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Quantitative measurement of giant and quantized microwave Faraday rotation
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We report quantitative microwave Faraday rotation measurements conducted with a high-mobility two-
dimensional electron gas (2DEG) in a GaAs/AlGaAs semiconductor heterostructure. In a magnetic field, the
Hall effect and the Faraday effect arise from the action of Lorentz force on electrons in the 2DEG. As with the
Hall effect, a classical Faraday effect is observed at low magnetic field along with a quantized Faraday effect
at high magnetic field. The high electron mobility of the 2DEG enables a giant single-pass Faraday rotation of
θmax

F � 45◦ (�0.8 rad) to be achieved at a modest magnetic field of B � 100 mT. In the quantum regime, we
find that the Faraday rotation θF is quantized in units of α∗ = 2.80(4)α, where α � 1/137 is the fine-structure
constant. The enhancement in rotation quantum α∗ > α is attributed to electromagnetic confinement within a
waveguide structure.
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I. INTRODUCTION

Faraday rotation is the phenomenon whereby the polar-
ization state of linearly polarized light is rotated by matter
under the influence of a magnetic field applied along the
direction of propagation [1]. Faraday rotation manifests itself
in a wide range of physical settings, from the passage of
radio frequency waves through interstellar gas [2] to x-ray
transmission through iron films [3]. Beyond electromagnetic
waves alone, the acoustic analog of Faraday rotation has been
used as a probe of the superfluid properties of 3He-B [4],
wherein spin-orbit locking couples acoustic response with
magnetic field. In a semiconducting two-dimensional electron
gas (2DEG), preliminary evidence of a quantized Faraday
effect in the microwave regime reminiscent of the quantum
Hall effect was observed by Volkov and coworkers in 1986
[5,6]. More recently, Faraday rotation has also been used in
the terahertz domain as a probe of the topological properties of
low-dimensional electron systems [7–12]. Here, we report on
quantitative microwave measurements of Faraday rotation in
a high-mobility 2DEG. A giant Faraday rotation of �0.8 rad
is observed, exceeding the previous record of giant Faraday
rotation by eightfold [8]. In the quantum limit, the rotation
angle is observed to be quantized at multiple filling factors of
the integer quantum Hall effect in units of an effective fine-
structure constant α∗ whose scale is set by the fine-structure
constant α � 1/137.

The Faraday and Hall effects in a 2DEG have a common
origin with the cyclotron motion of charge carriers arising
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from the action of Lorentz force in the presence of an applied
magnetic field B. As depicted in Fig. 1(a), the Hall effect is the
generation of an electric field �EH transverse to the direction
of current flow I and magnetic field B. The Hall effect is
usually quantified by the transverse Hall resistivity ρxy =
VH/I = B/ne, where n is the electron sheet density and e is
the electric charge. In the classical regime, the Hall effect can
be described with a Hall angle θH = ρxy/ρxx, where ρxx is the
longitudinal resistivity of the 2DEG. Similarly, the Faraday
effect depicted in Fig. 1(b) also arises from the action of
Lorentz force upon charge, ultimately resulting in the rotation
of polarization of a linearly polarized electromagnetic wave.
The Faraday rotation θF is the angle of linear polarization
rotation. In many materials, Faraday rotation is weak and
well described by a linear relation θF = V dB, where V is
the Verdet constant and d is the thickness of the medium. As
we will show in this work, the high-mobility 2DEG enables
exceptionally large Faraday rotation.

Consider first a 2DEG in a strong magnetic field, which
can give rise to the quantum Hall effect (QHE) wherein ρxy

is quantized in units of h/e2, the resistance quantum [13]. In
the high-magnetic-field limit of the integer [13] (or fractional
[14]) quantum Hall regime, the longitudinal conductivity is
σxx = 0, and the transverse conductivity is given by σyx =
ie2/h, where i is the integer filling factor (ν in the fractional
regime). The relation between 2DEG current density �J (ω)
and electric field �E (ω) is thus determined by the conductivity
tensor,

�J (ω) = σ̂ �E (ω) =
(

0 −ie2/h
+ie2/h 0

)
�E (ω), (1)

where the frequency ω � ωc, with ωc = eB/m∗ being the
cyclotron frequency.
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FIG. 1. Classical Hall and Faraday effects and experimental
setup. A schematic representation of the classical (a) Hall and
(b) Faraday effects is shown, along with the definition of the
Hall angle θH and the Faraday rotation angle θF . (c) Experimental
setup to measure microwave Faraday rotation. A linearly polarized
electromagnetic wave is injected into a circular hollow waveguide
(port 1) that supports two orthogonally polarized TE11 modes. The
transmitted field is measured using an orthomode transducer in a
direction parallel (port 3) and perpendicular (port 4) to the incoming
electromagnetic wave.

Volkov and Mikhailov [5] were the first to consider the
ideal scenario of a 2DEG in the QHE regime in vacuum,
probed by a normally incident electromagnetic plane wave
of frequency ω � ωc. In this limit, the transmitted electro-
magnetic field �Et (ω) has contributions from both the incident
field �Ei and the forward scattered field that is generated by
the quantized transverse current density in the 2DEG. The
Faraday rotation angle is predicted by simple Fresnel analysis
to become quantized [5],

tan(θF ) = i
Z0

2

e2

h
= iα, (2)

where Z0 is the impedance of free space and the fine-structure
constant α = Z0e2/2h here sets the natural scale for Fara-
day rotation [5,15]. The microwave frequency range (300
MHz � f � 300 GHz) is particularly suitable for experi-
ments attempting to realize this idealized scenario because
the “low-frequency” limit ω � ωc can easily be achieved.
Early experimental works consisted solely of measurements
of cross-polarized transmitted microwave power in arbitrary
units. Although they have shown inchoate quantization of
transverse microwave transmission through 2DEGs [6,16],
to date there have been no quantitative measurements of
microwave Faraday rotation in the QHE regime.

Interestingly, Faraday rotation is a 2D bulk probe of the
quantum Hall state. In the QHE at integer filling factors
i, charge transport experiments probe one-dimensional edge
currents, and it is important to recall that the 2D bulk
transverse conductivity σxy is quantized in the quantum Hall
regime [17]. As will be shown below, Faraday rotation of

electromagnetic waves explicitly probes the quantization of
bulk conductivity. Understanding the microwave Faraday ro-
tation of the integer quantum Hall regime is an important
step towards understanding Faraday rotation in the more
complex fractional quantum Hall (FQH) regime [14] hosted
in ultrahigh-mobility 2DEGs. The FQH states of a 2DEG are
governed by incompressible Laughlin-like liquids and perhaps
host even more exotic quantum states such as the Moore-Read
Pfaffian [18], for example.

II. EXPERIMENTAL SETUP

The experimental apparatus is illustrated schematically in
Fig. 1(c), consisting of a circular hollow waveguide assem-
bly designed for polarization-sensitive microwave scattering
measurements at cryogenic temperatures with a magnetic
field oriented along the waveguide axis. The silver-plated
hollow waveguide with a diameter of 23.825 mm supports two
orthogonally polarized TE11 modes. A high-mobility 2DEG
hosted in an AlGaAs/GaAs heterostructure grown by molec-
ular beam epitaxy on a � = 0.55 mm thick GaAs substrate
with square dimensions 10×10 mm2 was inserted within
the waveguide using a copper plate with a 9-mm-diameter
aperture functioning as a waveguide iris. The AlGaAs/GaAs
semiconductor sample is a modulation-doped quantum well
with a well thickness of d = 30 nm grown at the Center
for Integrated Nanotechnologies at Sandia National Labora-
tories (wafer VA0141). Two δ-doped layers with a density of
2×1012 cm−2 are located symmetrically about the well at a
setback distance of 55 nm. The midpoint of the quantum well
is located 100 nm underneath the surface of the � = 0.55 mm
thick semiconductor.

The mobility of the 2DEG was determined to be μ � 1 ×
106 cm2 V−1 s−1 by way of quasi-DC transport measurements
at T � 20 mK on a piece cut from the same wafer (during
a separate cooldown). The electronic density n of the 2DEG
was determined from the Landau level sequence observed
in the Faraday rotation (see below) and was found to be
2.08(5)×1011 cm−2. A coaxial-to-circular waveguide adapter
(port 1) was used to excite the 2DEG with a linearly polarized
TE11 mode. The perpendicular (port 4) and parallel (port 3)
polarized TE11 mode fields were collected with an orthomode
transducer, which consists of orthogonally polarized electric
dipoles coupled to coaxial transmission lines. The entire as-
sembly was thermally anchored to the cold plate of a dilution
refrigerator with a base temperature of ∼7 mK. All tempera-
tures quoted in this work correspond to the temperature of the
mixing chamber of the dilution refrigerator. While the inci-
dent microwave illumination and/or imperfect thermalization
will raise the temperature of the 2DEG electronic bath above
that of the mixing chamber, our temperature dependence study
of the Faraday rotation angle suggests the electrons are cooled
down to at least ∼200 mK. Finally, a ±6 T magnetic field
was applied along the waveguide axis using a superconducting
solenoid with the positive (+) direction aligned with the
direction of propagation of the incident microwave.

The incident microwaves at 11.2 GHz were generated by a
vector network analyzer (VNA) that was also used to measure
the transmitted microwaves, thus enabling measurement of
the scattering parameters (see Fig. 2). High-frequency coaxial
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FIG. 2. Scattering parameters and Faraday rotation measure-
ments at 11.2 GHz. (a) Perpendicular port scattering parameter S41

and (b) parallel port scattering parameter S31 versus magnetic field B.
The solid (dashed) line denotes the positive (negative) magnetic field
polarity. (c) Magnetic field dependence of the Faraday angle θF (red
circles) at the base temperature of the dilution refrigerator (∼7 mK).
The blue line is a fit of the Faraday rotation versus magnetic field
with a classical Drude conductivity model (see text). The inset shows
a zoom of the same data at low magnetic field.

assemblies were used to couple the VNA to the hollow waveg-
uide assembly in the dilution refrigerator. A low-temperature
switch was used to transmit the microwaves from ports 3 and
4 of the hollow waveguide to the VNA using the same coaxial
assembly, thereby limiting differences in transmission to the
hollow waveguide apparatus. A cryogenic preamplifier was
also used at the ∼3 K stage of the dilution refrigerator together
with filters and attenuators to minimize microwave-induced
Joule heating of the 2DEG and suppress spurious reflections
within the coaxial assembly.

III. FARADAY ROTATION MEASUREMENTS

The measured scattering parameter amplitudes |S41| and
|S31| are shown in Figs. 2(a) and 2(b) for perpendicular and
parallel polarized transmissions, respectively, versus applied
magnetic field B. The difference in the scattering parameter
amplitudes of ∼0.1 dB for positive and negative magnetic
fields arises from a slight misalignment in the excitation and
detection ports. This corresponds to a systematic error of
approximately ∼1% in the field amplitude. The perpendicular
polarization transmission amplitude |S41(B)| plotted versus B
in Fig. 2(a) reveals a staircase corresponding to quantization
of perpendicularly polarized transmission related to Landau
level formation in the 2DEG.

The magnetic-field-dependent Faraday rotation θF (B) is
determined from the scattering parameter amplitudes via
tan[θF (B)] = |S41(B)/S31(B)|. The Faraday rotation θF (B) is
shown in Fig. 2(c), and a maximum Faraday rotation θmax

F �
45◦ (�0.8 rad) is observed at a modest applied magnetic field
of B � 100 mT. This peak in θF demarcates the low-magnetic-
field regime where θF increases with B and the high-field
regime where θF decreases with increasing B.

IV. ELECTROMAGNETIC CONFINEMENT

A quantitative model for the observed Faraday rotation can
be arrived at by combining a simple theory for microwave
transmission in a system with electromagnetic confinement,
along with a Drude conductivity model for the 2DEG. It can
be shown (see below) that Faraday rotation in a waveguide
loaded with a 2DEG is generally given by

tan(θF ) = γ Zσyx

K + Zσxx
, (3)

where Z is an effective wave impedance, K is an effective
transmission coefficient, and γ is a mode coupling param-
eter. In the idealized free-space scenario, Z = Z0, K = 2,
and γ = 1. A similar relation was developed and applied to
experiments for a simple hollow waveguide geometry without
an iris [19,20]. Notably, Eq. (3) is general, applying even
in the presence of an iris where the near-field distribution
defies a simple analytical solution [21,22]. Electromagnetic
confinement will generally cause Z , K , and γ to deviate from
their free-space values.

We derive Eq. (3) in the presence of electromagnetic
confinement beginning with a linear response ansatz for the
transmitted (forward scattered) electric field �Et , incident elec-
tric field �Ei, local electric field �Eloc at the 2DEG, and current
density �J in the 2DEG,

�Eloc = K̂1 �Ei − Ẑ1 �J, (4)

�Et = K̂2 �Ei − Ẑ2 �J, (5)

where K̂1 and Ẑ1 are linear operators giving the contribu-
tions to local electric field from the input field and current,
respectively, and K̂2 and Ẑ2 are linear operators giving the
contributions to transmitted field from the incident field and
current, respectively. The 2DEG current density �J = σ̂ �Eloc,
where σ̂ is the 2DEG conductivity tensor. The transmitted
field can be expressed in two useful forms,

�Et = [
K̂2 − Ẑ2Ẑ−1

1 K̂1
] �Ei + Ẑ2Ẑ−1

1
�Eloc

= [K̂2 − Ẑ2σ̂ (1 + Ẑ1σ̂ )−1K̂1] �Ei. (6)

In the limit that the 2DEG is a perfect electric conductor
with unbounded conductivity |σ̂ | → ∞, the local electric field
�Eloc → 0, resulting in total reflection and null transmission
�Et → 0. The operator identity follows,

0 = K̂2 − Ẑ2Ẑ−1
1 K̂1, (7)

and hence, for arbitrary σ̂ the incident and transmitted fields
are related by

�Ei = K̂−1
1 (1 + Ẑ1σ̂ )Ẑ1Ẑ−1

2
�Et . (8)
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In a waveguide, the incident and transmitted far fields are
linear combinations of waveguide modes, and we restrict
our attention to the scenario of two orthogonally polarized
degenerate waveguide modes with all other modes cut off
(evanescent). Without loss of generality, the transmitted field
is chosen to define the x-polarized mode,

�Et = at �φx(x, y), (9)

and the incident field is taken as a linear combination of the
x-polarized and y-polarized modes,

�Ei = aix �φx(x, y) + aiy �φy(x, y), (10)

with at , aix, and aiy being the complex scalar amplitudes of
transmitted and incident fields and �φx(x, y) and �φy(x, y) being
the x- and y-polarized mode field distributions in the x, y plane
transverse to the propagation axis z. Adopting bra-ket notation
for simplicity,

〈u|Â|v〉 =
∫

�φ∗
u (x, y) · Â �φv (x, y)dxdy, (11)

where u, v ∈ {x, y}. The Faraday rotation tangent defined in
terms of mode amplitudes is

tan(θF ) = aiy

aix
= 〈y|K̂−1

1 (1 + Ẑ1σ̂ )Ẑ1Ẑ−1
2 |x〉

〈x|K̂−1
1 (1 + Ẑ1σ̂ )Ẑ1Ẑ−1

2 |x〉 , (12)

where aix and aiy are determined by combining Eqs. (8)–(10)
and taking inner products. In a system with axial symmetry
about the z axis, there is no cross-coupling between orthog-
onally polarized modes in the absence of a 2DEG, and it
follows that:

〈y|K̂−1
1 Ẑ1Ẑ−1

2 |x〉 = 0. (13)

The conductivity tensor σ̂ of a 2DEG in a normally oriented
static magnetic field has the structure

σ̂ = σxx(�x�x + �y�y) + σyx(�y�x − �x�y), (14)

where dyadic vector notation is used. Assembling all of the
above, the Faraday rotation is given by

tan(θF ) = 〈y|K̂−1
1 Ẑ1σ̂ Ẑ1Ẑ−1

2 |x〉
〈x|K̂−1

2 + K̂−1
1 Ẑ1σ̂ Ẑ1Ẑ−1

2 |x〉

= γ Zσyx

K + Zσxx
, (15)

where there are three scalar parameters that emerge,

Z = 〈x|K̂−1
1 Ẑ1 · (�x�x + �y�y) · Ẑ1Ẑ−1

2 |x〉, (16)

γ = 〈y|K̂−1
1 Ẑ1 · (�y�x − �x�y) · Ẑ1Ẑ−1

2 |x〉
〈x|K̂−1

1 Ẑ1 · (�x�x + �y�y) · Ẑ1Ẑ−1
2 |x〉 , (17)

K = 〈x|K̂−1
2 |x〉, (18)

whose values depend upon the detailed electric field distribu-
tions within the iris-loaded waveguide.

V. DRUDE ANALYSIS

We further approximate the 2DEG conductivity with a
simple, classical Drude conductivity tensor,

σ̂ D = σ0
1

(1 − iωτ )2 + (ωcτ )2

(
1 − iωτ −ωcτ

ωcτ 1 − iωτ

)
, (19)

with σ0 = ne2τ/m∗ = neμ being the Drude conductivity and
ωc being the cyclotron frequency related to the charge carrier
scattering time τ by ωcτ = μB. The charge carrier scattering
time deduced from mobility is τ = m∗μ/e � 38 ps, with
m∗ = 0.067me being the effective mass in GaAs, and ωτ �
2.7 for our experiment at f = 11.2 GHz. The solid blue line
in Fig. 2(c) shows a best fit of θF versus B to the modulus
of Eq. (3) with the Drude conductivity model (19). Two
independent fit parameters associated solely with electromag-
netic confinement were used, taking the values γ = 0.49 and
Z/K = 1192  for the optimized fit, with Z/K assumed to be
real for simplicity.

Notably, our simple model accurately captures the essential
features of Faraday rotation θF versus B. In the low-magnetic-
field regime, μB � 1, the rotation θF ≈ γ σyx/σxx ∝ B, as
observed in Fig. 2(c) for B � 100 mT. In the high-magnetic-
field regime μB � 1, the rotation θF ≈ γ (Z/K )σyx ∝ 1/B, as
is coarsely observed in Fig. 2(c) for B � 100 mT. As shown
below, analysis beyond a classical Drude model is required to
describe Faraday rotation in the high-field regime.

VI. QUANTIZED ROTATION

The measured Faraday rotation angle tangent tan(θF ) is
plotted versus 1/B (solid red line) in Fig. 3(a). Six plateaus are
clearly observed in tan(θF ) versus 1/B, with the lowest three
plateaus evenly spaced along both axes, and a further three
evenly space plateaus are observed with twice the step height.
We confirm the origin of these Faraday rotation plateaus with
the emergence of Landau levels by plotting a fan diagram
of the assigned Landau level index i for each plateau versus
the reciprocal field 1/B of the midpoint of each plateau in
Fig. 3(b). The observed integer filling factor sequence i = 2,
3, 4, 6, 8 follows the Landau level filling factor relation
i = nh/eB with an electron density n = 2.08(5)×1011 cm−2,
consistent with quasi-DC transport studies performed on sam-
ples of the same semiconductor wafer hosting the 2DEG.
Here, the expected spin degeneracy lifting of the Landau
levels occurs in between integer filling i = 4 and 6 at a
magnetic field value B ∼ 1.8 T, again consistent with previous
quasi-DC charge transport studies of 2DEGs hosted in sim-
ilar heterostructures with comparable electron mobility and
density.

The Faraday rotation was also measured during a separate
cooldown in a slightly different experimental configuration
employing two coaxial assemblies. These measurements are
shown in the inset of Fig. 3(a) with the temperature of the
dilution refrigerator at ∼10 mK (red line), where quantization
is visible, and at 3.2 K (blue line), where quantization is
almost absent. In the quantum Hall regime, at temperatures
kBT approaching the Landau level energy gap �, thermal
excitation of electrons across � gradually smears out con-
ductivity quantization until it is ultimately absent. In our
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FIG. 3. Quantized Faraday rotation. (a) Faraday angle plotted
as tan(θF ) versus 1/B (solid red line) at the base temperature of
the dilution refrigerator. The expected position of each observed
Faraday plateau is shown by horizontal markers with the quantization
condition tan(θF ) = iα∗. The rotation quantum α for a 2DEG in
vacuum is illustrated for reference. The inset shows a comparison of
Faraday angle measurements at ∼10 mK (red line) and 3.2 K (blue
line) temperature of the dilution refrigerator. (b) Landau level index i
versus plateau midpoint 1/B (markers), with a linear fit (dashed line)
from which the 2DEG electron sheet density n is inferred.

measurements, the plateaus of Faraday rotation θF cannot be
resolved at 3.2 K, consistent with orbital quantization of the
2DEG by a strong magnetic field.

Finally, we turn our attention to the observed value of
quantized Faraday rotation. In the ideal free-space scenario,
the quantization condition is tan(θF ) = iα, with α being the
fine-structure constant. The experimentally measured Faraday
rotation of Fig. 3(a) exhibits a quantization tan(θF ) = iα∗.
From a linear fit of the midpoints of each plateau in tan(θF )
versus 1/B, the experimentally observed rotation quantum
is α∗ = 0.0204(3) = 2.80(4)α. This is not surprising as the
quantum of rotation in an ideal free-space scenario is α,
and electromagnetic confinement is expected to modify wave
impedance and field distribution such that the rotation quan-
tum in general differs from its free-space value, α∗ �= α.
Applying our simple model, Eq. (3), for Faraday rotation
to the QHE regime with σxx = 0 and σyx = ie2/h, rotation

quantization takes a modified form,

tan(θF ) = i
γ Z

K

e2

h
= iα∗, (20)

where γ , Z , and K are electromagnetic confinement parame-
ters specific to the experimental geometry and frequency. The
simple model estimate for the confinement-enhanced rotation
quantum using γ = 0.49 and Z/K = 1192  as determined
from the Drude model fit displayed in Fig. 2(c) is α∗ = 3.10α,
agreeing with the measured value α∗ = 2.80(4)α within 10%.

VII. CONCLUSIONS

We have measured the quantization of Faraday rotation
in the quantum Hall regime in a high-mobility 2DEG. Mi-
crowave Faraday rotation plateaus are robust and well formed,
allowing Landau level indexing and the observation of a
spin-splitting structure. Measurement of microwave Faraday
rotation is thus a contactless method that may prove useful
in probing low-dimensional electronic phenomena such as the
quantum spin Hall effect [23], the quantum anomalous Hall
effect [24], and the fractional quantum Hall effect [14]. Fur-
thermore, as a consequence of the high mobilities achievable
in the GaAs/AlGaAs 2DEG system, giant Faraday rotation
reaching ∼0.8 rad can be obtained at modest applied magnetic
fields of ∼100 mT. In the future, it is foreseeable that the
Faraday effect arising from cyclotron motion of high-mobility
charge carriers in semiconductor materials and heterostruc-
tures could be used to isolate and circulate microwave signals,
in lieu of conventional bulk ferrites that rely on off-resonant
Larmor precession to impart Faraday rotation.
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