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Semiclassical theory of the circular photogalvanic effect in gyrotropic systems
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We develop a theory of circular photogalvanic effect (CPGE) for classically high photon energies which
exceed the electron scattering rate but are small compared to the average electron kinetic energy. In this frequency
range one can calculate the CPGE by using two different approaches. In the fully quantum-mechanical approach
we find the photocurrent density by applying Fermi’s golden rule for indirect intraband optical transitions with
virtual intermediate states both in the conduction and valence bands. In the framework of the semiclassical
approach, we apply a generalized Boltzmann equation with accounts for the Berry-curvature-induced anomalous
velocity, side jumps, and skew scattering. The calculation is carried out for a wurtzite symmetry crystal. Both
methods yield the same results for the CPGE current demonstrating consistency between the two approaches and
applicability of the semiclassical theory for the description of nonlinear high-frequency transport.
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I. INTRODUCTION

The key signature of the circular photogalvanic effect
(CPGE) is the appearance of a photocurrent under illumina-
tion with circularly polarized light and reversal of its direction
upon inversion of the light helicity. Physically, the CPGE
can be considered as a transformation of the photon angular
momenta into a translational motion of free charge carriers. It
is an electronic analog of mechanical systems which transmit
rotatory motion to linear one like a wheel or a screw. In
time-reversal-invariant systems the circular photocurrent is
nonzero for point groups that allow optical activity or gy-
rotropy. Among 21 crystal classes lacking inversion symme-
try, only three noncentrosymmetric classes Td , C3h, and D3h

are nongyrotropic. The symmetry of Cnv point groups (n =
3, 4, 6,∞) allows for the CPGE analogous to the wheel effect.
The CPGE was predicted by Ivchenko and Pikus [1] and
Belinicher [2]. It was first observed and studied in Tellurium
bulk crystals by Asnin et al. [3], see more references in Refs.
[4–7]. Sometimes the term, “circular photocurrent,” is also
referred to as “injection current” [8]. Renewed interest in the
CPGE has been stimulated by prediction of its quantization in
terms of the fundamental constants e, h, and the topological
charge of Weyl nodes in the Weyl semimetals [9], see also
Refs. [10–16].

The initial microscopic theories of the CPGE were based
on the quantum-mechanical calculations applicable when the
light frequency ω is much larger than the electron relaxation
rate τ−1. The goal of Ref. [17] was to pave the way for
the generalized semiclassical description of the circular and
linear photogalvanic effects in solids, under conditions where
the electron kinetic energy ε̄ exceeds the photon energy h̄ω.
In this regime one can use the Boltzmann kinetic equation
[18–21] with the field term containing the electric field of the
electromagnetic wave.

Transport analysis of photocurrents in Ref. [17] showed
that, within the semiclassical approach, the following mech-
anisms can contribute to the photogalvanic effects: (i) skew
scattering which appears when going beyond the Born ap-
proximation [22–24]; (ii) the electron anomalous velocity due
to the Berry curvature in the electron Bloch wave function
[18,25,26]; (iii) the side-jump contribution to the electron
velocity; and (iv) a change of electron energy caused by
the side-jump in a scattering process in the presence of an
external electric field [19,24,27,28]. Since the mechanism
(iii) is insensitive to the light helicity, only the other three
mechanisms are relevant to the CPGE. Soon Moore and
Orenstein [29] computed the Berry-phase contribution (ii) to
helicity-dependent photocurrents in realistic circumstances,
namely, for semiconductor quantum wells. This mechanism
was then studied comprehensively for different materials and
electron band models [30–43]. The Berry-curvature-related
circular photocurrent has been expressed in an elegant form
via the newly coined “Berry curvature dipole” [30].

In contrast to the Berry curvature-related current (ii),
the mechanism (iv) has not attracted as much attention al-
though it can lead to circular photocurrents of the same
order of magnitude. Moreover, a similar mechanism has
been studied in linear and nonilinear transport, the so-called
anomalous-distribution mechanism of the anomalous Hall
effect [24,28,44–47].

In this work, we present, within the same electron band
structure model, both quantum-mechanical and semiclassical
calculations of the intraband CPGE for a three-dimensional
electron gas in the frequency range

h̄

τ
� h̄ω � ε̄ . (1)

We will show that in this frequency range both approaches
yield the same result which indicates consistency of the

2469-9950/2020/102(8)/085202(8) 085202-1 ©2020 American Physical Society

https://orcid.org/0000-0003-3818-1014
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.102.085202&domain=pdf&date_stamp=2020-08-17
https://doi.org/10.1103/PhysRevB.102.085202


L. E. GOLUB, E. L. IVCHENKO, AND B. SPIVAK PHYSICAL REVIEW B 102, 085202 (2020)

k

k′

(b)

k
k′

(c)

(a) (d)

k

k′

FIG. 1. (a) The four-band model, the electron energies at the �

point (k = 0). (b, c) Indirect intraband transitions via intermediate
states in the conduction band. (d) Transitions with virtual states in
the valence bands.

semiclassical approach. We will also discuss relative roles of
above-mentioned contributions to circular photocurrents.

The paper is organized as follows. In Sec. II we present
a band structure model of a wurtzite-type semiconductor
used in the explicit consideration. In Sec. III we perform the
quantum-mechanical calculation of the circular photocurrent,
and Sec. IV is devoted to the CPGE semiclassical description.
The skew scattering contribution is calculated in Sec. V.
Concluding remarks are given in Sec. VI.

II. BAND STRUCTURE MODEL

We use the spin-independent band structure model of a
wurtzite-type semiconductor which includes the conduction
band �1c, and the valence bands �6v, �1v , Fig. 1(a). The
(real) Bloch functions at the � point are labeled as S (�1c),
X,Y (�6v), and Z (�1v). In this basis the Kane effective
Hamiltonian is a 4 × 4 matrix

Ĥ (k) =

⎡
⎢⎣

0 iP⊥kx iP⊥ky iP‖kz

−iP⊥kx −Eg 0 −iQkx

−iP⊥ky 0 −Eg −iQky

−iP‖kz iQkx iQky −(Eg + �c)

⎤
⎥⎦, (2)

where k is the electron wave vector, Eg is the band gap, �c

is the crystal splitting of the valence band due to the uniaxial
symmetry, and iP⊥, iP‖, iQ are interband matrix elements of
the velocity operator taken between the Bloch functions at
k = 0 and multiplied by h̄. This is the four-band spinless
Kane Hamiltonian [5,48] generalized to account for the uniax-
ial anisotropy (�c �= 0, P⊥ �= P‖) and broken space-inversion
symmetry (Q �= 0). The electron dispersion consists of the
conduction band εc,k, two valence subbands εv1,k, εv2,k, and
the split-off subband εvz,k. The spin-orbit interaction is ig-
nored, and the expressions for the electric current are just mul-
tiplied by the spin-degeneracy factor of 2. The off-diagonal
components of the matrix (2) describe the kp mixing between
the conduction and valence bands as well as between the va-
lence bands �6v and �1v . For the symmetry of Bloch functions
at the �-point we use the notations of the point group C6v but
the symmetry of Hamiltonian (2) is higher, C∞v . In the chosen
coordinate frame, z is parallel to the principal C6 axis.

The circular photocurrent is phenomenologically described
by the relation jCPGE

α = γαβκβE2
0 , where �κ = i(e × e∗) is the

vector chirality of a photon with e being the light polarization
unit vector, E0 is the light wave amplitude, and γ̂ is the second
rank pseudotensor [5]. For the C∞v symmetry, it has only one
linearly independent component, γxy = −γyx ≡ γ :

jCPGE
x = γ κyE2

0 , jCPGE
y = −γ κxE2

0 . (3)

In the parabolic approximation the energy dispersion in the
subbands c, v1, v2, and vz is given by

εc,k = h̄2k2
⊥

2mc⊥
+ h̄2k2

z

2mc‖
,

εv1,k = −Eg , εv2,k = −Eg − h̄2k2
⊥

2mv2⊥
, (4)

εvz,k = −(Eg + �c) − h̄2k2
⊥

2mvz⊥
− h̄2k2

z

2mvz‖
,

where k2
⊥ = k2

x + k2
y , and the inverse effective masses are

1

mc⊥
= 2P2

⊥
h̄2Eg

,
1

mc‖
= 2P2

‖
h̄2(Eg + �c)

,

1

mv2⊥
= 2

h̄2

(
P2

⊥
Eg

− Q2

�c

)
,

1

mvz⊥
= 2Q2

h̄2�c
,

1

mvz‖
= 2P2

‖
h̄2(Eg + �c)

. (5)

In the particular case

P2
⊥

Eg
= P2

‖
Eg + �c

(6)

the parabolic dispersion in the conduction band is isotropic:
mc⊥ = mc‖ ≡ m and

εc,k = h̄2k2

2m
. (7)

To simplify the computation of the photocurrent we further
assume that the relation (6) is valid and use the isotropic
electron dispersion in the conduction band.

The Bloch functions at k �= 0 are linear combinations of the
basis functions S, X,Y, Z multiplied by the exponential factor
eikr, namely,

ψn,k(r) = eikrunk, unk = CsS + CxX + CyY + CzZ.

The coefficients Cs,Cx,Cy, and Cz are usefully presented as
a four-component column Ĉnk which is an eigenvector of the
matrix Ĥ (k).

In the following we will calculate the Berry curvature �ck

and the elementary shifts rck′,ck of an electron in the r-space
under the scattering between the states (c, k) and (c, k′). For
this purpose we expand the Bloch periodic amplitudes unk in
powers of k up to the second order. For the conduction band,
the expansion has the form

uck = C(c)S +
(

−i
P⊥
Eg

− P‖Qkz

EgE ′
g

)
(kxX + kyY )

+
(

−i
P‖kz

E ′
g

+ P⊥Qk2
⊥

EgE ′
g

)
Z, (8)
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where E ′
g = Eg + �c and the normalization coefficient equals

C(c) = 1 − 1

2

(
P2

⊥k2
⊥

E2
g

+ P2
‖ k2

z

(Eg + �c)2

)
.

The Bloch amplitude uv1k is a simple linear combination of X
and Y :

uv1,k = ky

k⊥
X − kx

k⊥
Y . (9)

Similarly to uck, the amplitudes uv2k and uvzk are linear com-
binations of three Bloch functions S, (kxX + kyY )/k⊥ and Z:

uv2k =
(

−i
P⊥k⊥

Eg
+ P‖Qk⊥kz

Eg�c

)
S

+C(v2 )

(
kx

k⊥
X + ky

k⊥
Y

)
+

(
i
Qk⊥
�c

− P⊥P‖k⊥kz

Eg�c

)
Z,

(10)

uvzk =
(

−i
P‖kz

E ′
g

+ P⊥Qk2
⊥

E ′
g�c

)
S

+
(

i
Q

�c
+ P⊥P‖kz

E ′
g�c

)
(kxX + kyY ) + C(z)Z. (11)

III. QUANTUM-MECHANICAL CALCULATION OF THE
CIRCULAR PHOTOCURRENT

In the quantum-mechanical approach the intraband circular
photocurrent is generated under indirect optical transitions
(ck) → (ck′), with εck′ = εck + h̄ω, involving scattering by
static defects and/or acoustic phonons. Here we focus on
the elastic scattering processes and introduce the scattering
matrix elements Un′k′,nk, both intraband and interband. Then
the compound matrix element of the indirect light absorption
has the form [3,5,49]

Mck′,ck = Vc,c(k′)Uck′,ck

εck′ − εck
+ Uck′,ckVc,c(k)

εck − εck − h̄ω

+
∑

v=v1,v2,vz

(
Vc,v (k′)Uvk′,ck

εvk′ − εck
+ Uck′,vkVv,c(k)

εvk − εck − h̄ω

)
,

(12)

where Vn′,n(k) is the optical matrix element of the direct
transition (nk) → (n′k).

The first two terms in the right-hand side (rhs) of Eq. (12)
describe the indirect transitions via intermediate states in the
conduction band c (intraband contribution), Figs. 1(b) and
1(c), while the sum over v accounts for the virtual inter-
mediate states in the valence bands (interband contribution),
Fig. 1(d). The electric field of the incident light is defined as

E(t ) = Ee−iωt + E∗eiωt = E0(e−iωt e + eiωt e∗). (13)

Then the intraband contribution to (12) can be written as

M intra
ck′,ck = ieE0

mω

Uck′,ck

ω
[e · (k′ − k)], (14)

where e is the electron charge and the effective mass m is
introduced in Eq. (7).

Within the accuracy of our calculation the electron energy
dispersion and the photon energy in the denominators of the
interband contribution can be neglected, and this contribution
is reduced to

M inter
ck′,ck = −

∑
v

Vc,v (k′)Uvk′,ck + Uck′,vkVv,c(k)

E0
c − E0

v

, (15)

where E0
c , E0

v are the electron energies at k = 0.
We assume that electrons are elastically scattered by the

short-range defects. In this case the scattering matrix elements
are given in the Born approximation by

Un′k′,nk = U0〈un′k′ |unk〉 , (16)

where U0 is real. Note that the perturbative expansion of the
interband matrix element Uck′,vk or Uvk′,ck starts from the first
order in k.

The optical matrix element is given by

Vn′n(k) = ieE0

ω
e · vn′n(k) , (17)

where the velocity matrix elements are calculated
according to

vn′n(k) = Ĉ†
n′kv̂Ĉnk , v̂ = 1

h̄

∂Ĥ (k)

∂k
. (18)

Omitting tedious intermediate transformations we arrive at
the following equation for the indirect optical matrix element

Mck′,ck = iae · (k′ − k)

− b[ez(k′2
⊥ − k2

⊥) − e⊥ · (k′
⊥ + k⊥)(k′

z − kz )],

(19)

where

a = eE0

mω2
U0 , b = eE0A

2h̄ω
U0, (20)

A = 2P⊥P‖Q

EgE ′
g

(
1

Eg
+ 2

E ′
g

)
. (21)

The circular photocurrent is calculated according to [5]

jCPGE = 2eni
2π

h̄

∑
k′k

[vck′τ (εk′ ) − vckτ (εk )]

× |Mck′,ck|2as[ f 0(εk ) − f 0(εk′ )]δ(εk′ − εk − h̄ω),

(22)

where the factor of 2 accounts for the double spin degeneracy
and for brevity we set the sample volume to unity. The other
notations are defined as follows: ni is the defect concentra-
tion, vck = h̄k/m is the electron velocity in the conduction
band, τ (εk ) is the energy-dependent momentum scattering
time, f 0(εk ) is the equilibrium electron distribution function,
and we retain only the antisymmetric part of the squared
matrix element

|Mck′,ck|2as = ab{(k′2
⊥ − k2

⊥)[(k′
⊥ − k⊥) × �κ]z

+ (k′
z − kz )2[(k′

⊥ + k⊥) × �κ]z

+2 (k′
z − kz )(k′ × k)zκz}. (23)
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The last term in the rhs of Eq. (23) is proportional to κz

and does not contribute to the current in agreement with the
symmetry consideration (3). In the model under study the
momentum relaxation rate has the form

1

τ (εk )
= π

h̄
niU

2
0 g(εk ) =

√
2

π

m3/2

h̄4 U 2
0 ni

√
εk , (24)

where

g(εk ) = 2
∑

k′
δ(εk′ − εk )

is the density of states. Thus, the exponent of the power-law
dependence τ (εk ) ∝ εν

k has the value

ν = d ln τ

d ln εp
= −1

2
. (25)

In this paper we keep the general notation ν to show the origin
of the particular contributions to the photocurrent due to the
derivative dτ/dεk . Only at the final stage we substitute the
value ν = −1/2 into the equation for the photocurrent.

While performing the summation in Eq. (22) we take into
account the energy conservation law εk′ − εk = h̄ω and use
the Taylor’s linear expansion

f 0(εk′ ) = f 0(εk ) + df 0(εk )

dεk
h̄ω,

τ (εk′ ) = τ (εk ) + dτ (εk )

dεk
h̄ω,

and the identities

2π

h̄

∑
k′

δ(εk′ − εk ) = 1

niU 2
0 τ

, (26)

−2
∑

k

εk
df 0

dεk
= 3

2
N , (27)

where N = 2
∑

k f 0(εk ) is the electron density. The final
result for the CPGE parameter γ reads

γ = 2
(

1 + ν

3

)e3AN

h̄2ω
. (28)

Now we turn to the semiclassical approach and show
that the semiclassical circular photocurrent is also given by
Eq. (28) with ν = −1/2.

IV. SEMICLASSICAL DESCRIPTION OF CPGE

In this section we consider semiclassical contributions to
γ mentioned in the Introduction and compare their sum with
Eq. (28).

A. Berry curvature dipole contribution

This contribution to the photocurrent is given by [17]

jBCD = 2e2

h̄

∑
k

[�ck × E(t )] f (1)
ck (t ) , (29)

where we use the following notation. The Berry curvature �ck

is the curl of the Berry connection Ack (also called the Berry

vector potential),

�ck = ∂

∂k
× Ack, Ack = i

〈
uck

∣∣∣∣∂uck

∂k

〉
, (30)

and f (1)
ck (t ) is the correction to the electron distribution func-

tion linear in the electric field E(t ),

f (1)
ck (t ) = e−iωt f (1)

ckω
+ eiωt f (1)∗

ckω
. (31)

In the framework of the classical Boltzmann equation in the
relaxation-time approximation, it has the form

f (1)
ckω

= −eτω(εk )E0(e · vck)
df 0(εk )

dεk
, τω = τ

1 − iωτ
.

(32)

In the limit ωτ � 1, see Eq. (1), the “complex time” τω is
replaced by i/ω.

One can show using Eq. (8) for the periodic amplitude uck

that the Berry curvature is given, up to the first order, by

�ck = A(k × c) , (33)

where c is the unit vector in the z direction and the coefficient
A is defined by Eq. (21). An important point to stress is that
the Berry curvature is proportional to the same parameter A
which is present in Eq. (28) for the quantum-mechanical pho-
tocurrent. Substituting Eqs. (13), (32), and (33) into Eq. (29)
and summing over k we obtain

γ BCD = e3AN

h̄2ω
. (34)

Comparing Eqs. (28) and (34) we see that the Berry curvature
dipole contribution represents only a part of the total CPGE
current and we need to consider other mechanisms of the
semiclassical circular photocurrent.

B. Circular photocurrent due to the side-jump correction in the
energy-conservation law

The kinetic equation for the electron distribution function
fck with allowance for the side-jumps is written as [17]

∂ fck(t )

∂t
+ eE(t )

h̄

∂ fck(t )

∂k
= ni

∑
k′

Wk′k( fck′ − fck) , (35)

where

Wk′k = 2π

h̄
U 2

0 δ[εk′ − εk − eE(t ) · rk′k] ≈ W (0)
k′k + W (1)

k′k ,

W (0)
k′k = 2π

h̄
U 2

0 δ(εk′ − εk ) , (36)

W (1)
k′k = 2π

h̄
eU 2

0 [E(t ) · rk′k]
∂δ(εk − ε′

k )

∂εk
, (37)

and rck′,ck is an elementary shift of the electron in the
real space under the transition from (c, k) to (c, k′).
Equation (35) differs from the standard Boltzmann equation
by the coordinate-shift correction to the collision integral.
This correction follows from the change of the potential
energy by −erk′k · E under the scattering in the electric field
due to the side-jump in which case the energy-conservation

085202-4



SEMICLASSICAL THEORY OF THE CIRCULAR … PHYSICAL REVIEW B 102, 085202 (2020)

law reads [24,44]

εk′ − εk − erk′k · E = 0 .

The side-jump, or the shift in real space due to scattering,
is connected with the Berry vector potential by [24,50,51]

rk′k = −
Im[U ∗

ck′,ck(∇k′ + ∇k)Uck′,ck]

|Uck′,ck|2
+ Ack′ − Ack. (38)

The matrix element of the elastic scattering Uck′,ck is calcu-
lated according to Eqs. (8) and (16) with the result

rk′k = A
2

[(kz − k′
z )(k′

⊥ + k⊥) + (k′2
⊥ − k2

⊥)c] (39)

determined by the same parameter A as the currents in
Eqs. (28) and (34).

The photocurrent induced by the side-jump contribution to
the collision integral (SJCI) is calculated according to

jSJCI = 2e
∑

k

h̄k
m

gk , (40)

where gk is the steady-state correction to the electron distribu-
tion function proportional to E2

0 . It consists of two contribu-
tions ga

k and gb
k.

1. Field effect followed by SJCI

The contribution ga
k is obtained by substituting the correc-

tion f (1)
ck (t ) induced by the electric field, see Eqs. (31) and

(32), into the rhs of Eq. (35) and averaging the product

W (1)
k′k

[
f (1)
ck′ (t ) − f (1)

ck (t )
]

over time. This leads to

ga
k = τni

∑
k′

W (1)
k′k

[
f (1)
ck′ (t ) − f (1)

ck (t )
] = −eτniU

2
0

× 2π

h̄

∑
k′

[E(t ) · rk′k]
[

f (1)
ck (t ) − f (1)

ck′ (t )
]∂δ(εk − ε′

k )

∂εk
,

(41)

where the overline denotes a time average. We substitute
f (1)
ck (t ) from Eqs. (31), (32), and rk′k from Eq. (39) into

Eq. (41), average over the time and the direction of k′ and
then substitute ga

k into Eq. (40), average over the direction of
k and apply the identity (26) and the sum rule

∑
k

F (εk )
∂δ(εk − ε′

k )

∂εk

= −
∑

k

δ(εk − ε′
k )

1√
εk

∂

∂εk
[
√

εkF (εk )], (42)

which is derived by integrating by parts and valid for an
arbitrary differentiable function F (εk ). This procedure allows
us to reduce the contribution to the CPGE parameter γ to
the sum

γ SJCIa = −4e3A
9h̄2ω

∑
k

[
2(3 + ν)εk

df 0(εk )

dεk
+ ε2

k

d2 f 0(εk )

dε2
k

]
.

Taking into account Eq. (27) and the similar equation

2
∑

k

ε2
k

d2 f 0(εk )

dε2
k

= 15

4
N (43)

we arrive at

γ SJCIa = e3AN

h̄2ω

7 + 4ν

6
. (44)

2. SJCI followed by the field effect

The correction gb
k is obtained by first solving the kinetic

equation without the field term but with the inhomogeneous
term

ni

∑
k′

W (1)
k′k [ f 0(εk′ ) − f 0(εk )]

proportional to E0. In the limit ωτ � 1, the solution reads

f̃ (1)
ck (t ) = i

ni

ω

∑
k′

W (1)
k′k [ f 0(εk′ ) − f 0(εk )]. (45)

Second, the solution f̃ (1)
ck is substituted into the field term of

the kinetic equation. As a result we have

gb
k = −τ

eE(t )

h̄

∂ f̃ (1)
ck (t )

∂k
. (46)

Next we substitute Eq. (46) into Eq. (40) and integrate by parts
to get

jSJCIb
α = 2e2

m

∑
k

[
E(t ) f̃ (1)

ck (t )
]∂[kατ (εk )]

∂k
. (47)

The function in the sum averaged over time and the direction
of k can be reduced to

(c × �κ)E2
0

2νemA
9h̄2ω

∂ f 0(εk )

∂εk
εk ,

which finally leads to

γ SJCIb = ν

3

e3AN

h̄2ω
. (48)

The sum of contributions to γ from the Berry curvature
dipole, Eq. (34), and the side jumps in the collision integral,
Eqs. (44) and (48), is given by

γ CPGE =
(

1 + 7 + 4ν

6
+ ν

3

)
e3AN

h̄2ω
=

(
13

6
+ ν

)
e3AN

h̄2ω
.

In the model under consideration this equation is valid only
for ν = −1/2 and reduces to

γ CPGE = 5

3

e3AN

h̄2ω
. (49)

The same value of γ follows from the quantum-mechanical
result, Eq. (28), at ν = −1/2.

V. CIRCULAR PHOTOCURRENT DUE TO THE SKEW
SCATTERING

The skew-scattering mechanism is related to the antisym-
metric part of the Boltzmann equation collision term arising
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beyond the Born approximation. Neglecting here the side-
jump term W (1)

k′k we can write the probability rate in noncen-
trosymmetric solids as

Wk′k = W (0)
k′k + W (a)

k′k ,

where the main term is defined in Eq. (36) and the antisym-
metric term possesses the properties

W (a)
k′k = −W (a)

−k′,−k
= −W (a)

kk′ .

With allowance for this term the rhs of the kinetic
Eq. (35) should be rewritten as

I{ f } = ni

∑
k′

(Wkk′ fck′ − Wk′k fck).

Its antisymmetric part can be simplified to

Ia{ f } = ni

∑
k′

W (a)
kk′ ( fck′ + fck)

= ni

∑
k′

W (a)
kk′ fck′ , (50)

where the sum property
∑

k′ W (a)
kk′ = 0 is taken into account.

To the third order in U the antisymmetric part of the elastic
scattering probability is given by [4,19,52,53]

W (a)
kk′ = (2π )2

h̄

∑
k′′

Uck,ck′′Uck′′,ck′Uck′,ck

× δ(εck′ − εck )δ(εck′′ − εck ). (51)

In the band model (2) we find the following expression:

W (a)
kk′ = πW (0)

kk′ g(εk )
P⊥P‖QU0

EgE ′
g

×
[(

k′
⊥ · k⊥
Eg

− 2

3

k2

E ′
g

)
(k′

z − kz ) + k′
zk

2
⊥ − kzk′2

⊥
E ′

g

]
.

(52)

The PGE current is given by Eq. (40) where gk is replaced
by the quadratic-in-E0 correction f (2a)

k , averaged over time.
It is calculated in three steps. First, we find the first-order
correction f (1)

ck , see Eq. (31). Then we substitute it into the
collision integral and determine a correction f (1a)

ck to the
distribution function induced by the antisymmetric part (50)

f (1a)
ckω

= τωIa{ f (1)}.
Lastly, we find the desired second-order correction

f (2a)
ck = −τ

eE
h̄

∂ f (1a)
ck

∂k
.

The photocurrent can be rewritten as

j = 2e
∑

k

vck f (2a)
ck = 2e3E2

0

h̄

∑
k

vckτ

×
(

e · ∂

∂k

)[
τ 2
ωIa

{
e∗ · vck′

∂ f 0(εk′ )

∂εk′

}]
+ c.c. (53)

In the limit ωτ → ∞ when τ 2
ω → −ω−2 the circular pho-

tocurrent vanishes and one needs to take into account the

next-order correction in the expansion

τ 2
ω ≈ − 1

ω2

(
1 + 2i

ωτ

)
. (54)

Omitting the details, we present the result for the degenerate
electron gas

γ skew = −8πν

15

e3A′N
h̄2ω

εF g(εF )U0

h̄ω

1

ωτ
, (55)

where εF is the Fermi energy, τ = τ (εF ),

A′ = P⊥P‖Q

EgE ′
g

(
1

Eg
+ 2

3

1

E ′
g

)
,

and the dimensionless parameter g(εF )U0 is assumed to be
small which is the criterion for validity of the expansion of
the collision term in powers of U leading to Eq. (51). Note that
the ratio of γ skew to the γ CPGE value of Eq. (49) is a product of
a large parameter εF /h̄ω and two small parameters, g(εF )U0

and (ωτ )−1. It is interesting to mention that the dependence
γ skew ∝ 1/ω3 is typical for the skew-scattering induced CPGE
at high frequencies [54,55]. It should also be stressed that the
CPGE photocurrent (55) arises due to the (ωτ )−1 correction
in Eq. (54). This means that the result (55) cannot be obtained
in the quantum-mechanical approach used in Sec. III in the
limit ωτ → ∞, and one needs to apply the Green’s function
diagram technique which is beyond the scope of this study.

According to Eq. (3) the macroscopic parameter γ relates
the variables j and �κE2

0 which both change the sign under
the time reversal T . This explains why the expression for
γ CPGE in Eq. (49) does not contain dissipative parameters. The
expression for γ skew agrees with the time-inversion symmetry
considerations because the presence of the dissipative factor
τ−1 is compensated by an extra δ-function in Eq. (51).

The anomalous Hall coefficient also allows for a fourth-
order correction U 4 to the antisymmetric part of the scattering
rate [24]. An estimate for ωτ � 1 shows that this skew
contribution to γ is smaller than that in Eq. (49) by (ωτ )2

and can be neglected.

VI. CONCLUDING REMARKS

The semiclassical approach in the nonlinear transport is
based on the two conditions: (i) the photon energy h̄ω is much
smaller than the typical electron energy ε̄ and (ii) in the kinetic
equation for the free carrier distribution function, the standard
or generalized Boltzmann equation, the field term

k̇c
∂ fck

∂k
(56)

contains the electric and magnetic fields of the light wave as
follows:

h̄k̇c = e

(
E + ṙc

c
× B

)
,

where ṙc is the generalized semiclassical velocity [18]

ṙc = h̄k
m

+ e

h̄
�ck × E .

Both the previous and present studies show that the challenge
in calculating a second-order response to electromagnetic
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waves is related to the choice of the collision term. The later
has corrections due to the side-jump, Sec. IV B, and skew,
Sec. V, scatterings.

The alternative quantum-mechanical approach is to cal-
culate the optical transition matrix elements linear in the
electric or magnetic field of the light wave. Microscopically,
the total photocurrent density is generally a sum of two
different contributions, ballistic and shift currents j = jb +
jsh [56]. To calculate the ballistic photocurrent one needs
to solve the Boltzmann equation where the electromagnetic
field is present in the generation rate proportional to the
squared transition matrix element, calculated with allowance
for the asymmetry of the electron-photon and/or electron-
phonon or electron-impurity interaction. The shift photocur-
rent is determined by a product of the light-induced quantum
transition probability rate, and the elementary displacement

(side-jump) rmk′,nk of a free carrier at the moment of the
transition.

In the present work we aimed to reconcile the two ap-
proaches. It is possible to do in the frequency range (1). First,
the agreement between results (28) and (49) for the circular
photocurrent confirms the validity of the theory. Second, we
showed that the agreement is achieved only if, in the semi-
classical approach, one takes into account the Berry curvature
dipole mechanism and the contribution from the field-induced
side-jump correction to the transferred electron energy.
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