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Self-consistent screening enhances the stability of the nonequilibrium excitonic insulator phase
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The nonequilibrium excitonic insulator (NEQ-EI) is an excited state of matter characterized by a finite density
of coherent excitons and a time-dependent macroscopic polarization. The stability of this exciton superfluid as
the density grows is jeopardized by the increased screening efficiency of the looser excitons. In this work we put
forward a Hartree plus screened exchange scheme to predict the critical density at which the transition toward
a free electron-hole plasma occurs. The dielectric function is calculated self-consistently using the NEQ-EI
polarization and found to vanish in the long-wavelength limit. This property makes the exciton superfluid stable
up to relatively high densities. Numerical results for the MoS2 monolayers indicate that the NEQ-EI phase
survives up to densities of the order of 1012 cm−2.
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I. INTRODUCTION

The significant experimental activity in exploring atomi-
cally thin transition-metal dichalcogenides (TMD) [1–5] has
renewed the interest and boosted the research on the physics
of excitons. Optically excited TMD are indeed characterized
by quasifree carriers and, due to the relatively strong Coulomb
interaction [6–8], by a rich manifold of excitonic states such
as bound excitons, charged excitons (trions) [9–11], excitonic
molecules (biexcitons) [12–15] as well as exciton-polariton
complexes [16–18]. Excitons do therefore play a prominent
role in determining optical and electronic properties and leave
clear fingerprints in photoabsorption and photoluminescence
spectra [6,7,19–22]. Establishing the amount of excitable
excitons and the nature of the exciton fluid are among the most
interesting and investigated issues.

The rich excitonic phenomenology in complex materials
can be efficiently investigated using pump and probe tech-
niques. A first laser pulse (pump) excites the material, which
is subsequently probed by a second, weaker pulse sent with a
tunable delay from the pump. Depending on the pump-probe
delay an incoherent and a coherent regime can be identified.
At delays of the order of tens of picoseconds, coherence is de-
stroyed by carrier-carrier [23,24] and carrier-phonon [25,26]
scattering processes. The system reaches a quasiequilibrium
state characterized by quasifree carriers coexisting with in-
coherent excitons [27–29]. The quasifree carriers efficiently
screen the electron-hole attraction thus reducing both the
exciton binding energy [30–32] and the band gap [31–35]. For
large enough density of quasifree carriers the exciton binding
energy approaches zero and excitons ionize [30,34,36,37], a
phenomenon called excitonic Mott transition [38–41]. The
simplest approach to estimate the screened interaction in
this incoherent regime consists in evaluating the dielectric
function assuming that all excited carries are free [42–44].
The RPA approximation yields a plasma-screened Coulomb

interaction that in TMD monolayers leads to a strong band-
gap shrinkage and a sizable reduction of the exciton binding
energy even at moderate densities [42]. However, excited car-
riers partially form bound excitons, which are neutral compos-
ite excitations and hence have a scarce screening efficiency. It
is therefore important to balance free carrier versus exciton
contributions in the dielectric function [45–47]. Approaches
in this direction [48] indicate that a phase dominated by
excitons in TMD monolayers can survive up to relatively high
densities n ∼ 1013 cm−2, consistent with the experimental
data [30,34,36].

The coherent regime does instead set in immediately after
the pump and survives until scattering-induced dephasing
mechanism destroy the coherence brought by the laser. It
has been predicted in a number of papers that a coherent
exciton fluid, or exciton superfluid, can be realized by pump-
ing resonant with the exciton absorption peak of a normal
semiconductor (or insulator) [49–62]. Experimental evidence
has been recently reported in GaAs by optical pump-probe
spectroscopy [63]. We stress here that the superfluid phase is
not exclusive of excited states as it can be found in the ground
state too. The system is said to be an excitonic insulator
(EI) in the latter case and a nonequilibrium (NEQ) EI in the
former case. Exciton superfluids are characterized by a finite
exciton population and by a steady (EI) or oscillatory (NEQ-
EI) macroscopic polarization. The EI phase of semimetals
and small gap semiconductors has been proposed long ago
[58,64–69]. Calculations on the stability of the EI phase
against screening effects have been pioneered by Nozieres
and Compte [70], and subsequently performed in different bi-
layered compounds, including dipolar systems [71], graphene
[72–74], and TMD [75]. However, how a screened electron-
hole interaction affects the stability of a NEQ-EI has, to our
knowledge, not yet been addressed. It is the purpose of this
work to contribute in filling the gap.
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The difficulty in addressing screening effects in NEQ-EI
is twofold: the system is neither in equilibrium nor in a
stationary state since the macroscopic polarization features
self-sustained (monochromatic) oscillations. In this work we
put forward a self-consistent Hartree plus screened exchange
(HSEX) nonequilibrium scheme, which overcomes the afore-
mentioned difficulties and allows us to assess quantitatively
the role of screening in an exciton superfluid. Unlike the
dielectric function in the incoherent regime we find that the
dielectric function of a NEQ-EI cannot be written as the sum
of a plasmonic and excitonic contributions since the two are
intimately entangled. We also show that the long-wavelength
component of the dielectric function vanishes, making the
NEQ-EI phase particularly robust. Numerical evidence is
provided for MoS2 monolayers where the NEQ-EI phase is
predicted to survive up to n ∼ 1012 cm−2.

The paper is organized as follows. In Sec. II we introduce
the model Hamiltonian for a two-band semiconductor, and we
briefly review the Hartree-Fock (HF) theory of the NEQ-EI
phase. In Sec. III we calculate the polarization function of
the exciton superfluid and use it to screen the electron-hole
interaction at the RPA level. In Sec. IV we improve over the
HF results by laying down a self-consistent HSEX theory,
which we solve numerically. Results for the phase diagram
in monolayer MoS2 are discussed in Sec. V. A summary and
the main conclusions are drawn in Sec. VI.

II. HARTREE-FOCK NEQ-EI

We consider a semiconductor (or insulator) with one va-
lence band of bare dispersion εb

vk and one conduction band
of bare dispersion εb

ck. The explicit form of the Hamiltonian
reads

Ĥ =
∑
kσ

(
εb
vkv̂

†
kσ v̂kσ + εb

ckĉ†
kσ ĉkσ

)

+ 1

2N
∑

k1k2qσσ ′
U q

vv v̂
†
k1+qσ

v̂
†
k2−qσ ′ v̂k2σ ′ v̂k1σ

+ 1

2N
∑

k1k2qσσ ′
U q

cc ĉ†
k1+qσ

ĉ†
k2−qσ ′ ĉk2σ ′ ĉk1σ

+ 1

N
∑

k1k2qσσ ′
U q

cv v̂
†
k1+qσ

ĉ†
k2−qσ ′ ĉk2σ ′ v̂k1σ , (1)

where v̂kσ (ĉkσ ) annihilates an electron of momentum k and
spin σ in the valence (conduction) band, U q

μν = U q
νμ is the

(spin-independent) Coulomb interaction between electrons in
bands μ and ν, and N is the number of discretized k points.
In Eq. (1) we have assumed that the interaction preserves the
number of particles in each band since Coulomb integrals that
break this property are typically small [76]. The lowest-energy
state having a finite density of electrons (holes) in the conduc-
tion (valence) band is the ground state of the grand-canonical
Hamiltonian ĤNEQ−GC ≡ Ĥ − μvN̂v − μcN̂c, where μα and
N̂α are, respectively, the chemical potential and the num-
ber operator for electrons in band α = v, c. All derivations
below can be easily generalized to the case of multiple
bands.

In this section we review the unscreened HF characteriza-
tion of the NEQ-EI state. Taking advantage of the translational
invariance, the mean-field equations for ĤNEQ-GC become
a 2 × 2 self-consistent eigenvalue problem for valence and
conduction electrons, respectively [51],[

hk + V HF
k − μ + δμ

2
σz

]
�ϕλ

k = eλ
k �ϕλ

k, λ = ±, (2)

where we have defined the center-of-mass chemical potential
μ = μv+μc

2 , the relative chemical potential δμ = μc − μv and
the bare single-particle Hamiltonian with matrix elements
hμν

k = δμνε
b
μk. The HF potential V HF

k in Eq. (2) is the fol-
lowing functional of the one-particle density matrix ρ

μν

kσσ ′ =
δσσ ′ρ

μν

k

V HF,vv
k = 1

N
∑

q

(
2U 0

vvρ
vv
q + 2U 0

cvρ
cc
q − U q

vvρ
vv
k−q

)
,

V HF,cc
k = 1

N
∑

q

(
2U 0

ccρ
cc
q + 2U 0

cvρ
vv
q − U q

ccρ
cc
k−q

)
,

V HF,cv
k = V HF,vc

k = − 1

N
∑

q

U k−q
cv ρcv

q . (3)

The self-consistency emerges when expressing the density
matrix in terms of the eigenvectors:

ρ
μν

k =
∑

λ

f
(
eλ

k

)
ϕλ

μkϕ
λ∗
νk, (4)

where f is the Fermi function. In equilibrium δμ = 0 and at
zero temperature the chemical potential μ is such that ρk =
ρ

gs
k with ρ

gs,vv

k = 1 and ρ
gs,cc
k = ρ

gs,cv
k = 0 (filled valence

band and empty conduction band). It is straightforward to
verify that in this case hk + V HF

k is a diagonal 2 × 2 matrix
with diagonal elements

εHF
vk = εb

vk + 2U 0
vv − 1

N
∑

q

U q
vv,

εHF
ck = εb

vk + 2U 0
vc. (5)

Excited state solutions are obtained for δμ �= 0. For these so-
lutions to have the same number of electrons as in the ground
state (charge neutrality condition) the chemical potential μ

must be chosen in such a way that

Nel = 2
∑

k

Tr[ρk] = 2
∑

λ

∑
k

f
(
eλ

k

) = 2
∑

k

ρ
gs,vv

k . (6)

Without loss of generality we assume real Coulomb inte-
grals U μν

q and choose the normalized eigenvectors ϕλ
μk as real

vectors. Let us cast the self-consistent problem in a slightly
different form. We write

ρk = ρ
gs
k + δρk. (7)

Then Eq. (2) is transformed into a self-consistent equation for
the variation δρk:[

hHF
k + δV HF

k − δμ

2
σz

]
�ϕλ

k = (
eλ

k + μ
)
�ϕλ

k, λ = ±, (8)
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where δV HF
k is defined as in Eqs. (3) with ρk → δρk and

hHF,μν

k = δμνε
HF
μ . Using Eq. (4) we can easily express δρk in

terms of the eigenvectors

δρ
μν

k =
∑

λ

f
(
eλ

k

)
ϕλ

μkϕ
λ
νk − ρ

gs,μν

k , (9)

while the condition of charge neutrality becomes

∑
k

Tr[δρk] =
∑

k

[∑
λ

f
(
eλ

k

) − 1

]
= 0. (10)

We assume that the band structure is regular enough for
guaranteeing the existence of a chemical potential such that
maxk{e−

k } < min{e+
k }. Then f (e−

k ) = 1 and f (e+
k ) = 0 for all

k and Eq. (10) is automatically satisfied. Furthermore, Eq. (9)
implies

δρcc
k = −δρvv

k = (ϕ−
ck )2,

δρcv
k = ϕ−

ckϕ
−
vk. (11)

In Ref. [51] we have shown that if the difference between
the chemical potentials is larger than the lowest exciton energy
εx, i.e., δμ = μc − μv > εx, then the self-consistent problem
in Eq. (8) admits a NEQ-EI solution. It is characterized by a
spontaneous symmetry breaking with finite order parameter


 ≡ δV HF,cv
k=0 . (12)

In the next sections we discuss the robustness of the HF NEQ-
EI phase against the screening of electrons in the excited state.
In fact, the HF NEQ-EI solution is characterized by a finite
density of electrons in the conduction band that, in principle,
could lead to a sizable reduction of the Coulomb electron-
hole attraction and, therefore, to the restoration of a symmetry
unbroken phase.

III. SCREENED INTERACTION IN THE NEQ-EI PHASE

In order to calculate the RPA screened interaction in the
NEQ-EI phase we need to evaluate the irreducible retarded
polarization

χ
qR
νμ

ηρ

(t, t ′) = θ (t − t ′)
[
χ

q>
νμ

ηρ

(t, t ′) − χ
q<
νμ

ηρ

(t, t ′)
]
, (13)

where the greater and lesser component are shown in Fig. 1
and read

χ
q≷
νμ

ηρ

(t, t ′) ≡ − i

N
∑
kσ

g≷μηk+qσσ (t, t ′)g≶ρνkσσ (t ′, t )

= − 2i

N
∑

k

g≷
μηk+q(t, t ′)g≶

ρνk(t ′, t ). (14)

In the HF approximation the greater/lesser Green’s function
g≶kσσ ′ (t, t ′) ≡ δσσ ′g≶k (t, t ′) is given by [77]

g≷
αβk(t, t ′) = i

∑
λ

f ≷
(
eλ

k

)
ϕλ

αk(t )ϕλ∗
βk(t ′), (15)

g
≷
μηk+q(t, t )

g
≶
ρνk(t , t)

χ
q≷
νμ
ηρ

(t, t ) = − 2i

N
k

μ η

ρν

t t

vq
μν
ηρ

=
μ

ν η

ρ

μ

ν η

ρ

Wq
μν
ηρ

=

FIG. 1. Index convention for the polarization χ and for the bare
v and screened W Coulomb repulsion.

where f <(ω) = f (ω), f >(ω) = 1 − f (ω) and the time-
dependent vectors satisfy the mean-field equation

i
d

dt
ϕλ

k (t ) = [
hk + V HF

k (t )
]

ϕλ
k (t ). (16)

The time-dependent HF potential V HF
k (t ) is given in Eq. (3)

with ρk → ρk(t ), and ρk(t ) is given in Eq. (4) with ϕλ
k →

ϕλ
k (t ). It can be readily verified that the solution of Eq. (16) is

ϕλ
k (t ) = e−i(eλ

k +μ−σz
δμ

2 )tϕλ
k , (17)

where σz is the Pauli matrix. Substituting this result into
Eq. (15) yields

g≷
αβk(t, t ′) = ∓iϕ±

αkϕ
±
βke−ie±

k (t−t ′ )ei δμ

2 (Sαt−Sβ t ′ ), (18)

with Sv = 1 and Sc = −1. In the ground-state band-insulating
phase (δμ = 0) the anomalous off-diagonal components van-
ish and the Green’s function depends on the time difference
(t − t ′) only. In the NEQ-EI phase instead the off-diagonal
elements are nonzero (symmetry broken phase) and hence the
Green’s function is no longer invariant under time translations.
Taking into account the explicit form of the Green’s function
we see that χ

q≷
μν

ρη

(t, t ′) reads

χ
q≷
νμ

ηρ

(t, t ′) = − 2i

N
∑

k

ϕ±
μk+qϕ

±
ηk+qϕ

∓
ρkϕ

∓
νk

× e−i(e±
k+q−e∓

k )(t−t ′ )ei δμ

2 [(Sμ−Sν )t−(Sη−Sρ )t ′]. (19)

The NEQ polarization has a complex time dependence
and therefore the RPA screened interaction is, in general,
not invariant under time translations. For a bare interaction
v

q
μν

ηρ

(t, t ′) = δ(t − t ′)vq
μν

ηρ

and screened interaction W q
μν

ηρ

(t, t ′) as
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in Fig. 1, the RPA equation reads

W q
μν

ηρ

(t, t ′)=δ(t − t ′)vq
μν

ηρ

+
∑
αβ

γ δ

∫
dt̄ v

q
μν

βα

χ
qR
βα

γ δ

(t, t̄ )W q
γ δ

ηρ

(t̄, t ).

(20)

In our case, however, the bare interaction couples only pairs
of indices belonging to the same band, i.e., v

q
μν

ρη

= δμνδρηU q
μρ .

Consequently, Eq. (20) is solved by W q
μν

ρη

= δμνδρηW q
μρ with

W q
μρ (t, t ′)=U q

μρδ(t − t ′) +
∑
βγ

U q
μβ

∫
dt̄χqR

ββ

γ γ

(t, t̄ )W q
γ ρ (t̄, t ).

(21)

Taking into account Eq. (19) we see that χ
qR
ββ

γ γ

(t, t̄ ), defined

in Eq. (13), depends only on t − t̄ . Its explicit form is given
below

χ
qR
ββ

γ γ

(t, t̄ ) = −iθ (t − t ′)
2

N
×

∑
k

[
ϕ+

βk+qϕ
+
γ k+qϕ

−
γ kϕ

−
βke−i(e+

k+q−e−
k )(t−t̄ )

× ϕ−
βk+qϕ

−
γ k+qϕ

+
γ kϕ

+
βke−i(e−

k+q−e+
k )(t−t̄ )]. (22)

This has an important consequence since the Fourier trans-
form of Eq. (21) becomes simply

W q
μρ (ω) = U q

μρ +
∑
βγ

U q
μβχ

qR
ββ

γ γ

(ω)W q
γ ρ (ω), (23)

where

χ
qR
αα

ββ

(ω) = 2

N
∑

k

[
ϕ+

αk+qϕ
+
βk+qϕ

−
αkϕ

−
βk

ω − (e+
k+q − e−

k ) + iη

− ϕ−
αk+qϕ

−
βk+qϕ

+
αkϕ

+
βk

ω − (e−
k+q − e+

k ) + iη

]
. (24)

More analytic manipulations are possible by taking the
interband repulsion identical to the intraband repulsion, i.e.,
U q

μν = U q (in this case the Hartree contributions in δV HF
k

cancel out). In fact, Eq. (23) is then solved by W q
μρ (ω) =

W q
exciton(ω) with exciton screening

W q
exciton(ω) = U q

1 − U q
[
χ

qR
vv

vv

(ω) + χ
qR
cc
cc

(ω) + 2χ
qR
vv

cc
(ω)

] ,

(25)

where we have used the symmetry property χ
qR
vv

cc

= χ
qR
cc
vv

. In the

following we consider only the static screening and calculate
all quantities at ω = 0: W q

exciton(0) ≡ W q
exciton and χqR(0) ≡

χqR.
It is worth comparing the screening in the NEQ-EI phase

with the screening of the unbroken symmetry phase (
 = 0).

In this phase the system can either be a band insulator or a
normal metal, depending on the value of δμ. In both cases the
anomalous components of the Green’s function vanish, hence
χ

qR
vv

cc

= 0, and the screened interaction reduces to

W q
plasma = U q

1 − U q
(
χ

qR
vv

vv

+ χ
qR
cc
cc

) , (26)

where

χ
qR
αα

αα

= 2

N
∑

k

f̄αk+q fαk − fαk+q f̄αk

−εHF
αk+q + εHF

αk + iη
(27)

is the Lindhard function of a noninteracting gas made of
conduction electrons up to energy μc and valence electrons
up to energy μv (we remind that fαk = 0 for εHF

αk > μα and
unity otherwise). Clearly Eq. (27) is nonzero only in the
metallic case and we recover the plasma screening of metals
for which the interaction is maximally screened at q = 0.
Indeed the static polarization of an electron gas is real and
negative, reaching its minimum value for q → 0. We also
observe that the plasma screening correctly vanishes in the
band insulating phase (0 < δμ < εx) since χ

qR
vv

vv

= χ
qR
cc
cc

= 0,

leading to W q
plasma = U q.

The exciton screening in Eq. (25) is qualitatively and quan-
titatively different. Since we have chosen real and normalized
eigenvectors we always have

ϕ−
ck = ϕ+

vk, ϕ+
ck = −ϕ−

vk, (28)

and therefore the long-wavelength limit q → 0 of Eq. (24)
yields

χ
Rq=0
vv

vv

= χ
Rq=0
cc
cc

= −χ
Rq=0
vv

cc
. (29)

Consequently the denominator of the screened interaction in
Eq. (25) is unity and

W q=0
exciton = U q=0. (30)

This is a remarkable property conveying a clear physical
message: in the NEQ-EI phase the long-wavelength limit of
the interaction is not screened. With hindsight we may say that
in a NEQ-EI electrons and holes pair to form bound excitons,
which behave like microscopic electric dipoles; hence their
screening efficiency at long distances is correctly negligible.
Notice that starting from the NEQ-EI phase and reducing
δμ it is not possible to recover the plasmon screening of
the unbroken symmetry phase since the limits δμ → 0 and
δq → 0 do not commute, see also Fig. 4. We also observe
that the perfect cancellation in Eq. (29) is a consequence of
the assumptions made, i.e., two-band model and a Coulomb
tensor independent of the band indices. However, this analytic
result points to a strong cancellation between the anomalous
and normal polarization in more refined descriptions, and
hence to a considerably reduced screening in the NEQ-EI
phase as compared to that of quasifree carriers.
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IV. HARTREE PLUS SCREENED EXCHANGE NEQ-EI

In this section we describe the self-consistent procedure to study the NEQ-EI phase within the HSEX approximation. The
equation to be solved is the same as the HF one, see Eq. (8), except that we have to replace Uq → W q

exciton in the exchange terms,
i.e., ⎛

⎝εHF
vk + 1

N
∑

q W k−q
exciton|ϕ−

cq|2 − δμ

2 − 1
N

∑
q W k−q

excitonϕ
−
cqϕ

−
vq

− 1
N

∑
q W k−q

excitonϕ
−
cqϕ

−
vq εHF

ck − 1
N

∑
q W k−q

exciton|ϕ−
cq|2 + δμ

2

⎞
⎠

(
ϕλ

vk

ϕλ
ck

)
= (

eλ
k + μ

)(ϕλ
vk

ϕλ
ck

)
. (31)

A working algorithm to solve the problem is proposed below:
(1) Solve the HF problem, i.e., solve self-cosistently Eq. (8);
(2) Use ϕλ

μq and eλ
q to calculate W q

exciton in Eq. (25);
(3) Use W q

exciton to solve self-cosistently the HSEX problem in Eq. (31);
(4) Use the new ϕλ

μq and eλ
q to update W q

exciton in Eq. (25);
(5) Repeat steps 3 and 4 until convergence.
In the next section we discuss the results of the above numerical scheme for a two-dimensional (2D) semiconductor with

parabolic band dispersion.

V. TWO-DIMENSIONAL MODEL FOR MoS2

We consider a MoS2 monolayer and approximate the va-
lence and conduction bands close to the K and K′ valleys with
the parabolic dispersion εHF

vk = − k2

2m − εg

2 and εHF
ck = k2

2m + εg

2 ,
respectively, with k = |k|. We can easily determine the value
of the chemical potential μ to fulfill the charge neutrality
condition in Eq. (10). Since εHF

ck = −εHF
vk and U q

μν = U q we
have μ = 0 for all δμ. According to Ref. [48] an accurate
parametrization of the Coulomb interaction U q for particles
in one of the two valleys is

U q = V q

εq
, (32)

where

V q = 2π

q(1 + γ q + δq2)
,

εq = ε∞
q

1 − β1qβ2qe−2hq

1 + (β1q + β2q)e−hq + β1qβ2qe−2hq
,

βiq = ε∞
q − εsub,i

ε∞
q + εsub,i

,

ε∞
q = g + a + q2

a sin(qc)
qbc + q2

. (33)

The dielectric constant ε∞
q accounts for the background

screening originating from the electronic bands, which are
neglected, while εsub,i is the dielectric constant of a possible
substrate (i = 1) or superstrate (i = 2). Realistic parameters to
describe a freestanding layer of MoS2 are m/me = 0.6 (where
me is the free electron mass), εg = 2.72 eV, a = 2.3 Å−2, b =
17, c = 5 Å, h = 2.7 Å, g = 5.7, γ = 1.9 Å, δ = 0.395 Å2,
and εsub,i = 1. We have verified that the solution of the Bethe-
Salpeter equation with the above parameters provides the
lowest excitonic level at εx = 2.15 eV with corresponding
binding energy εb = 0.57 eV, in good agreement with the
literature [42].

A. HF phase diagram

In Fig. 2 we show the NEQ-EI phase diagram by dis-
playing the amplitude of the order parameter 
 defined in
Eq. (12) versus δμ. As discussed in Ref. [51] the order
parameter 
 and the excited density in conduction band nc =

2
N

∑
k |ϕ−

ck|2 vanish for δμ < εx. The transition between the
band-insulating and the NEQ-EI phases occurs at the critical
value δμ = εx = 2.15 eV. As δμ is increased, 
 displays
a nonmonotonous behavior characterized by a sudden raise
followed by a slow decrease. We checked that 
 is not
discontinuous in δμ = εx and that it reaches its maximum
value at δμ � 2.22 eV.

B. HSEX phase diagram

In Fig. 3 we compare the HF phase diagram with the HSEX
one. For this comparison we have found it more instructive
to plot the order parameter 
 versus the excited density per
unit area, i.e., n = 2nc/A, where A = 8.8 × 10−16 cm2 is the
area of the unit cell of a MoS2 monolayer. The extra factor
2 accounts for the fact that the total excited carriers are

FIG. 2. HF phase diagram. Order parameter 
 defined in
Eq. (12) obtained from the self-consistent solution of Eq. (8) for
different values of δμ. The vertical dashed line indicates the lowest
exciton energy εx = 2.15 eV.
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FIG. 3. HSEX vs HF phase diagrams. Order parameter 
 calcu-
lated in the HF approximation according to Eq. (8) (yellow circles)
and in the HSEX approximation according to Eq. (31) (green circles)
as a function of the excited denisty n. For comparison we also show

 obtained using a plasma screening (blue circles), i.e., by solving
Eq. (31) with the replacement W q

exciton → W q
plasma.

equally distributed among the K and K′ valleys. In addition
to the full HSEX solution we also show the outcome of
the self-consistent solution of Eq. (31) with the replacement
W q

exciton → W q
plasma in Eq. (26). This comparison is useful to

highlight the importance of screening the interaction with a
polarization originating from an exciton superfluid rather than
from a plasma of free carries. For parabolic 2D bands the
polarization in Eq. (27) has an analytic expression [78]:

χ
Rq
vv

vv

= χ
Rq
cc
cc

= −m

π

[
1 − θ (q − 2kF)

√
1 − 4k2

F/q2
]
, (34)

where kF = √
2πnc.

Figure 3 clearly shows that the NEQ-EI phase survives
in a large portion of the phase diagram provided that the
proper screened interaction is considered. In particular for low
and moderate excited densities n � 1011 cm−2 the screening
efficiency of the exciton superfluid is scarce and the HF and
HSEX results are quite similar. In this regime, however, the
plasma screening is already strong and the corresponding
order parameter is highly suppressed. The dramatic impact
of different screenings on the phase diagram can be better
understood with the help of Fig. 4(a). For low excited density
n the excitonic polarization is much smaller than the plasma
one. In particular the plasma χ (green dashed) is large and
independent on n for small q (its value at q = 0 is −m/π ≈
−0.19 eV−1) whereas the excitonic χ (black solid) is al-
most vanishing due to the cancellation between off-diagonal
(blue solid) and diagonal (orange dashed) components, see
discussion in Sec. III. For higher densities the screening of
the exciton superfluid becomes more efficient although the
normal and anomalous components of χ still partially cancel
at low momenta q, see Fig. 4(b). As a result the HSEX order
parameter is somewhat reduced and it reaches its maximum
value concomitantly with the HF order parameter at density
nmax ≈ 1012 cm−2. For this density the screening is respon-
sible for a 25% reduction of the HF order parameter. At the
same density the plasma screening does instead suppress the

FIG. 4. The relevant components of the polarization χ for differ-
ent excited densities n and for different screening approximations. In
the case of excitonic screening the total χ (black solid curve) entering
in Eq. (25) has both normal (orange dashed curve) and anomalous
(blue solid curve) components. In the case of plasma screening,
instead, the total χ entering in Eq. (26) coincides with its normal
component (green dashed curve).

order parameter by two orders of magnitude. For n > nmax

the HSEX results depart significantly from the HF values,
see Fig. 3. In particular the HF order parameter decreases
smoothly whereas in HSEX n = nmax is, de facto, a critical
value beyond which the NEQ-EI phase breaks down. We refer
to this density-driven transition as the coherent excitonic Mott
transition. This should not be confused with the well-known
excitonic Mott transition [38–41], which, instead, refers to the
incoherent regime.

The observed behavior can again be understood by inspect-
ing the polarization, see Fig. 4(c). At densities n � nmax the
excitons start melting and the screening efficiency changes,
becoming similar to the plasma efficiency. In fact, although
χ still vanishes at q = 0 (this is an exact property for any

 �= 0) the aforementioned cancellation occurs only in a very
tiny region around q = 0.
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The phase diagram in Fig. 3 provides a reliable description
of MoS2 up to δμ � 3.2 eV. Indeed, in this range the chemical
potentials μc/μv lie about 0.2 eV above/below the band
minimum/maximum, and the parabolic approximation for the
band dispersion is still accurate [19]. The value δμ = 3.2 eV
corresponds to n ∼ 5 × 1012 cm−2, thus covering the whole
range of our HSEX calculations.

VI. SUMMARY AND CONCLUSIONS

We presented a microscopic approach to address the sta-
bility of the exciton superfluid created by a resonant pump
against an increasing density in the conduction bands. Us-
ing different chemical potential for valence and conduction
electrons self-consistency naturally leads to the nonstationary
NEQ-EI state. Our theory improves over previous studies in
the RPA screened electron-hole interaction, which we here
calculate using the polarization of the proper state of matter,
i.e., the exciton superfluid. We find that the screening does
not affect the long-wavelength component of the interaction
due to the neutral nature of the excitons. This property origins
from a subtle cancellation between a plasmalike contribution
and an anomalous one. Inclusion of the proper screening in
a self-consistent HSEX calculation indicates that the NEQ-
EI phase is very robust, and can survive up to densities
typically excited in pump-probe experiments. Numerical cal-
culations in MoS2 monolayers show that the HF (i.e., un-
screened) phase diagram is very similar to the HSEX phase
diagram up to a critical density nmax ∼ 1012 cm−2, where the
excitonic order parameter reaches its maximum value.

However, by further increasing the density in the conduction
bands excitons start melting consistently with an increase
in the screening efficiency. When n ∼ nmax, the HSEX ap-
proach predicts the occurrence of a coherent excitonic Mott
transition. We do not expect that the observed sharpness is
universal as other scenarios, such as phase coexistence, are
possible [79].

Our results are relevant also in the light of future first-
principles studies of the NEQ-EI phase occurring in normal
semiconductors. Indeed we have provided evidence that at
least for small and moderate excited densities the update of the
screened interaction in the excited state is presumably not nec-
essary, thus rendering the NEQ-EI mean-field problem easily
implementable in most of the already existing ab initio codes.
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