two-body and the four-body Schrödinger
equations (i.e., in terms of the exciton and trion eigenstates)
and that all bound and unbound trion states must be included
in the variational polaron state. Signatures of the resulting
quantum coherence between the exciton and trion states have
been observed experimentally [28].

IV. NUMERICAL SIMULATION RESULTS
AND DISCUSSION

For simulations, we consider a monolayer of 2D MoSe2 on
a SiO2 substrate. In monolayer MoSe2, spin splitting of the
CBs is large (∼35 meV [29]) and the lowest CB in each of
the K and K ′ valleys is optical coupled to the topmost VB
[30]. We use effective mass values of 0.7mo for both me and
mh which agree with the recently measured value of 0.35mo

for the exciton reduced mass [31]. We use a wave-vector-
dependent dielectric constant ε(�q) for the Coulomb potentials
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appropriate for 2D materials, as described in our earlier work
[2], to screen the Coulomb potentials. We should emphasize
here that besides γex and γtr, and unlike in previous works
[8,10], there are no other free parameters in our theoretical
model and no artificial upper cutoffs of momenta integrals to
avoid divergences.

A. Trion and exciton radii and energies

As discussed in previous works [2,3,8–10], exchange cor-
relations favor only singlet trion bound states in MoSe2, in
which the exciton belongs to one valley and the CB electron-
hole pair belongs to the other valley. We write a product
variational wave function for the lowest energy four-body
bound singlet trion eigenstate with �Q = 0, as follows:

φtr
m=0, �Q=0

(�k1, s1; �k2, s2; �p, s2) = χ (�k1, s1; �k2, s2)ϕ( �p, s2). (21)

We assume the following symmetric variational wave function
for χ (�r1, s1; �r2, s2) (assuming s1 
= s2) [2,3,12]:

χ (�r1, s1; �r2, s2) ∝ [e−|�r1|/atr−|�r2|/btr + {�r1 ↔ �r2}]. (22)

The trion radii, atr and btr, are variational parameters. The
form of the CB hole wave function ϕ( �p, s2) is chosen so as to
minimize Coulomb energy and maximize coupling between
the trion and exciton states, as discussed in Sec. II D. Since
the trion radii are expected to be much smaller than the
size of the CB hole, which cannot be smaller than ∼1/kF ,
the simplest and the easiest way to get the smallest CB
hole is to assume that ϕ( �p, s2) = √

fc,s2 ( �p)/ns2 , where proper
wave-function normalization requires ns2 = A−1 ∑

�p fc,s2 ( �p).

For the lowest energy �Q = 0 bound exciton state, we use the
variational wave function [2,3,12]:

φex
n=0, �Q=0

(�r) ∝ e−|�r|/aex . (23)

Using the radii, atr, btr, and aex as variational parameters,
we find the eigenenergies, E tr

m=0( �Q = 0, s1, s2) and E ex
n=0( �Q =

0, s1), as a function of the electron density. The results are
shown in Fig. 4 which plots these energies referenced to the
material band gap Eg. The corresponding trion and exciton
radii are plotted in Fig. 5. The trion binding energy E tr

b , de-
fined as E ex

n=0( �Q = 0, s1) − E tr
m=0( �Q = 0, s1, s2), is also plot-

ted. The exciton binding energy decreases with the electron
density due to phase space filling [2]. The trion binding energy
first increases with the electron density and then it decreases.
The initial increase is due to two reasons:

(1) Suppose an exciton with center of mass momentum
�Q = 0 grabs an electron with momentum �p within the Fermi
sea to form a four-body bound state with momentum �Q = 0.
The center of mass kinetic energy of the four-body state would
be h̄2 p2/(2mt ) − h̄2 p2/(2me). The first term is the center of
mass kinetic energy of the two CB electrons and one VB
hole in the four-body bound state. The second term represents
the kinetic energy of the CB hole in the four-body bound
state. These energies are included in the terms on the LHS
of Eq. (8). Averaging this energy with respect to the CB hole
wave function ϕ( �p, s) contributes a factor EF /3 to the trion
binding energy.

FIG. 4. Calculated energies, E tr
m=0( �Q = 0, s1, s2) and E ex

n=0( �Q =
0, s1), of the lowest energy bound trion and exciton states, respec-
tively, referenced to the material band gap, are plotted as a function
of the electron density (and Fermi energy) for monolayer 2D MoSe2

on SiO2. Trion binding energy E tr
b is also plotted. T = 5 K.

(2) At small electron densities, phase-space filling restricts
electron-electron Coulomb repulsion more than electron-hole
Coulomb attraction.

As the electron density increases further, the reduced phase
space diminishes electron-hole Coulomb attraction as well
and the binding energy of the trion decreases rapidly. It
remains an open question if the trion binding energy even-
tually goes to zero or not at high enough electron densi-
ties. The approximations made in this paper do not permit
us to generate reliable results for electron densities higher
than 2 × 1013 cm−2. Interestingly, the Fermi energy remains
smaller than the trion binding energy for electron densities
smaller than ∼1013 1/cm3. Note that the binding energies of
the exact energy eigenfunctions are expected to be larger than

FIG. 5. Calculated trion radii, atr and btr, for the variational trion
wave function, and the exciton radius aex for the variational exciton
wave function are plotted as a function of the electron density (and
Fermi energy) for monolayer 2D MoSe2 on SiO2. T = 5 K.
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FIG. 6. Calculated real part of the optical conductivity, σ �Q=0(ω),
is plotted for different electron densities for monolayer 2D MoSe2

on SiO2. The spectra are all normalized to peak optical conductivity
value at zero electron density. T = 5 K. The frequency axis is offset
by the exciton eigenenergy E ex

0 ( �Q, s) of the two-body Schrödinger
equation.

our variational solutions. In this paper, no bound trions states
with an antisymmetric wave function were found even for
vanishingly small electron densities. In addition, no bound
trion states were found in which the CB hole was not bound
to the two CB electrons and the VB hole.

Figure 5 shows that the exciton and the larger trion radii de-
crease with the electron density because phase-space blocking
inside the Fermi surface causes the wave functions to spread
out more in the momentum space [2]. For electron densities
higher than ∼5 × 1012 cm−2, the two trion radii are almost
identical and approximately equal to 0.9 nm.

B. Optical conductivity spectra

Figure 6 shows the calculated real part of the optical
conductivity σ �Q=0(ω) plotted for different electron densities
for monolayer 2D MoSe2 on SiO2. The expression in Eq. (11)
has been used to generate the plots in Fig. 6. In our optical
conductivity calculations, we have included only the lowest
energy bound exciton and bound trion states, as well as the
unbound trion states that describe exciton-electron scattering
for the lowest energy bound exciton state in the Born approx-
imation, as discussed in Sec. II F. The values of γex and γtr

were both chosen to be 4 meV.
The spectra shows two distinct peaks. At small electron

densities, the higher energy peak dominates and carries all the
spectral weight. As the electron density increases, the spectral
weight shifts from the higher energy peak to the lower energy
peak. The higher and lower energy peaks have also been called
repulsive and attractive exciton-polaron peaks, respectively,
by Efimkin and MacDonald [8]. Very often in the literature
they are just referred to as the exciton peak and the trion peak,

FIG. 7. Calculated energy difference between the two dominant
peaks in the optical absorption spectra in Fig. 6 is plotted as a
function of the Fermi energy EF for monolayer 2D MoSe2 on SiO2.
The dashed line has unit slope and shows that the calculated energy
difference varies as EF at high electron densities.

respectively [1,5]. These two peak arise from the Coulomb
coupling of the excitons and the trions, as discussed earlier
in this paper. For very small electron densities, their energies
coincide with those of excitons and trions as obtained from
the two-body and the four-body Schrödinger equations. The
coupling between the excitons and the trions, described by
the matrix elements Mm,n( �Q, s, s′) in Eq. (13), increases with
the electron density and, therefore, the energy difference
between the two peaks in the absorption spectra also increases
with the electron density. Figure 7 plots this energy difference
as a function of the Fermi energy EF for monolayer 2D
MoSe2 on SiO2. The dashed line has unit slope and shows
that the calculated energy difference varies approximately as
EF at high electron densities. Figure 6 shows that as the
electron density increases, the lower energy peak shifts down
to lower energies much more than the upward motion of the
higher energy peak. This happens because the continuum of
exciton-electron scattering states lies just above the higher
energy peak and prevents the higher energy peak from moving
upward too much. Figure 8 plots the peak optical conductivity
(real part) of the two absorption peaks, normalized to the peak
optical conductivity at zero electron density, as a function of
the electron density. The lower energy peak begins to domi-
nate when the electron density exceeds 6 × 1012 cm−2. As the
electron density increases, the higher energy peak also loses
spectral weight to the broad continuum of single electron-hole
pair excitations from exciton-electron scattering. This results
not only in the broadening of the higher energy peak but
also in the appearance of a broad pedestal around the base
of the peak that is more prominent on its higher energy
side. The lower energy peak, on the other hand, does not
broaden as the electron density increases. Figure 9 shows
the (FWHM) linewidth (with 2γex subtracted) of the higher
energy absorption peak plotted as a function of the elec-
tron density for monolayer 2D MoSe2 on SiO2. The plotted
linewidth with 2γex subtracted displays the linewidth resulting
from just exciton-electron interactions. The contribution to the
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T = 5K

FIG. 8. The maximum optical conductivity (real part) values of
the two absorption peaks in Fig. 6, normalized to the maximum
optical conductivity value at zero electron density, are plotted as a
function of the electron density for monolayer 2D MoSe2 on SiO2.

linewidth from exciton-electron interactions increases almost
linearly with the electron density (and the Fermi energy).

The integrated area under the plotted conductivity spectra
in Fig. 6 is almost conserved (but not exactly conserved) as the
electron density increases, in agreement with the sum rule in
Eq. (17). These observations are all in good agreement with
the experimental results reported for 2D materials [1,5] and
with previous theoretical works [8,9,13].

V. CONCLUSION

In this paper, we presented a theoretical model that ex-
plains the behavior of trions and excitons in doped 2D mate-
rials. Coulomb scattering couples the exciton and trion states
in doped materials. This coupling is well described by two
coupled Schrödinger equations for excitons and trions that
we derived using the many-body density-matrix technique.
The calculated optical conductivity was shown to explain the
prominent features of the experimentally measured optical ab-
sorption spectra and also satisfy the optical conductivity sum
rule exactly. The eigensolution of the coupled Schrödinger
equations, constructed using a superposition of exciton and
trion states, had the same form as a Fermi polaron state and
revealed the connection between our approach and polaron
physics. The work presented here will help to clarify the
physics associated with excitons and trions in doped 2D
materials.

FIG. 9. The (FWHM) linewidth (with 2γex subtracted) of the
higher energy absorption peak in Fig. 6 is plotted as a function of
the electron density for monolayer 2D MoSe2 on SiO2. The plotted
linewidth with 2γex subtracted displays the linewidth resulting from
exciton-electron interactions. The linewidth of the lower energy
absorption peak in Fig. 6 does not change with the electron density.

There are still several questions that remain open in this
area. For example, it is not clear if the trion eigenequation has
bound states at very high electron densities (much larger than
∼1013 cm−2). If not, then how does the conductivity spectra
evolve at very high electron densities? At high enough elec-
tron densities, multiple electron-hole pair excitations, ignored
in this paper, are also expected to become important. Their
inclusion is expected to broaden the lower energy absorption
peak as well and steal spectral weight from it. Indeed, multiple
pair excitations have already been shown to play an impor-
tant role in Fermi polaron physics in atomic systems [32].
Finally, the role of Fermi edge affects, which involves multiple
electron-hole pair excitations, in this context is not clear but
they are also expected to become increasingly important at
high electron densities. Exploring answers to these questions
will be the subject of future work.
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APPENDIX A: HERMITIAN TWO-BODY EXCITON SCHRÖDINGER EQUATION

Equation (5), without the first term and the last two terms on the RHS, is the standard eigenvalue equation for excitons
[20,21]. However, the equation is not Hermitian. It can be converted into a Hermitian equation. We define P �Q(�k, s) as

P�Q(�k, s)/
√

1 − fc,s(�k + �Q). We also include [1 − fc,s(�k + �Q)] in the last term on the RHS of Eq. (5) containing the Coulomb
potential V (�q). This added factor does not show up at this level in the density-matrix technique but its inclusion ensures the
Hermiticity of the set of coupled two-body and four-body Schrödinger equations. Physically, it restricts the phase space for
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electron scattering just like the first and second terms on the RHS. With these definitions and changes, we obtain

[Ec,s(�k + �Q) − Ev,s(�k) + iγex − h̄ω]P �Q(�k, s) = − 1√
A

g∗
s〈a†( �Q)〉

√
1 − fc,s(�k + �Q) +

√
1 − fc,s(�k + �Q)

A

∑
�q

U (�q)

× P �Q(�k + �q, s)
√

1 − fc,s(�k + �Q + �q) − 1

A

∑
�q, �p,s′

U (�q)
T c

�Q (�k + (ξ + η) �Q − ξ �p, s; (ξ + η) �p − ξ �Q − �q, s′; �p, s′)√
1 − fc,s(�k + �Q)

+ 1

A

∑
�q, �p,s′

V (�q)
√

1 − fc,s(�k + �Q)T c
�Q (�k + (ξ + η) �Q − ξ �p + �q, s; (ξ + η) �p − ξ �Q − �q, s′; �p, s′). (A1)

The homogeneous part of the above equation is now a Hermitian eigenvalue equation. It has a complete set of orthonormal
eigenfunctions φex

n, �Q(�k + λh �Q). In the limit of very low electron density, when phase-space filling effects can be ignored, and
assuming Q << kF , the eigenenergies of the bound exciton states can be expressed as

E ex
n ( �Q, s) = E ex

n ( �Q = 0, s) + h̄2Q2

2mex
. (A2)

APPENDIX B: HERMITIAN FOUR-BODY TRION SCHRÖDINGER EQUATION

Equation (8), without the last two terms on the RHS, is a four-body eigenvalue equation for trions. The equation is not Her-
mitian. It can be converted into a Hermitian eigenvalue equation with a few approximations. The term [1 − fc,s1 (�k1) − fc,s2 (�k2)]
on the RHS can be replaced by [1 − fc,s1 (�k1)][1 − fc,s2 (�k2)]. The difference between the two, − fc,s1 (�k1) fc,s2 (�k2), stems from the
fact that the four-body correlation function T c

�Q can be nonzero if the correlations are between electrons outside the Fermi sea or
if they are between holes inside the Fermi sea. In this paper, correlation between holes in the Fermi sea may be ignored since the
trion radii are smaller than the inverse Fermi momentum for electron densities smaller than 2 × 1013 cm−2. Similarly, one can
replace the terms [ fc,s2 ( �p) − fc,s1/2 (�k1/2)] on the RHS by fc,s2 ( �p)[1 − fc,s1/2 (�k1/2)]. We then define T

c
�Q(�k1, s1; �k2, s2; �p, s2) as

T
c
�Q(�k1, s1; �k2, s2; �p, s2) =

T c
�Q (�k1, s1; �k2, s2; �p, s2)√

fc,s2 ( �p)
[
1 − fc,s1 (�k1)

][
1 − fc,s2 (�k2)

] . (B1)

With the above approximations and definitions, we obtain[
Ec,s1 (�k1) + Ec,s2 (�k2) − Ev,s1 (�k1 + �k2 − ( �Q + �p)) − Ec,s2 ( �p) + iγtr − h̄ω

]
T

c
�Q(�k1, s1; �k2, s2; �p, s2)

= −
√[

1 − fc,s1 (�k1)
][

1 − fc,s2 (�k2)
]

A

∑
�q

V (�q)T
c
�Q(�k1 + �q, s1; �k2 − �q, s2; �p, s2)

×
√[

1 − fc,s1 (�k1 + �q)
][

1 − fc,s2 (�k2 − �q)
] +

√
1 − fc,s1 (�k1)

A

∑
�q

U (�q)T
c
�Q(�k1 + �q, s1; �k2, s2; �p, s2)

×
√

1 − fc,s1 (�k1 + �q) +
√

1 − fc,s2 (�k2)

A

∑
�q

U (�q)T
c
�Q(�k1, s1; �k2 − �q, s2; �p, s2)

×
√

1 − fc,s2 (�k2 − �q) +
√

fc,s2 ( �p)
[
1 − fc,s1 (�k1)

]
A

∑
�q

V (�q)T
c
�Q(�k1 + (ξ + η)�q, s1; �k2 − ξ �q, s2; �p + �q, s2)

×
√

fc,s2 ( �p + �q)
[
1 − fc,s1 (�k1 + �q)

] +
√

fc,s2 ( �p)
[
1 − fc,s2 (�k2)

]
A

×
∑

�q
V (�q)T

c
�Q(�k1 + ξ �q, s1; �k2 − (ξ + η)�q, s2; �p − �q, s2)

√
fc,s2 ( �p − �q)

[
1 − fc,s2 (�k2 − �q)

]

−
√

fc,s2 ( �p)

A

∑
�q

U (�q)T
c
�Q(�k1 − ξ �q, s1; �k2 − ξ �q, s2; �p + �q, s2)

√
fc,s2 ( �p + �q)
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+
√

fc,s2 ( �p)
[
1 − fc,s1 (�k1)

][
1 − fc,s2 (�k2)

]
A

∑
�q

V (�q)
[
P�Q(�k1 − �Q + �q, s1)δ�k2−�q, �p − P�Q(�k2 − �Q − �q, s2)δ�k1+�q, �pδs1,s2

]

−
√

fc,s2 ( �p)

A

∑
�q

U (�q)

⎧⎨
⎩P�Q(�k1 − �Q, s1)√

1 − fc,s1 (�k1)
δ�k2−�q, �p

√
1 − fc,s2 (�k2) − P�Q(�k2 − �Q, s2)√

1 − fc,s2 (�k2)
δ�k1+�q, �pδs1,s2

√
1 − fc,s1 (�k1)

⎫⎬
⎭. (B2)

The homogeneous part of the above equation is now a Hermitian eigenvalue equation. It has a complete set of orthonormal
eigenfunctions φtr

m, �Q(�k1, s1; �k2, s2; �p, s2). In the limit of very low electron density, when phase-space filling effects can be ignored,
and assuming Q << kF , the eigenenergies of the bound trion states can be expressed as

E tr
m ( �Q, s1, s2) = E tr

m ( �Q = 0, s1, s2) + h̄2Q2

2mt
. (B3)

We should emphasize here that if the eigenstate in the form given in Eq. (19) is used as a variational state with the Hamiltonian
given in Eq. (1), then the resulting coupled equations for the two-body and four-body correlations would be identical to Eqs. (A1)
and (B2).

APPENDIX C: EXPRESSION FOR hn,u(�Q,�p,�q, s, s′ ) IN EQUATION (16)

The expression for hn,u( �Q, �p, �q, s, s′) appearing in Eq. (16) is given below:

√
2hn,u( �Q, �p, �q, s, s′) =

∫
d2�k

(2π )2
V (�q)

√
1 − fc,s′ ( �p + �q)

√
1 − fc,s(�k + λe �Q)

√
1 − fc,s(�k + λe �Q − �q)φex∗

n, �Q−�q(�k − λh �q) φex
n, �Q(�k)

+ u
∫

d2�k
(2π )2

V ( �p + �q − λe �Q − �k)
√

1 − fc,s( �p + �q)
√

1 − fc,s(�k + λe �Q)
√

1 − fc,s′ (�k + λe �Q − �q)

×φex∗
n, �Q−�q(�k − λh �q) φex

n, �Q(�k) −
∫

d2�k
(2π )2

U (�q)
√

1 − fc,s′ ( �p + �q)

×φex∗
n, �Q−�q(�k + λe �q) φex

n, �Q(�k) − u
∫

d2�k
(2π )2

U ( �p − λe �Q − �k)
√

1 − fc,s′ (�k + λe �Q)

×φex∗
n, �Q−�q(�k + λe �q) φex

n, �Q( �p + �q − λe �Q). (C1)

Here, u = ±1 depending on whether the exciton-electron scattering state (or the unbound trion state), as given in Eq. (14), is
symmetric or antisymmetric (consistent with the values of s and s′).

APPENDIX D: THE IMPORTANCE OF INCLUDING
EXCITON-ELECTRON SCATTERING STATES

(UNBOUND TRION STATES)

An important point that needs to emphasized is that with-
out including exciton-electron scattering, that takes spectral
weight away from the higher energy peak as shown in Fig. 6,
the peak optical conductivity of the lower energy peak can
never exceed the peak conductivity of the higher energy
peak. This follows from the basic physics of two coupled
systems and can be seen as follows. Assuming γex = γtr = γ

for simplicity, �Q = 0, and ignoring exciton-electron scattering
states, the poles of the exciton’s Green’s function will be at
energies given by Eq. (18) and are found to be

h̄ω = E ex
0 + E tr

0

2
− iγ ±

√(
E ex

0 − E tr
0

2

)2

+ |M0,0|2. (D1)

The corresponding spectral weights for the lower and higher
energy peaks in the optical absorption spectra would be

proportional to W and 1 − W , respectively, where

W =

√(
E ex

0 − E tr
0

2

)2

+ |M0,0|2 −
(

E ex
0 − E tr

0

2

)

2

√(
E ex

0 − E tr
0

2

)2

+ |M0,0|2
. (D2)

When the electron density is zero, M0,0 is zero, and the
spectral weight all lies in the higher energy exciton peak in the
optical absorption spectrum. As the electron density increases,
the spectral weight begins to shift to the lower energy peak.
But even when the electron density, and therefore M0,0, are
very large, the value of W never exceeds 1/2. Including the
contribution of exciton-electron scattering states (or unbound
trion states) is therefore necessary in producing the results
shown in Fig. 6 (where the peak optical conductivity of the
lower energy peak is shown to become much larger than the
peak optical conductivity of the higher energy peak at high
electron densities) and accurately reproducing the experimen-
tal observations [1,5].
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