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Excitons in planar quantum wells based on transition metal dichalcogenides
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The problem of a size quantization for charge carriers in a planar quantum well consisting of different
monolayers of transition metal dichalcogenides is solved using the Dirac model and the four-band model. For
excitons, bound states of electrons and holes at the size quantization levels in such a quantum well, the energy
spectrum was found in two cases: the Bohr radius is much smaller than the width of the quantum well (dielectric
permeability of a substrate is relatively small) and the Bohr radius is much larger than it (the case of a strong
dielectric screening). It is shown that the energy spectra in these two cases are completely different. A method
for the synthesis of the heterostructures under consideration is also proposed.
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I. INTRODUCTION

The solid-state physics community is fascinated by two-
dimensional (2D) materials. Great interest is caused by their
unusual properties and the prospects provided by them in
many areas, from nanoelectronics and photovoltaics to bio-
logical applications (e.g., biosensors or drug delivery). One
of the brightest representatives of this rich diverse cohort is
graphene, the most well-studied-to-date 2D crystal.

Since the 2010s, different 2D materials have been used as
the “design cubes” of vertical (layered) heterostructures. Tran-
sition metal dichalcogenides (TMDs) and their doped versions
are particularly noteworthy for this purpose. Individual layers
of 2D materials may be stacked on each other to synthesize
single and double quantum wells (QWs), superlattices, etc.
The layers are bound together through van der Waals attrac-
tion. Therefore, such heterostructures are also referred to as
van der Waals heterostructures [1].

Given the number of different ways for stacking 2D mate-
rials, it is possible to manufacture van der Waals heterostruc-
tures with any required properties. The inclusion of thin
TMD layers in these heterostructures allows one to observe
many-particle effects in systems with long-lifetime charge
carriers. At low temperatures, they may exhibit a superfluidity
of excitons and superconductivity due to coupling of spa-
tially separated quasiparticles [2–12] and condensation into
an electron-hole liquid [13–17]. Indirect excitons in van der
Waals TMD-based heterostructures are recently studied in
Ref. [18].

TMDs have a general chemical formula MX2 with a tran-
sition metal atom M usually from groups IV–VII (e.g., Hf,
Nb, Ta, Mo, W, or Re) and two chalcogen atoms X (S, Se,
or Te). Their crystal structure was first established by Linus
Pauling in 1923 [19]. The monomolecular layer (monolayer)
of TMD is a three-layer sandwich with a layer of metal atoms
M inserted between two layers of chalcogen atoms X . Atoms
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in each layer are packed in a triangular lattice. Depending on
the relative position of these layers, several types of structural
phases are distinguished, mainly trigonal prismatic (2H) or
octahedral (1T) phases. The 2H phases correspond to an
ABA stacking when chalcogen atoms from different layers
are located above each other. The 1T phases have an ABC
stacking order. The thermodynamically stable phase is either
the 2H or 1T phase. There also are the orthorhombic (distorted
octahedral) 1Td and the monoclinic 1T′ phases, which are
often metastable ones [20]. For example, WTe2 is undergoing
the structure phase transition 1Td → 1T′ at high pressure
[21,22]. The structure and synthesis of TMDs are described
in more detail in Ref. [23].

By the end of the 1960s, about 60 TMDs were investigated,
more than two-thirds of which had a layered structure [24].
Most of them are semiconductors with an indirect band gap of
∼1 eV. The qualitative change occurs when going over from
the bulk sample to the monolayer. It turned out that many 2D
TMDs, including such well-known representatives as MoS2,
MoSe2, WS2, and WSe2, become direct-band semiconductors
with a band gap of about 2 eV [25–27].

Monolayers of TMDs have the conduction and valence-
band extrema at the corners of the 2D hexagonal Brillouin
zone [28,29]. Similar to graphene, there are two inequivalent
valleys for low-energy carriers. Since their intervalley scat-
tering is suppressed, belonging to one of the two valleys (the
valley index) may be considered a “good” quantum number.
The usage of the valley degree of freedom in TMDs yields a
promising option for nanoelectronics with the valley-selective
charge carriers transport, called valleytronics. This is made
possible by the valley-selective excitation of charge carriers
with a circularly polarized electromagnetic wave [30–33].

We propose here a planar one-dimensional (1D) quantum
well structure based on TMDs (Sec. II). This paper is mainly
devoted to two issues: the size quantization of charge carriers
in such QWs (Sec. III) and the energy spectrum of excitons
in them depending on the dielectric environment (Sec. IV).
These very straightforward questions are nevertheless very
important for the physics of planar heterostructures composed
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FIG. 1. Schematic representation of the proposed here
MoTe2/WTe2/MoTe2 planar QW. Highly ordered pyrolytic
graphite (HOPG) is used as a substrate.

of 2D materials. The planar heterostructures proposed in
this paper have not yet been grown. However, other similar
systems have been obtained. In our opinion, both isolated
nanoribbons of 2D materials and their sets are of interest
due to their quasi-1D geometry and monomolecular thickness.
These systems are briefly discussed in Sec. IV C. In Sec. V, we
discuss the possibilities to manufacture the TMD-based QWs
[34] and summarize our results.

II. MONOLAYER PLANAR QUANTUM WELL
BASED ON TMDS

We propose here a type of TMD-based planar heterostruc-
tures, namely, MoSe2/WTe2/MoSe2 or MoTe2/WTe2/

MoTe2 single QWs. A schematic representation of the latter
is given in Fig. 1.

Both QWs are examples of type-I QWs owing to the ratio
of the band-gap Eg and electron affinity χ for monolayer of
MoSe2 (Eg = 2.25 eV [35] and χ = 3.21 eV) [36], WTe2

(Eg = 1.18 eV [37] and χ = 3.69 eV [38]), and MoTe2 (Eg =
1.72 eV [39] and χ = 3.4 eV [40]).

Such QWs can be synthesized as a result of varying tran-
sition metal atoms in one plane. Although this is a rather
complex approach, it brings a greater challenge from the
technological side, which may push for further progress in the
field of heterostructure synthesis.

In what follows, we investigate theoretically the electron
and hole size quantization and confined excitons in the pro-
posed TMD-based planar QWs.

III. SIZE QUANTIZATION PROBLEM
FOR CHARGE CARRIERS

A. Dirac model

The Dirac model is very constructive from the method-
ological side, allowing us to obtain a rather simple disper-
sion relation for the size quantization levels. However, it is
insufficient to describe the asymmetry of the dispersion of
electrons and holes in the K valleys, since it automatically
gives equal effective masses for them. This model does not
take into account the absence of the center of inversion in
the material. Considering these circumstances is necessary,
for example, when analyzing the splittings of the spin levels
of excitons in a magnetic field. The Dirac model leads to the
same g factors of the conduction band and the valence band,

FIG. 2. (a) The lower conduction band and the upper valence
band at two valleys K+ and K−. The spin splitting of the conduction
band is neglected, considering it as spin degenerate, while the
valence band has a strong spin splitting. (b) A top view of one section
of a TMD crystal lattice with a coordinate reference (in the case of
the heterostructure under consideration M = Mo, W and X = Te).
(c) The Brillouin zone of TMDs in the form of a regular hexagon
with K+ and K− points in the corners.

which, in turn, determines the absence of splittings of the spin
levels of excitons in a magnetic field. However, the available
experimental data show the presence of such splittings [41].

These features can be taken into account by including in
the effective Hamiltonian the nearest in energy bands of the
same parity, the bands c + 2 and v − 3 [42]. Such a four-band
Hamiltonian is presented in Sec. III B.

We emphasize that from the point of view of performing
computations (numerical calculations), the Dirac model is
also useful as the first iteration to find the size quantization
levels. This makes it easier to find the right solutions within
the four-band model.

Often, in the Dirac model for TMDs, the lower valence
band split by spin-orbit interaction is also taken into account.
The effective Hamiltonian has the corresponding term, which
is proportional to the spin operator ŝz [30]. Here, we write the
Hamiltonian as [43]

Ĥ = γ3σp̂τ + �σz +
(

τ sz − 1

2

)
δs

1 − σz

2
, (1)

where γ3 is the band parameter, similar to Fermi velocity
vF in graphene, p̂τ = (τ p̂x, p̂y), p̂x = −i∂x, and p̂y = −i∂y

are components of the momentum operator (h̄ = 1), τ = ±1
is the valley index (τ = +1 for the valley K+ and τ = −1
for the valley K−, see Figs. 2(a) and 2(c), � = Eg/2 is the
half width of the band gap between the lower conduction
band (c) and the upper valence band (v). The matrices σx, σy,
and σz are the Pauli matrices. The quantum number sz = ± 1

2
is the eigenvalue of the spin operator ŝz. The quantity δs is
spin splitting at the valence band top caused by the spin-orbit
interaction.

According to the results of first-principles calculations
based on density-functional theory, there are giant spin split-
tings from δs = 148 meV for MoS2 to δs = 456 meV for
WSe2 [44] and δs = 480 meV for WTe2 [45].
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In our opinion, such a large splitting allows us to omit
the last term in Eq. (1) in the framework of the two-band
model and consider only the two nearest bands, namely,
spin-polarized valence band with spin ↑ for τ = +1 and spin
↓ for τ = −1. Thus, we arrive at the 2 × 2 effective Dirac
Hamiltonian,

Ĥ τ
D = γ3σp̂τ + �σz + V, (2)

where the scalar potential V describes the possible displace-
ment of the middle of the band gap relative to the vacuum
level Evac when we compare different TMDs.

The 2 × 2 Dirac equation is

Ĥ τ
D	τ = Eτ	τ , 	τ =

(
ψc

τ

ψv
τ

)
, (3)

where the scalar envelope wave functions ψc
τ and ψv

τ de-
scribe states in the conduction band and the valence band,
respectively. Such a description can be constructed by analogy
with the description of states on two mutually penetrating
triangular Bravais sublattices A and B of graphene. For the
TMD crystal lattice of the 2H phase, we can also see two
mutually penetrating triangular sublattices in layers of X and
M atoms in a top view [see Fig. 2(b)]. The valley index τ

is written in the general case at energy as well. As will be
shown below, asymmetry between valleys is present in an
asymmetric QW, due to the explicit dependence of the energy
of charge carriers on τ . Note that there is no such dependence
for symmetric QWs.

The 4 × 4 Dirac Hamiltonian Eq. (2) is similar to the
Dirac Hamiltonian in quantum electrodynamics (QED) ĤD =
cα̂p + β� + V , where α = (O σ

σ O) and β = ( I O
O −I) are the

Dirac matrices (O and I are the zero and unit matrices, re-
spectively). Four-vector of the current density in QED is jμ =
(	γ0	, c	γ	), where 	 = 	†γ0 is the Dirac conjugate
bispinor and γ0 = β and γ = γ0α = ( O σ

−σ O) are the Dirac

γ matrices in the standard representation. It is seen that ĤD

transfers to Ĥ τ
D after replacements c → γ3, α → σ, β → σz,

and p̂ → p̂τ with a decrease in the dimensionality of the space
from 3 to 2. Therefore, when we repeat the output of the
expression for the current density operator as in QED, we
get that the “current density” is expressed by jτ = γ3	

†
τ σ	τ .

The components of this vector jτx = γ3(ψc∗
τ ψv

τ + ψv∗
τ ψc

τ )
and jτy = −iγ3(ψc∗

τ ψv
τ − ψv∗

τ ψc
τ ) must be continuous when

passing through the boundary between two materials, jτx |L =
jτx |R and jτy |

L
= jτy |

R
, i.e., γ3ψ

c∗
τ ψv

τ |L = γ3ψ
c∗
τ ψv

τ |R. Here, the
indexes L and R denote belonging to the region to the left and
to the right of the boundary, respectively. The last equality
is ensured by performing equalities

√
γ3ψ

c
τ |L = √

γ3ψ
c
τ |R and√

γ3ψ
v
τ |L = √

γ3ψ
v
τ |R or the equality
√

γ3	τ |L = √
γ3	τ |R. (4)

The boundary condition Eq. (4) is also established for 	τ by
integrating the Dirac Eq. (3) in the vicinity of the interface
between the media [46,47].

Now, let us consider a QW. In the general case, we consider
an asymmetric QW (e.g., MoTe2/WTe2/MoSe2). Each region
is characterized by numbers γ3i, �i, and Vi (i = 1, 2, 3). Its
energy diagram is shown schematically in Fig. 3. The E = 0
level is set to coincide with the middle of the band gap in the

FIG. 3. The energy diagram for QW under analysis: Evac is the
vacuum level and χi (i = 1, 2, 3) is the electron affinity.

QW region, a strip of the TMD with a smaller band gap, so
V2 = 0. Then, the values of the scalar potential for the barrier
regions are

V1 = �2 + χ2 − (�1 + χ1),

V3 = �2 + χ2 − (�3 + χ3),
(5)

where χi is the electron affinity, i.e., a distance in energy of
the edge of the conduction band to the vacuum level Evac (see
also Fig. 2).

The x axis is directed perpendicular to the QW interfaces
(the orientation of the axes is shown in Fig. 2(b)). The width
of the QW is d . We consider the boundaries between the
materials as sharp. The solution to the Dirac Eq. (3) in three
regions is

(1) x < −d/2

	τ1 = C1

(
1

κτ1

)
ek1x+ikyy, (6)

κτ1 = iγ31(−τk1 + ky)

Eτ + �1 − V1
and Eτ = V1 ±

√
�2

1 + γ 2
31(k2

y − k2
1 );

(2) −d/2 < x < d/2

	τ2 = C2

(
1

κ
+
τ2

)
ei(k2x+kyy) + C̃2

(
1

κ
−
τ2

)
ei(−k2x+kyy), (7)

κ
±
τ2 = γ32(±τk2 + iky)

Eτ + �2
and Eτ = ±

√
�2

2 + γ 2
32

(
k2

y + k2
2

)
;
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(3) x > d/2

	τ3 = C3

(
1

κτ3

)
e−k3x+ikyy, (8)

κτ3 = iγ33(τk3+ky )
Eτ +�3−V3

and Eτ = V3 ±
√

�2
3 + γ 2

33

(
k2

y − k2
3

)
.

Pluses and minuses in Eqs. (6)–(8) the expression for the
energy Eτ correspond to electrons and holes, respectively. The
constants C1, C2, C̃2, and C3 are found from the boundary
condition Eq. (4) and the normalization condition for wave
functions Eqs. (6)–(8):∫ ∞

−∞
	†

τ 	τ dx = 1. (9)

Using also the boundary condition Eq. (4), we obtain that
the carrier energy spectrum is determined by the following
dispersion relation:

tan (k2d ) = τA−
τ γ32k2

A+
τ γ32ky − Bτ (Eτ + �2) − Cτ (Eτ − �2)

, (10)

where

A±
τ = γ31(−τk1 + ky)(Eτ + �3 + V3)

± γ33(τk3 + ky)(Eτ + �1 + V1),

Bτ = γ31γ33(−τk1 + ky)(τk3 + ky),

Cτ = (Eτ + �1 + V1)(Eτ + �3 + V3).

Due to the explicit dependence on τ in Eq. (10), the disper-
sion curve in one valley does not coincide with the dispersion
curve in another valley, but they turn into each other when the
sign of ky is changed. The valleys are connected via the time
inversion transformation.

For the symmetric QW when γ33 = γ31, �3 = �1, and
V3 = V1 [the potential barrier on the right is the same as on the
left and the system is symmetric with respect to the x → −x
transformation], the explicit dependence on τ disappears and
Eq. (10) is rewritten as

tan (k2d ) = γ31γ32k1k2

E (E − V1) − �1�2 − γ 2
31k2

y

.

B. Four-band model

As stated in the beginning of Sec. III A, the transition to the
four-band model is carried out by adding bands of the same
parity as the lower conduction band c and the upper valence
band v, and lying in energy in proximity to them: Above c
there is c + 2, below v there is v − 3 [41].

Let us work in the basis of wave functions
{|ψc+2

τ 〉, |ψc
τ 〉, |ψv

τ 〉, |ψv−3
τ 〉}. The effective Hamiltonian

4 × 4 has the form [48]

Ĥ τ
4b =

⎛⎜⎜⎜⎜⎝
Ec+2 γ6 p̂τ

− γ4 p̂τ
+ 0

γ6 p̂τ
+ Ec γ3 p̂τ

− γ5 p̂τ
+

γ4 p̂τ
− γ3 p̂τ

+ Ev γ2 p̂τ
−

0 γ5 p̂τ
− γ2 p̂τ

+ Ev−3

⎞⎟⎟⎟⎟⎠. (11)

Here, p̂τ
± = τ p̂x ± i p̂y and γ2, γ3, γ4, γ5, and γ6 are the

band parameters. The band edges Ev−3, Ev , Ec, and Ec+2

are counted from the middle of the band gap between c and
v bands. For reasons of conformity with the Dirac model,
we take Ev = −�i + Vi and Ec = �i + Vi. Moreover, it is
possible to put V2 = 0 for QW region.

We also consider the boundaries between materials to be
sharp, so smooth potentials do not arise in the boundary
regions, and the band parameters γ j ( j = 2 − 6) are constants
in each medium up to the boundary. Therefore, the “sym-
metrization” of the Hamiltonian Eq. (11) by the introduction
of anticommutators γ j p̂τ

± → 1
2 {γ j, p̂τ

±} is not required so it
remains Hermitian [46].

The equation for the four-component envelope wave func-
tion with Hamiltonian Eq. (11),

Ĥ τ
4b	τ = Eτ	τ , (12)

gives for free charge carriers the dispersion relation
det (H τ

4b − Eτ ) = 0 [H τ
4b with p̂τ

± → kτ
± = τkx ± iky] which

is the equation on Eτ of the fourth power in quasimomentum
k:

(Ec+2 − Eτ )(Ec − Eτ )(Ev − Eτ )(Ev−3 − Eτ ) − (Ev − Eτ )(Ev−3 − Eτ )γ 2
6 kτ

+kτ
−

− (Ec+2 − Eτ )(Ev−3 − Eτ )γ 2
3 kτ

+kτ
− − (Ec − Eτ )(Ev−3 − Eτ )γ 2

4 kτ
+kτ

− − (Ec+2 − Eτ )(Ec − Eτ )γ 2
2 kτ

+kτ
−

− (Ec+2 − Eτ )(Ev − Eτ )γ 2
5 kτ

+kτ
− + (Ev−3 − Eτ )γ3γ4γ6(kτ

+)3 + (Ec+2 − Eτ )γ2γ3γ5(kτ
+)3

+ (Ev−3 − Eτ )γ3γ4γ6(kτ
−)3 + (Ec+2 − Eτ )γ2γ3γ5(kτ

−)3 + (γ2γ6 − γ4γ5)2(kτ
+kτ

−)2 = 0. (13)

In the quadratic in momentum approximation for electrons Eτ ≈ Ec + kτ
+kτ

−
2m∗

c
and for holes Eτ ≈ Ev − kτ

+kτ
−

2m∗
v

, we obtain from
Eq. (13) the expressions for the effective mass of electrons m∗

c and holes m∗
v [48]

1

m∗
c

= 2

[
γ 2

5

Ec − Ev−3
+ γ 2

3

Ec − Ev

+ γ 2
6

Ec − Ec+2

]
,

1

m∗
v

= 2

[
γ 2

5

Ev−3 − Ev

+ γ 2
3

Ec − Ev

+ γ 2
6

Ec+2 − Ev

]
. (14)

It can be seen that m∗
v �= m∗

c .
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Eliminating the wave function components ψc+2
τ and ψv−3

τ

in Eq. (12), we arrive at an effective Hamiltonian that takes
into account the influence of the c + 2 and v − 3 bands,

Ĥ τ = Ĥ τ
D + δĤ τ , (15)

where

δĤ τ =
(

A56 p̂τ
+ p̂τ

− B25
46 p̂τ

+ p̂τ
+

B25
46 p̂τ

− p̂τ
− A24 p̂τ

+ p̂τ
−

)
,

Ai j = γ 2
i

Eτ − Ev−3
− γ 2

j

Ec+2 − Eτ

(i = 2, 5; j = 4, 6),

B25
46 = γ2γ5

Eτ − Ev−3
− γ4γ6

Ec+2 − Eτ

.

In the quadratic in momentum approximation, the equation
Ĥ τ	τ = Eτ	τ with the Hamiltonian Eq. (15) for the wave

function 	τ = (
ψc

τ

ψv
τ

) can be reduced to two equations sepa-

rately for the functions ψc,v
τ :(

1

2m∗
c,v

p̂τ
+ p̂τ

− + Ec,v

)
ψc,v

τ = Eτψ
c,v
τ . (16)

The effective masses are given by Eqs. (14).
Equations (16) are second-order differential equations, so

additional boundary conditions are needed that are different
from Eq. (4). They must ensure, as in the case of the usual
Hamiltonian in the Schrödinger equation, the continuity of the
current density through the boundary between two materials
for electrons je

x = −i
2m∗

c
(ψc∗∂xψ

c − ψc∂xψ
c∗) and for holes

jh
x = −i

2m∗
v
(ψv∗∂xψ

v − ψv∂xψ
v∗). This is achieved with the

continuity of ψc
τ and ψv

τ and combinations m∗−1
c ∂xψ

c
τ and

m∗−1
v ∂xψ

v
τ , which is analogous to the boundary condition used

in Ref. [49] and generalized by Bastard [50,51].
Thus, we can solve the QW size quantization problem for

electrons with the wave function ψc
τ and for holes with the

wave function ψv
τ , satisfying Eq. (17), using the following

boundary conditions:

ψc,v
τ

∣∣
L = ψc,v

τ

∣∣
R,

1

m∗
c,v

∂xψ
c,v
τ

∣∣∣∣
L

= 1

m∗
c,v

∂xψ
c,v
τ

∣∣∣∣
R

. (17)

It should be noted that the valley index τ disappears
from Eq. (17): p̂τ

+ p̂τ
− ≡ p̂2

x + p̂2
y (τ 2 = 1). Thus, the four-band

model reduced to Eq. (16) does not take into account possible
valley asymmetry of dispersion curves corresponding to size
quantization levels, but the electron-hole asymmetry is clearly
taken into account. This is more important for finding the
exciton energy spectrum. In what follows, we omit the τ index
of wave functions and energy.

Now, let us get the dispersion relation for the size quantiza-
tion levels in the QW. For definiteness, let us consider the case
of electrons and characterize each region of QW by numbers
Eci and m∗

ci (i = 1, 2, 3) [for holes, the energy sign changes
and c → v]. The solution of Eq. (16) in three regions is

(1) x < −d/2

ψc = c1ek1x+ikyy, (18a)

E = Ec1 + 1

2m∗
c1

(
k2

y − k2
1

)
, (18′)

(2) −d/2 < x < d/2

ψc = c2ei(k2x+kyy) + c̃2ei(−k2x+kyy), (19a)

E = Ec2 + 1

2m∗
c2

(
k2

y + k2
2

)
, (19′)

(3) x > d/2

ψc = c3e−k3x+ikyy, (20a)

E = Ec3 + 1

2m∗
c3

(
k2

y − k2
3

)
. (20′)

The constants c1, c2, c̃2, and c3 are found from the normal-
ization condition for wave functions Eqs. (18a)–(20a), similar
to Eq. (9). Matching the wave functions at the QW boundaries
x = −d/2 and x = d/2, we obtain the dispersion relation for
electrons on the size quantization levels:

tan (k2d ) = k2
m∗

c1k3 + m∗
c3k1

m̃∗
c k2

2 − m∗
c2k1k3

, m̃∗
c ≡ m∗

c1m∗
c3

m∗
c2

. (21)

Eliminating k1 and k3 from Eq. (21) using Eqs. (18′)–(20′),
we can find the function k2(ky) and, consequently, the energy
ENe (ky) for each Neth size quantization level according to
Eq. (19′). Since the valley asymmetry is absent, the extremum
of all dispersion curves ENe (ky) lies at ky = 0, i.e., at K+ or K−
point in the Brillouin zone. The first derivative of the function
k2(ky) at the point ky = 0 is equal to zero, k′

20 = k′
2(ky = 0) =

0. The same is true for holes. The effective mass of electrons
on the Neth size quantization level is given by

1

m∗
c

= ∂2ENe

∂k2
y

∣∣∣∣∣
ky=0

= 1 + k20k′′
20

m∗
c2

, (22)

where k20 = k2(ky = 0) and k′′
20 = k′′

2 (ky = 0) are values of
the function k2(ky) and its second derivative at the point
ky = 0.

For a symmetric QW [Ec3 = Ec1 and m∗
c3 = m∗

c1], Eq. (21)
is reduced to

tan (k2d ) = k1k2

κk2
2 − m∗

c2U0
, κ ≡ m∗

c1 + m∗
c2

2m∗
c2

, (21′)

where U0 = Ec1 − Ec2 is the height of potential barriers.
Equation (21′) is equivalent to Eq. (3) in the solution of
problem 2 after Sec. 22 of Ref. [52], when the effective masses
m∗

c1 and m∗
c2 are the same and κ = 1.

As an example, let us calculate the size quantization levels
in MoTe2/WTe2/MoTe2 QW with the values of parameters
Eci and Evi obtained from the ratio of the band gaps Egi and
the electron affinity χi (i = 1 for MoTe2, i = 2 for WTe2)
presented in Sec. II. The height of potential barriers for
electrons is U e

0 = χ2 − χ1 = 290 meV and for holes is U h
0 =

χ1 + Eg1 − (χ2 + Eg2) = 250 meV. The effective masses of
electrons and holes are m∗

c1 = 0.655m0, m∗
c2 = 0.246m0 and

m∗
v1 = 0.618m0, m∗

v2 = 0.3m0 (m0 is the free electron mass)
[45]. The QW width d is taken as a multiple of the lattice
constant b (the distance between neighboring tellurium atoms
in one layer), b = 3.52 Å [53]. We take d = 15b = 5.28 nm.
Using Eq. (21′) for electrons and its analog for holes, we
determine three electron levels and three hole levels inside the
QW [Ee

Ne
− Ec2 < U e

0 and Ev2 − Eh
Nh

< U h
0 ] [see Fig. 4(a)].

Using the formula Eq. (22) for the electron effective mass
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FIG. 4. The results of numerical calculations for the
MoTe2/WTe2/MoTe2 heterostructure. (a) Values of the energy
for size quantization levels of electrons (Ee

1 = 616.5 meV, Ee
2 =

700.8 meV, Ee
3 = 842.8 meV) and of holes (Eh

1 = −613.6 meV,
Eh

2 = −685.9 meV, Eh
3 = −803.4 meV). (b) Values of the effective

mass of electrons (m∗
c/m0 = 0.25, 0.262, 0.302) [the upper panel]

and of holes (m∗
v/m0 = 0.304, 0.316, 0.354) [the lower panel] at

the extremes of the corresponding dispersion curves.

and its analog for holes, we find the corresponding effective
masses. Note that with an increase in the size quantization
level number, the effective mass increases for both electrons
and holes [see Fig. 4(b)].

Similarly, one can find size quantization levels and the
corresponding effective masses in the potential well for holes
in the valence band split off by spin-orbit interaction. For this,
one should substitute the effective hole masses m∗

v1 and m∗
v2 of

the split-off valence band into an equation similar to Eq. (21′).

IV. EXCITONS

A striking feature of the excitons in monolayers of TMDs is
their large binding energy and small Bohr radius in the ground
state (the 1s state). Typical values are |E1s| � 500 meV and
a1 � 10 Å for freely suspended films in vacuum [41].

Two series of peaks are often observed in the photolumi-
nescence spectrum of TMD monolayers due to a large spin
splitting of the valence band, usually named A and B. Peak
A corresponds to the exciton which is the binding state of
an electron in the conduction band c and a hole in the upper
valence band v, while peak B corresponds to the exciton with
a hole in the valence band split off by the magnitude of the
spin splitting δs [see Fig. 1(a)]. The peak B has a blue shift
relative to the peak A.

The additional advantage of WTe2 in the QW region is the
largest valence band spin splitting among the TMD monolay-
ers, δs = 480 meV [45]. Thus, the energy distance between
peaks A and B will also be the largest in MoTe2/WTe2/MoTe2

QW. Moreover, δs > U e,h
0 . This makes it possible to excite

only the A peak when the frequency interval of the exciting
laser ωmin < ω < ωmax is chosen so ωmax − ωmin < δs and
Eg(WTe2) < ωmax < Eg(MoTe2), e.g., ωmin = Ee

1 − Eh
1 and

ωmax = Ee
3 − Eh

3 for the example considered at the end of
Sec. II. Below, we focus only on the A exciton energy spec-
trum. Although it will become clear from the foregoing that
the calculation of the B exciton energy spectrum is completely
analogous if an effective mass of holes is found in the band
split off by the spin.

We consider the planar QW as the monolayer film system
on the substrate. The Bohr radius of exciton a1 will always
be greater than its value for a suspended film. However,
unlike large samples of the TMD monolayers, we have an
additional characteristic scale of distances in QW, its width
d . Therefore, two cases should be distinguished: (i) a weak
dielectric screening when a1 � d (e.g., in the case of the SiO2

substrate) and (ii) a strong dielectric screening when a1 � d
(e.g., in the case of the TiO2 substrate).

A. Weak dielectric screening

The above presented typical values of the binding energy
|E1s| and of the Bohr radius a1 support the applicability of a
description of the exciton in the TMD films by the smooth
envelope functions method, when the exciton wave function
covers a large number of crystal unit cells [41].

Since the “size” of the excitons is assumed to be much
smaller than the width of the QW, the motion of the electron
and hole will be quasi-2D in the WTe2 stripe, neglecting the
charge carrier motion along the z axis.

The Hamiltonian describing the 2D relative electron-hole
motion in the exciton is

Ĥex = T̂ + Û , (23)

T̂ = 1

2μ∗

(
∂2

∂ρ2
+ 1

ρ

∂

∂ρ
− l2

ρ2

)
, (24)

Û = −π ẽ2

2r′
0

[
H0

(
ρ

r′
0

)
− Y0

(
ρ

r′
0

)]
. (25)
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FIG. 5. Three groups of levels for three excitons in the QW MoTe2/WTe2/MoTe2 on the silicon dioxide substrate: for the exciton formed
by the electron and the hole with Ne = Nh = 1 (left), with Ne = 1 and Nh = 2 (center), and with Ne = 1 and Nh = 3 (right). The s levels (l = 0)
are marked in blue, the p levels (l = 1) are red, and the d levels (l = 2) are black.

Here, μ∗ is the reduced mass of the electron and hole, μ∗−1 =
m∗−1

c + m∗−1
v , and ρ = |ρe − ρh| is the distance between the

electron and hole in the plane z = 0, ρe,h = (xe,h, ye,h, 0). The
quantum number l is the angular momentum, l = 0, 1, 2, . . .

We introduced the notation ẽ2 = e2/εeff, where εeff = (ε1 +
ε2)/2 is the effective dielectric constant (ε1 and ε2 are values
of the dc permittivity of the materials above and below the
film, respectively) [54,55]. Quantity r′

0 = r0/εeff and r0 =
2πα2D, and α2D is the 2D susceptibility of the QW region
material (in our case, this is WTe2), which can be estimated as
α̃2D = Lc(ε⊥ − 1)/4π with the interlayer separation between
two chalcogen atoms layers Lc and the in-plane component of
the dielectric tensor ε⊥ [56]. As a rule, in comparison with
α2D, obtained in calculations using density-functional theory,
this estimate is an estimate from above, i.e., α2D � α̃2D. The
functions H0 and Y0 are the Struve function and the Bessel
function of the second kind (the Neumann function), respec-
tively. The potential Eq. (25) was derived by Keldysh [55].

To calculate the energy spectrum of the exciton, we use the
variational approach. The trial wave function is taken in the
form of the eigenfunctions of a 2D hydrogen atom [57],

ψ̃nl (ρ) = Cnl

a

(
2ρ

a

)l

e−ρ/aL2l
n−l−1

(
2ρ

a

)
,

Cnl =
√

(n − l − 1)!

π
(
n − 1

2

)
(n + l − 1)!

, (26)

where n = 1, 2, . . . is the principal quantum number, 0 �
l � n − 1, a is the variational parameter, and Lα

β are the
associated Laguerre polynomials.

Wave functions Eqs. (26) form a complete orthonormal set∫
d2ρψ̃∗

nl (ρ)ψ̃n′l ′ (ρ) = δnn′δll ′ .

When normalizing the wave functions Eqs. (26), we used
the expression for the following integral [58]:∫ ∞

0
x2l+1e−x

(
L2l

n−l−1(x)
)2

dx = (n + l − 1)!

(n − l − 1)!
(2n − 1).

Wave functions Eqs. (26) also qualitatively reproduce the
behavior of the exciton wave function obtained by more com-
plex methods, for example, the solution of the Bethe-Salpeter
equation (see Figs. 3(b)– 3(e) in Ref. [59]). This confirms the
applicability of ψ̃nl (ρ) as trial wave functions.

The exciton energy is calculated as the average
〈n, l|Ĥex|n, l〉 for the trial wave functions Eqs. (26) and
depends on the variation parameter a:

Enl (a) = 〈n, l|T̂ |n, l〉 + 〈n, l|Û |n, l〉. (27)

It is easy to verify that the average kinetic energy operator
Eq. (24) for arbitrary n and l is equal to

〈n, l|T̂ |n, l〉 = 1

2μ∗a2
. (28)

The second term on the right-hand side of Eq. (27) is

〈n, l|Û |n, l〉 = − (n − l − 1)!

(2n − 1)(n + l − 1)!

π ẽ2

2r′
0

×
∫ ∞

0
x2l+1e−x

(
L2l

n−l−1(x)
)2

× [H0(κx) − Y0(κx)]dx. (29)

Hereinafter, κ = a/2r′
0.

The equation for the value of a, which corresponds to the
minimum of the energy Enl (a), is

− 1

μ∗a3
− (n − l − 1)!

(2n − 1)(n + l − 1)!

π ẽ2

4r′2
0

×
∫ ∞

0
x2(l+1)e−x

(
L2l

n−l−1(x)
)2

×
[

2

π
− H1(κx) + Y1(κx)

]
dx = 0 (30)

under the condition ∂2Enl (a)/∂a2 > 0.
We calculate the first n from one to three levels of three

A excitons formed by the electron and the hole on the size
quantization levels Ne = 1 and Nh = 1, Ne = 1 and Nh =
2, Ne = 1 and Nh = 3 (see Fig. 5). We used the estimate
α̃2D = Lc(ε⊥ − 1)/4π for the 2D susceptibility of WTe2 with
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FIG. 6. An illustration of the dependence of Enl on 〈ρ〉nl for the
first n = 1 − 3 levels of the exciton with Ne = Nh = 1. The blue stars
and the red stars correspond to the ns (n = 1, 2, 3) and np (n = 2, 3)
states, respectively. The black star corresponds to the 3d state. Their
position in energy is the binding energy in the corresponding state
Enl , and their position in the coordinate is determined by the average
distance 〈ρ〉nl (their numerical values are given in Table I). The
brown curve shows potential Eq. (25), which has two asymptotics:
at small distances (the magenta curve) and at large distances (the
green curve). The constant C = 0.5772 . . . is the Euler constant and
r′

0 = 20.39 Å.

Lc = c/2 = 7.035 Å (c = 14.07 Å is the size of the unit cell
of the bulk sample along the c axis [60]) and ε⊥ = 15.2 [61].
The binding energy of an exciton with increasing Nh slightly
increases (all levels shift down in energy) due to an increase
in the effective mass of the hole m∗

v and, as a consequence, an
increase in the reduced mass μ∗.

Unlike the usual Coulomb potential −ẽ2/ρ, a characteristic
feature of the exciton energy spectrum is lifting of degeneracy
by the angular momentum l . The levels shift down in energy
from the s level with increasing l . With increasing n, the
splitting level by l decreases.

It is interesting to note that the exciton levels splitting over
l at large n turns out to be small, of the order magnitude
of the Coulomb potential change over a large average dis-
tance between electron and hole 〈ρ〉nl . This is illustratively
demonstrated in Fig. 6 for the exciton with Ne = 1 and Nh = 1
(for two other excitons, the picture is qualitatively the same).
The energies Enl , values of the variation parameter a, and
the average electron-hole distances 〈ρ〉nl are presented in the
Table I. The average distance 〈ρ〉nl calculated with using the
trial wave functions Eqs. (26) is proportional to the value of
the variational parameter a, which corresponds to the min-
imum energy Enl (a): 〈ρ〉1s = a, 〈ρ〉2s = 7

3 a, 〈ρ〉2p = 2a,
〈ρ〉3s = 19

5 a, 〈ρ〉3p = 18
5 a, 〈ρ〉3d = 3a [a is different for each

state].
It is worth noting that the 2s state has a slightly larger 〈ρ〉2s

than the QW width d , while the states with n = 3 noticeably
exceed d (in 1.5 times at least). Nevertheless, we find that
the quasi-2D consideration of excitons is applicable in this
case, although the n = 3 states lie in the intermediate region
between the quasi-2D and quasi-1D behavior of excitons.

TABLE I. Calculated values of the energies Enl , of the variation
parameter a, and of the average electron-hole distance 〈ρ〉nl for the
n = 1 − 3 states of the exciton with Ne = Nh = 1 (the substrate is the
SiO2 plate with ε = 3.9).

State Enl (meV) a (Å) 〈ρ〉nl (Å)

1s −217.88 17.67 17.67
2s −68.94 24.41 56.96
2p −85.26 22.48 44.97
3s −32.80 32.62 123.97
3p −37.32 30.99 111.57
3d −42.10 28.56 85.69

Often, starting with n = 3, the exciton levels “fall” on the
Rydberg series [62], since the potential Eq. (25) approaches
the usual Coulomb potential with a good accuracy (both its
asymptotics at small and at large distances are also shown in
Fig. 6). In the quasi-2D case, the Rydberg series is [41]

E (2D)
n = − μ∗̃e4

2
(
n − 1

2

)2 . (31)

However, for highly excited states, when 〈ρ〉nl � d , we have
the quasi-1D behavior of excitons. As is known, the spectrum
of the excited exciton states in this case coincides with the
spectrum of a three-dimensional (3D) exciton [63]:

E (1D)
n = −μ∗̃e4

2n2
. (32)

Therefore, in the intermediate region between the quasi-2D
and quasi-1D behavior of excitons, when 〈ρ〉nl � d , the ener-
gies Enl lie between the energies Eqs. (31) and (32), E (2D)

n �
Enl � E (1D)

n .

B. Strong dielectric screening

If there is an environment with a large dielectric constant,
we obtain that the average electron-hole distance turns out
to be much larger than the QW width. Then the behavior of
the exciton will be quasi-1D, starting from the ground state.
However, the energy of the ground state of an exciton has a
logarithmic divergence at short distances in the 1D case [64].
To avoid this divergence in our quasi-1D case, we need to take
into account that there is a finite scale across the 1D motion,
i.e., the presence of the nonzero QW width d , and enter the
cutoff parameter of the Coulomb potential d0 � d .

On the other hand, the potential Eq. (25) at large distances
transforms into the usual Coulomb potential (see also Fig. 6).
Therefore, we can solve the 1D Coulomb problem with a
potential that depends only on the relative coordinates of the
electron and hole along the QW boundaries (here, along the y
axis), where the cutoff parameter d0 is introduced:

Û (1D) =
{−ẽ2/d0 for |y| < d0

−ẽ2/|y| for |y| > d0.
(33)

The operator of the kinetic energy of the relative 1D motion
of the electron and hole is

T̂ (1D) = − 1

2μ∗
∂2

∂y2
, (34)

085303-8



EXCITONS IN PLANAR QUANTUM WELLS BASED ON … PHYSICAL REVIEW B 102, 085303 (2020)

with the same reduced mass μ∗ as above.
As a trial wave function of the ground state, we take

ψ̃0(y) = 1√
a0

exp

(
−|y|

a0

)
, (35)

where the variational parameter a0 plays the role of the
ground-state Bohr radius.

Averaging Hamiltonian Ĥ (1D)
ex = T̂ (1D) + Û (1D) over the

ground-state trial wave function Eq. (35), we express the
ground-state exciton energy as [47]

E0 = 1

2μ∗a2
0

− 2̃e2

a0
ln

a0

d
. (36)

Here, we do not distinguish between d and d0, since we first
carry out the calculation with a logarithmic accuracy.

Minimizing Eq. (36) with respect to a0, we obtain an
equation for a0:

a0 = a1

2[ln (a0/d ) − 1]
. (37)

To the logarithmic accuracy, ln(a1/d ) � 1, we find the
relations

E0 = −2μ∗̃e4 ln2 (a1/d ), (38)

a0 = a1

2 ln (a1/d )
. (39)

When ln(a1/d ) ∼ 1, a more accurate variational calcula-
tion should be performed using the modified Coulomb poten-
tial [47]:

Û (1D)
m = − ẽ2√

y2 + d2
0

. (34′)

We average the Hamiltonian with potential Û (1D)
m over trial

function Eq. (35) to obtain

E0 = 1

2μ∗a2
0

− π ẽ2

a0

[
H0

(
2d0

a0

)
− Y0

(
2d0

a0

)]
, (40)

where H0 and Y0 are the same functions as in Sec. IV A, i.e.,
the average potential energy in Eq. (40) is given by the value
of the potential Eq. (25) at the point ρ = d0 with accuracy to
the replacement r′

0 → a0/2.
Minimizing Eq. (40) with respect to a0, we obtain an

equation for a0:

πa0

a1

[
H0

(
2d0

a0

)
− Y0

(
2d0

a0

)]
+ 4d0

a1

(
1 − π

2

[
H1

(
2d0

a0

)
− Y1

(
2d0

a0

)])
= 1. (41)

The numerical value of the parameter d0 is chosen so the
result obtained by solving Eq. (41) coincides with the result
Eq. (38) for large ln(a1/d ).

The energy spectrum of excited states (n = 1, 2, 3, . . .) is
given by the formula Eq. (32), and the Bohr radii are an = na1

with a1 = 1/μ∗̃e2 [63].
We also calculated the average electron-hole distances for

the ground state and the first three excited states: 〈|y|〉0 = 1
2 a0,

〈|y|〉1 = 3
2 a1, 〈|y|〉2 = 3a2 = 6a1, and 〈|y|〉3 = 9

2 a3 = 27
2 a1.

TABLE II. Calculated values of the energies En, of the variation
parameter an and of the average electron-hole distance 〈|y|〉n for the
n = 0 − 3 states of the exciton with Ne = Nh = 1 (the substrate is the
TiO2 plate with ε = 80).

n En (meV) an (Å) 〈|y|〉n (Å)

0 −3.40 183.33 92.17
1 −1.14 156.10 234.16
2 −0.57 312.21 936.63
3 −0.38 468.31 2107.42

For the ground state, we used the wave function Eq. (35), and
for the excited states we took wave functions as eigen wave
functions of the Coulomb problem with the potential −ẽ2/|y|
[47],

ψn(y) = sgn(y)√
2an

exp

(
−|y|

an

)
L−1

n

(
2|y|
an

)
, (42)

where L−1
n are the associated Laguerre polynomials.

The numerical values of the energy En, the Bohr radius
an, and the average electron-hole distance 〈|y|〉n for the n =
0 − 3 states of the exciton with Ne = Nh = 1 are presented in
Table II. The system is placed on the TiO2 substrate with ε =
80 [65]. The ground state energy was calculated with using of
Eq. (41), since ln(a1/d ) ≈ 1 [a1 = 156.1 Å and d = 52.8 Å].
Here, we took d0 = d .

C. Relation to experimental data

Unfortunately, we did not find modern experimental data
regarding the exciton binding energy in heterostructures pro-
posed in this paper. However, the TMD nanoribbons can be
considered as a similar system. They have been generated by
laser-induced unzipping of the TMD nanotubes [66] by anal-
ogy with the method of manufacturing graphene nanoribbons
(GNRs) from carbon nanotubes [67,68] as well as through
etching of TMD monolayers [69].

The authors of Ref. [69] claimed that the photolumines-
cence map of MoS2 nanoribbons has the peak emission at
1.82 eV. But they did not discuss the physical origin of this
peak. This value is close to the experimentally measured
exciton energy in MoS2 monolayer 1.85 eV [70]. Assuming
that this peak corresponds to the exciton emission, E exc

1s , and
comparing this value with the known band gap Eg = 2.15 ±
0.06 eV [71], we immediately estimate the the 1s exciton
binding energy as Eg − E exc

1s = 0.33 ± 0.06 eV. This value
slightly exceeds the experimentally found value in MoS2

monolayer 0.31 ± 0.04 eV [72] (although being within the
error interval).

To calculate the Bohr radius a1, we took the experimentally
measured effective masses of electrons and holes in MoS2

monolayer: m∗
c = 0.67m0 and m∗

v = 0.6m0 [73]. The substrate
is the SiO2 plate (ε = 3.9). We obtain a1 ≈ 0.41 nm. So, we
have a weak dielectric screening case when a1 � d . We took
the 2D susceptibility of MoS2 monolayer α2D = 6.6 Å [56].
Solving Eq. (30) for a, we find the value of the variation
parameter that minimizes the energy amin ≈ 1 nm, and the ex-
citon binding energy is |E1s| ≈ 0.34 eV, which is in excellent
agreement with the above pointed-out value.
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TABLE III. Parameters for the nanoribbon systems on the SiO2

substrate: the nanoribbon width (d), the exciton energy (E exc
1s ), and

the exciton binding energy (|E1s|).

System d (nm) E exc
1s (eV) |E1s| (eV) Ref.

MoS2 300 ± 50 1.82 0.33 ± 0.06 [69]
nanoribbons 0.34 This paper
GNRs 0.74 2.1 ∼1.8 [76–78]

0.7–1.1 2.2 ∼1.5 [79]
1.7 1.6 ∼0.7 [80]

Another similar system with a similar geometry are GNRs.
They are quasi-1D, planar, and one-atom-thick objects. For
comparison, we have collected some currently known experi-
mental values of the parameters of the systems with nanorib-
bons in Table III.

It is also interesting to note that the scaling laws for
excitons in GNRs with armchair-type edges was derived about
ten years ago [74]. For the Bohr radius (“the exciton size”)
[75], the reduced mass, and the exciton binding energy, these
laws can be written as

aB = Adξ , μ∗ = At d
τ , |E1s| = Akdγ ε−α

eff ,

where A, At , and Ak are coefficients, and ξ , τ , γ , and α

are exponents which depend on the type of armchair GNR
[in dependence on the number of lines of carbon atoms N
along GNR from one to the other edge: N = 3p, N = 3p + 1,
and N = 3p + 2, where p is an integer], ξ = 0.6, τ = −1.3,
γ = −0.6, α = 0.98 (for N = 3p), ξ = 0.8, τ = −1.2, γ =
−0.73, α = 1 (for N = 3p + 1), and ξ = 0.3, τ = −2, γ =
−0.55, α = 1.16 (for N = 3p + 2).

We hope that similar scaling laws will also be useful as
estimates of parameter values for TMD nanoribbons.

V. DISCUSSION AND CONCLUSIONS

Let us now discuss the possible methods to manufacture
the heterostructures under consideration. We assume that it
will be necessary to combine the method of applying masks
followed by annealing with inert gas ions (argon is often used)
and molecular beam epitaxy (MBE). We describe possible
technological steps in the Supplemental Material [34]. An-
nealing is necessary for “cutting out” the necessary elements
on the TMD monolayer, and MBE is for “overgrowing” of the
areas subjected to annealing. Recently, monolayers of MoSe2,
WSe2, HfSe2, and MoTe2 were grown with the help of MBE
[35,81–83]. The mask technique was demonstrated by the
example of the synthesis of planar heterostructures based on
graphene and hexagonal boron nitride [84]. Thus, we believe
that it would be possible to manufacture the proposed and here
considered theoretically planar MoTe2/WTe2/MoTe2 QW.

To conclude, the problem of the size quantization of the
charge carrier energy levels in such a QW is solved both
in the two-band and in the four-band approximations, al-
though the latter was actually reduced to a single-band ap-
proximation, but taking into account the nearest bands. In
particular, the initial effective masses in the conduction band
m∗

ci and in the valence band m∗
vi for the QW regions (i =

1, 2, 3) are considered to be not equal and are taken from
density-functional theory calculations. We calculated the ef-
fective masses of electrons and holes in the vicinity of the
extremes of the dispersion curves corresponding to the size
quantization levels.

Using the results for the effective masses, we considered
the excitons in the planar QW based on TMDs monolayers.
We proved that there are two regimes of exciton formation,
with the weak and strong dielectric screening of the Coulomb
potential by the environment.

The former regime is characterized by the quasi-2D be-
havior of excitons in the ground state and for the first few
excited states. Highly excited states in this case fall into the
intermediate region between quasi-2D and quasi-1D behav-
ior. The binding energy is calculated using the variational
approach. The 2D hydrogen atom eigenfunctions are chosen
as the trial wave functions. The latter regime is characterized
by the quasi-1D exciton behavior.

The exciton binding energy in the 1D case has a log-
arithmic divergence. To avoid this divergence, we used a
modified Coulomb potential, taking into account the finite
QW width. The energy of the ground state of the exciton was
calculated variationally. The energy spectrum of the excited
states coincides with that of the 3D exciton.

The degeneracy is removed by the angular momentum l in
the quasi-2D regime, and the splitting off of the levels occurs
down the energy with increasing l . This splitting decreases
when the principal quantum number increase.

Let us show how results obtained in this paper can influ-
ence the collective properties of excitons in TMD monolayers
and heterostructures based on them. Of course, there are
many potential consequences; we will discuss only two most
obvious of them.

First, we note that the sound velocity in the two-component
dilute exciton Bose gas is always larger than in any one-
component exciton system in the Bogoliubov approximation
as it was shown in Ref. [9]. Two components of excitons are
their A and B types. Due to this fact, the critical temperature
Tc for superfluidity for the two-component exciton system in
a TMD bilayer is significantly higher than Tc in any one-
component exciton system. In our system, the existence of a
multicomponent Bose gas of weakly interacting excitons is
possible. This multicomponent nature can be ensured due to
the fact that several size quantization levels of electrons and
holes can be populated at once. Electrons and holes at these
levels then bind to excitons, which will have different binding
energies due to different effective masses of electrons and
holes. This observation can also contribute to the occurrence
of superfluidity in systems with two parallel QWs considered
here, separated by a dielectric layer (the dielectric substrate
itself may be such a layer).

Second, placing the system in an open microcavity can pro-
vide a rather interesting aspect of the Berezinskii-Kosterlitz-
Thouless (BKT) phase transition in polaritons. Namely, the
dependence of the BKT critical temperature on detuning
between the exciton and photon eigenenergies. The BKT criti-
cal temperature can depend nonmonotonically on the detuning
[85].

Finally, we will now discuss some prospects for the het-
erostructures proposed here in the field of applications. Along
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with graphene nanoelectronics [86], planar heterostructures of
monomolecular thickness based on TMDs could find appli-
cations in creating transistors and memory cells, improving
integrated circuits, developing thermoelectric devices and fast
charges sensors by analogy with the applications of GNRs
[87–92].

At the moment, van der Waals heterostructures consist-
ing of atomically smooth sheets of layered semiconductors,
such as TMDs, are perfect candidates for engineering next-
generation optoelectronic devices. In particular, heterostruc-
tures with two to three TMD layers can collect almost 100% of
the incident light. The TMD heterostructure may be a type-II
heterostructure with an indirect energy gap in the coordinate
space (e.g., electrons are located in MoS2, and holes in

WS2). Nevertheless, in our opinion, planar heterostructures
have great potential for use in such devices, having a flat
structure.
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