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Dynamical response and competing orders in two-band Hubbard model

A. Niyazi ,1 D. Geffroy ,2,1 and J. Kuneš 1,3

1Institute of Solid State Physics, TU Wien, 1040 Vienna, Austria
2Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czechia
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We present a dynamical mean-field study of two-particle dynamical response functions in a two-band Hubbard
model across several phase transitions. We observe that the transition between the excitonic condensate and
spin-state ordered state is continuous with a narrow strip of supersolid phase separating the two. Approaching
transition from the excitonic condensate is announced by softening of the excitonic mode at the M point of the
Brillouin zone. Inside the spin-state ordered phase there is a magnetically ordered state with 2 × 2 periodicity,
which has no precursor in the normal phase.
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I. INTRODUCTION

Spontaneous symmetry breaking, which accompanies the
continuous phase transitions, changes qualitatively the dy-
namical response of solids. If the broken symmetry is con-
tinuous, low-energy Goldstone mode(s) associated with the
long-wavelength dynamics of the order parameter, appears in
systems with short-range interactions. Excitonic condensates
(ECs) [1–3] represent an exotic type of broken-symmetry
phase. While the experimental realizations of EC have been
limited to artificial structures such as quantum wells in strong
magnetic field [4] or cavity systems [5], recent experiments on
1T-TiSe2 [6,7], Ca2RuO4 [8] or Pr0.5Ca0.5CoO3 [9,10] revived
interest in the subject also in bulk solids. Condensation of
spinful excitons, which gives rise to a new type of magnetic
behavior is particularly interesting. The simplest model to
capture the excitonic magnetism is the two-orbital Hubbard
model at half filling [11–13] and its strong-coupling limit
[14–16]. The parameter range of interest hosts a number of
ordered phases [15,17] in addition to the first-order metal-
insulator transition [18]. Besides the general interest in under-
standing its behavior, the model provides a fertile playground
for testing theoretical methods.

Computation of two-particle (2P) response for realistic
materials is a challenging task. Dynamical mean-field theory
(DMFT) [19,20] has been successful in bringing together the
material realism of multi-orbital models with the many-body
realism, including real temperatures, phase transitions, quasi-
particle life times, atomic-multiplet effects. Despite the boom
of the past two decades, application of DMFT has been largely
limited to one-particle (1P) quantities, such as generalized
band structures and occupation numbers. Solved in principle,
the calculation of 2P response functions is numerically very
demanding as it involves the solution of the Bethe-Salpeter
equation for large multi-index objects. There are compelling
reasons to study the 2P response within DMFT. Most exper-
imental probes and applications employ the 2P response of

materials. Current density functional methods do not allow
even approximate access to dynamical susceptibilities of cor-
related materials. The static susceptibilities are essential to
ensure the stability of the obtained solutions.

In this paper we study the dynamical susceptibilities of
the two-orbital Hubbard model on a bipartite lattice at half
filling. In particular, we focus on the mechanism of transi-
tion between the EC and spin-state order (SSO) phases. The
studied phase transitions involve both continuous and dis-
crete symmetry breaking and multi-atomic unit cells. Besides
understanding the physics of the model and assessing the
performance of the method, this work is the next step towards
similar investigations within the local density approximation
(LDA)+DMFT framework for real materials.

II. COMPUTATIONAL METHOD

The studied model Hamiltonian reads

H =
∑
〈i j〉,σ

(taa†
iσ a jσ + tbb†

iσ b jσ ) + H.c

+ �

2

∑
i,σ

(
na

iσ − nb
iσ

)

+U
∑

i,c=a,b

nc
i↑nc

i↓ +
∑
i,σσ ′

(U ′ − Jδσσ ′ )na
iσ nb

iσ ′ , (1)

where a†
iσ and b†

iσ are the fermionic creation operators for
electrons in the respective orbitals a and b, with spin σ , at site
i of a square lattice. The first term describes nearest neighbor
hopping. The remaining terms, containing the particle number
operators nc

i,σ ≡ c†
iσ ciσ , correspond to the crystal-field �, the

Hubbard interaction U , and Hund’s exchange J in the Ising
approximation. The values U = 4, J = 1, and U ′ = U − 2J
are fixed throughout this study. The remaining parameters ta,
tb, � as well as the temperature T are varied. The hopping
amplitudes, chosen to include those of Refs. [21,22], are
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varied so that the sum t2
a + t2

b = 0.205 is fixed. We use the
ratio ξ = 2tatb

t2
a +t2

b
to characterize the difference between the a

and b bandwidth (ξ = 1 equal bandwidths, ξ = 0 one band is
flat). This choice is motivated by the strong-coupling limit, in
which t2

a + t2
b determines the repulsion between excitons on

neighbor sites, while tatb determines the amplitude of exciton
hopping [17]. Smaller ξ thus favors the SSO phase, while
larger ξ favors the EC phase. All calculations reported here
are performed for the filling of two electrons per atom.

We follow the standard DMFT procedure, in which the
lattice model is mapped onto an auxiliary Anderson impurity
model (AIM) [23,24]. The auxiliary model is solved numer-
ically, using the ALPS implementation [25–27] of the ma-
trix version of the strong-coupling continuous-time quantum
Monte-Carlo (CT-QMC) algorithm [28].

The model hosts several competing phases, which can be
distinguished by the mean values of operators

φ
γ
i = Rγ

i + iIγ
i =

∑
αβ

σ
γ

αβa†
iαbiβ,

Oi =
∑

σ

(
na

iσ − nb
iσ

)
,

Sz
i =

∑
c=a,b

(
nc

i↑ − nc
i↓

)
. (2)

Here φ
γ

i , with the Hermitean and anti-Hermitean parts Rγ

i and
iIγ

i , creates an S = 1 exciton on site i. The σγ (γ = x, y, z)
are Pauli matrices, which represent the spin polarization of
the exciton. With the density-density form of the interaction,
which mimics an easy-axis single-ion anisotropy, 〈φz

i 〉 = 0
applies throughout the studied parameter range [17]. The
Oi and Sz

i represent the local orbital polarization and the z
component of the spin moment, respectively.

The susceptibilities χX (k, ω) are obtained by analytic con-
tinuation [29,30] of their Matsubara representations

χX (k, iνn) =
∫ β

0
dτeiνnτ 〈X−k(τ )Xk(0)〉 − |〈Xk〉|2, (3)

where the Fourier transform is defined as Xk =
1√
N

∑
R e−ik·RXR. The observables X of interest are

represented by the operators listed in Eq. (2).
We start with the 1P propagators at 300 Matsubara fre-

quencies to obtain the bare susceptibilities (both local and
lattice bubble terms), which are then transformed into the
Legendre polynomial representation [31]. The 2P correlation
function is sampled using the CT-QMC algorithm. The local
2P-irreducible vertex � is obtained by inverting the impurity
Bethe-Salpeter equation (BSE) [19,32–34]. Using this vertex
to solve the lattice BSE, we obtain the lattice correlation
functions. This procedure is performed independently for each
bosonic Matsubara frequency. We have found that using 10
bosonic frequencies allows for a stable and good quality
analytic continuation. We use between 22 (for the zeroth
bosonic frequency) and 30 Legendre coefficients (for the ninth
bosonic frequency). A sizable reduction of the computational
and storage cost can be achieved with the procedure of
Refs. [35,36].

The susceptibility χX (k, iνn) is a diagonal element of
the particle-hole susceptibility matrix χ(k, iνn) obtained by
summation of the lattice correlation function over the Leg-
endre coefficients. The matrix χ(k, iνn) is indexed by pairs
of flavors (spin/orbital/site) inside the unit cell, while the
intercell structure is diagonalized by going to the reciprocal
space. With four flavors per site, χ(k, iνn) has dimension 42

for a one-atom cell. In phases with two-atom cells χ(k, iνn)
has the dimension (2 × 4)2. However, thanks to the locality
of the 2P-irreducible vertices, the BSE can be written in a
closed form for elements of the type χii, j j , where i, j are
the site indices. Therefore the diagonal elements in (3) can
be obtained by working with matrices of the flavor dimension
2 × 42, i.e., linear in the number of sites per the unit cell.

To ensure comparability of χX (k, iνn) in different phases
(various unit cells) we present all susceptibilities (3) in the
large Brillouin zone of the one-atom unit cell. In the phases
with one-atom unit cell the susceptibility is diagonal in
k. In phases with

√
2 × √

2 two-atom unit cells there are
nonzero off-diagonal elements connecting k and k + (π, π ).
The transformation from the two-atom unit cell, in which the
BSE inversion is performed, is given by

χ (k) = χ̃ (k′)11,11 + χ̃ (k′)22,22

+ exp(iky)χ̃ (k′)11,22 + exp(−iky)χ̃ (k′)22,11, (4)

where χ̃ and k′ ≡ (k′
x, k′

y) = (ky − kx, ky + kx ) are related to
the two-atom unit cell. The subscripts of χ̃ refer to the two
sites in the two-atom unit cell (The orbital and spin indices
are not shown for sake of simplicity).

III. RESULTS AND DISCUSSION

A. Phase diagram and order parameters

Four distinct ordered phases, shown in Fig. 1 and discussed
below, have been identified. In Fig. 2 we show the phase
diagram of the model in the ξ–T plane of band asymmetry
parameter ξ = 2tatb

t2
a +t2

b
and temperature T at fixed crystal field

�, and in the �–T plane at fixed ξ . The phase boundaries are
obtained by combination of the calculated order parameters
and diverging susceptibilities. The phase diagram in Fig. 2(a)
generalizes that of Ref. [21] to the ordered phases. The
phase diagram in Fig. 2(b) should be compared to the phase
diagrams of related strong-coupling models in Refs. [16,17].
Unlike previous studies [12,21] where the instabilities of
the normal phase were investigated, here we perform linear
response calculations also in the thermodynamically stable
ordered phases.

Polar excitonic condensate. This phase was analyzed in
detail in a number of previous studies [13,15,37–39]. It is
characterized by a finite expectation value of 〈φi〉 = φ, which
fulfills the condition φ∗ × φ = 0 [39,40]. The EC phase pre-
serves the translation symmetry, but breaks two continuous
U (1) symmetries associated with the global conservation of∑

i Sz
i and

∑
i Oi. The EC order parameter lives on a T2 torus;

it can pick an arbitrary orientation in the spin xy plane and
an arbitrary complex phase. Throughout the present study we
fix its orientation to 〈Iy〉 
= 0, while the other components are
zero.
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FIG. 1. A cartoon depiction of the ordered phases. The EC order
parameter is characterized by (spin) direction in the xy plane and
a complex phase and thus lives on the surface of a torus. In the
SS phase the EC order parameter has a staggered amplitude. The
SSO phase is characterized by alternating HS and LS sites, with
fluctuating orientation of the HS moment. In the AFM-SSO phase
the HS moments order in AFM superstructure. The primitive period
cell in each phase is marked with the red square. The occupation of
the atomic a and b orbitals in the LS and one of the HS states is
shown in the bottom right corner.

Spin state order. The SSO phase in the two-band Hubbard
model was reported in Ref. [32] and in multiorbital mate-
rial specific DMFT studies [41,42]. It was proposed as an
explanation of high field experiments on LaCoO3 [43,44].
It is characterized by staggered orbital polarization �O =
(−1)i〈Oi − Ō〉, where (−1)i describes the

√
2 × √

2 order
and Ō denotes an average over all lattice sites. The SSO is
a strong-coupling effect that, unlike the EC phase, does not
have a weak-coupling analog [21]. At T = 0 the phase is a
checkerboard arrangement of low spin (LS) and high spin
(HS) sites. In the studied parameter range the LS-like sites are
dominated by the LS state with a negligible HS contribution.
The population of the HS state on HS-like sites is only up
to 60%, with the remainder being predominantly LS states
[45]. The SSO phase breaks the translation symmetry, but
the continuous U (1) symmetries associated with Sz and O
conservation are preserved.

Supersolid (SS). The SS phase is characterized by the
simultaneous appearance of the EC and SSO orders [46,47].
The SS phase breaks all the symmetries broken by EC and
SSO phases. We consistently find a very narrow strip of the
SS phase at the boundary between the EC and SSO phases,
see Fig. 3.

Antiferromagnetic spin state order (AFM-SSO). The SSO
phase has a large residual entropy associated with the spin
disorder on the HS sites. The nearest neighbor AFM exchange

N

SSO

EC

0.08

0.06

0.04

0.02

N

SSO

AFM SSO EC

0.08

0.06

0.04

0.02

FIG. 2. Cuts through the phase diagram of the studied model
along the ξ–T (� = 3.4, top) and �–T (ξ = 0.24, bottom) planes.
Black symbols mark the parameters for which a calculation was
performed. The dashed vertical line is common to both panels. The
narrow blue wedge separating the EC and SSO phases represents
the SS phase. The red, blue and violet cuts with crosses mark the
points for which the susceptibilities are analyzed in Figs. 5, 6, and
7, respectively. Open blue circles in the left panel were taken from
Ref. [21] and indicate instability of the normal (N) phase towards
EC. The black wedge separating the AFM-SSO and EC phases in the
right panel indicate a putative coexistence regime accompanying a
first order transition. (Actual calculations investigating this transition
were not performed).

interaction on the HS sublattice (third neighbor interaction
on the original lattice) leads to a 2 × 2 order consisting
in checkerboard spin order on the HS sublattice. We did
not actually perform calculations in the AFM-SSO phase,
but determined the SSO/AFM-SSO phase boundary as the
divergence of χ̃Sz

(M ′, 0), see Fig. 4.
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FIG. 3. The order parameters: staggered orbital polarization �O
and the uniform excitonic-condensate amplitude 〈Iy〉 along the cuts
in the phase diagram Fig. 2 marked by the frame colors.

B. Dynamical susceptibility

The main focus of this work is the behavior of the dy-
namical susceptibility across the transition between the EC
and SSO states. In Fig. 5 we show the evolution of χX (k, ω)
(X=O, Sz, Rx, Ix, Ry, Iy) along the �-X-M-� path in the
two-dimensional Brillouin zone with increasing crystal fields
�.

First, we review the discussion of the N–EC transition from
Ref. [30]. The normal (N) phase is characterized by gapped
excitonic dispersion, reflected in all excitonic susceptibilities.
The equivalence of x and y elements originates from the Sz

conservation, while the equivalence of R and I elements orig-
inates from the O conservation. The O and Sz susceptibilities
exhibit no dynamics (non-zero only for νn = 0) and vanish
at low temperature. Reducing � results in closing of the
excitonic gap and eventually transition to the EC phase, where
the equivalence of excitonic susceptibilities is broken. Deep
in the EC phase we can distinguish x and y excitonic modes
with distinct dispersion. The corresponding susceptibilities
Rx, Ix and Ry, Iy follow these dispersions, but have vastly
different amplitudes at low energies. The Ix and Ry exhibit
linear dispersion and diverging amplitudes at �, reflecting the
spin-rotation and phase-rotation Goldstone modes [30].

FIG. 4. Site resolved static susceptibility χ Sz
(k′) for T =

0.0333, ξ=0.24, � =3.23 in the SSO phase. It describes the response
to a field applied only on the LS-like sublattice (left) and on the
HS-like sublattice (right). The reciprocal vector k′ is expressed with
respect to the two-atom unit cell.

The Sz and O susceptibilities acquire nonzero dynamics
due to the Sz–Rx and O–Iy coupling in the EC phase. The
induced dynamics of Sz was explained in terms of the strong-
coupling model in Ref. [30], see also SM [48]. The dynamical
response of O can be understood along similar lines. In the
strong coupling limit Oi maps onto the number operator of
excitons Oi = d†

ixdix + d†
iydiy. Replacing d†

iy with i φ

2 + d†
iy in

the EC phase we find Oi ∼ −φ

2 (d†
iy − diy), and thus the cor-

relation function of O follows that of Iy. For a more rigorous
derivation see Supplemental Material [48]. We point out that
all the above identifications are understood relative to the
orientation of the EC order parameter: 〈Iy〉 
= 0.

As we near the SSO phase the behavior of the O, Sz,
and Iy susceptibilities changes qualitatively. The O and Sz

dynamics cease to be slave to the excitonic dynamics and their
dispersions stop to follow the excitonic ones. Similar behavior
is observed as we approach the phase boundary as a function
of crystal field �, Fig. 5, band asymmetry ξ or temperature
T , Fig. 6. The O susceptibility develops a hot spot at the M
point, a precursor of the SSO phase, which is accompanied
by softening of χ I

y at M. Similar behavior at the M point was
previously observed at zero temperature for spinless hard-core
bosons on square lattice and interpreted as roton excitations
known from superfluid helium [47]. We provide the strong-
coupling mean-field analysis of the softening and EC–SSO
transition in the Supplemental Material [48].

The demise of the EC phase due to the softening
of the excitonic mode accompanied by the divergence of
χO(k = M, 0) opens the possibility for a continuous transition
between the EC and SSO phases via an intermediate SS phase.
Indeed, we find several solutions with both EC and SSO order,
Fig. 3, which fall into an narrow strip of parameters. We point
out that a similar situation was found in Ref. [47].

In the SSO phase, we observe the remains of broad exci-
tonic dispersion in the vicinity of the phase boundary. It is
important to point out that at the studied temperatures, the LS
sites host almost exclusively the LS state, but the HS sites host
still up to 75% LS and only 25% HS states [32]. Proceeding
deeper into the SSO phase the excitonic dispersion gives way
to two almost flat bands. These can be associated with creation
of an exciton (LS to HS transition) on the LS site (upper band)
and annihilation of an exciton (HS to LS transition) on the HS
site (lower band).

In Fig. 7 we show the evolution of the excitonic susceptibil-
ity [49] across the transition between normal and SSO phase.
The exciton dispersion is well pronounced and qualitatively
similar in the vicinity of the phase boundary on both sides.
The effect of unit cell doubling in the SSO phase on the ex-
citonic dispersion is revealed by the mode analysis discussed
below.

C. Mode analysis

The connection between dynamical susceptibilities in
Figs. 5, 6, and 7 on the one hand, and bosonic dispersions
obtained in the strong coupling model [15,47,48] on the other
hand, is not straightforward. In the strong-coupling limit and
at T = 0, the susceptibilities follow the dispersions of the
dx or dy bosons with intensity depending on the specific
correlation function. Our model is not in the strong-coupling
limit and partly falls into a high temperature regime. The
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FIG. 5. Evolution of the dynamical susceptibility χX (k, ω) with the crystal field � along the green line (ξ = 0.24, T = 0.025) in Fig. 2(b).
The columns correspond to different Hermitean operators X = O, Sz, Rx , Ix , Ry, Iy. The color coding represents the spectral density B(k, ω) =
− 1

π
Im χX (k, ω). In order to capture the entire dispersion in the presence of divergent density of the Goldstone modes we introduce a cutoff

and plot B
B+const with const = 5.5. Note that in the SSO phase there is a large intensity of χSz

at ω ≈ 0 (difficult to see in the present figures)
corresponding to large static response of local moments on HS sites.

bosonic modes, a 2P basis in which χ(k, ω) is diagonal [50],
are not immediately obvious.

We attempt to obtain approximate modes by diagonalizing
the static susceptibility χ(k, ω = 0). This procedure is trivial
in the normal phase, because each of the four mutually equal

excitonic susceptibilities forms a diagonal block of χ(k, ω).
In the SSO phase the excitonic susceptibilities do not mix
with other elements of χ(k, ω) or with each other, and the
diagonalization is reduced to 2 × 2 blocks spanned by the two
sites of the two-atom unit cell.
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FIG. 6. As in Fig. 5, evolution of the dynamical susceptibility χX (k, ω) (X = O, Sz, Rx , Ix , Ry, Iy) along the inverted L-shaped blue line in
Fig. 2(a) for � = 3.4.
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FIG. 7. Evolution of the dynamical excitonic susceptibility
χX (k, ω) with crystal field � along the red line(ξ=0.24, T =
0.0333) in Fig. 2(b).

The dominant effect of diagonalization in the EC phase is
to combine Iy with O into a single low-energy mode with
large spectral weight Ĩ y. In Fig. 8, we show the evolution
of χ Ĩ y

(k, ω) as we approach the EC/SS phase boundary by
varying the temperature along the cut analyzed in Fig. 6. Deep
in the EC phase, χ Ĩ y

is essentially identical to χ Iy
. As we

get closer to the phase boundary, a mode softening at the M
point is clearly observable. Interestingly, it does not proceed
as a smooth deformation of the dispersion curve captured by
the strong-coupling model [48], but rather through a spectral
weight transfer between the upper and low branch of the
O-ring structure observed at T = 0.025. It is unclear whether
this deviation from the spin-wave treatment of the strong-
coupling model [15] originates from the finite temperature or
the departure for the strong-coupling limit.

In Figs. 9 and 10, we show the mode decomposition in the
SSO phase. For all parameters we find two bands reminiscent
of the strong-coupling behavior [15,47]. Deep in the SSO
phase the bands are flat. The lower one corresponds to elimi-
nating a HS exciton on the nominally HS sublattice. The upper
band corresponds to creating a HS exciton on the nominally
LS sublattice. With increasing crystal field �, the character of
the bands changes and they become dispersive, while the gap

FIG. 8. Dynamical susceptibility χ Ĩy
(k, ω) in the EC phase of

Fig. 6 (vertical part of the L-shaped cut; � = 3.40, ξ = 0.24) in the
basis of the eigenmodes of the static susceptibility.

FIG. 9. Dynamical excitonic susceptibilities χX (k, ω) in the
SSO phase of Fig. 5 (T = 0.025) in the basis of the eigenmodes
of the static susceptibility. The Rx

0 and Rx
1 columns refer to the two

eigenmodes (of the static susceptibility) in the two-atom unit cell.
The k path refers to the Brillouin zone for the two-atom unit cell.
The Rx column reproduces the data from Fig. 5 for comparison (k
path in the Brillouin zone of one-atom unit cell). Note that in the
SSO all excitonic susceptibilities are identical and Rx was chosen as
their representative.

between them shrinks. This behavior is somewhat counter-
intuitive, since the difference of HS and LS energies in an
isolated atom follows an opposite trend. The explanation lies
with the nearest-neighbor repulsion between HS excitons.
Increasing � causes a decrease in concentration of HS states
on the nominally HS sublattice, which reduces the HS-HS
repulsion that has to be overcome when creating a HS exciton
on the nominally LS sublattice. Simultaneously, a minute shift
of the lower excitonic band leads to a condensation as the
SSO/SS boundary is approached. At the SSO/N boundary,
Fig. 10, the temperature is too high for the excitons to con-
dense. We observe a complete closing of the gap between the
two bands, which become a back-folded image of the exci-
tonic band from the one-atom unit cell. In addition to the two
main bands, we observe a weak high-energy feature around
the �′ point, which does not have a strong-coupling T = 0
counterpart. This feature exhibits a rather strong dispersion
and it is most pronounced close to the boundary of SSO with
either the SS or normal phases, Figs. 9 and 10 [51].

The phase diagram of the two-band Hubbard model is ex-
tremely rich and we have addressed its small part, relevant for
insulators (or metals close to Mott transition) in the vicinity
of spin-state transition [18] such as the perovskite cobaltites.
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FIG. 10. Dynamical excitonic susceptibilities χX (k, ω) in the
SSO phase of Fig. 7 (T = 0.0333) in the basis of the eigenmodes
of the static susceptibility. The notation is the same as in Fig. 9.

While the excitonic instability can be found in the insulator
as well as in the weakly coupled metal [12], the spin-state
ordering is a strong coupling effect [21] found in an insulator
or strongly correlated metal. Our preliminary calculations
with asymmetric bands as well as the study of Ref. [12]
for symmetric bands show that deep in the metallic phase
the SSO instability is absent and the excitonic condensation
competes with antiferromagnetism. The role of the Hund’s J

in the present model built on two-orbital atoms is twofold, it
determines the interorbital interaction U ′ and the spin state of
the lowest atomic excitation. If these roles can be separated,
for example, by considering a and b to label the layers of
a bilayer system and U ′ + � ≈ U , the competition between
EC and SSO phases can take place even for J � 0 [52,53],
although the detailed nature of these phases differs from the
present case.

IV. CONCLUSIONS

We have studied the dynamical susceptibility across several
phase transitions in the two-orbital Hubbard model using
DMFT. We have observed a narrow slip of supersolid phase
separating the spin-state order from the excitonic condensate.
Approaching the spin-state ordered phase from the exciton
condensate is heralded by the softening of a specific collective
mode at the M point of the Brillouin zone, identified as
the roton instability in Ref. [47]. At low temperatures the
spin-state ordered phase removes the spin degeneracy by
developing antiferromagnetic order with 2 × 2 periodicity.

The present calculations demonstrate the utility of linear
response DMFT formalism for understanding complicated
phase diagrams and phase transitions involving the breaking
of both discrete and continuous symmetries. While the DMFT
susceptibilities in the studied parameter range qualitatively
agree with the strong-coupling generalized spin-wave treat-
ment [15,47,48], they contain features that are beyond this
description. Last but not least, we have shown that the symme-
try breaking in the exciton condensate gives rise to dynamical
response in the spin- and orbital-density channels. These may
be studied by standard experimental probes such as inelastic
x-ray or neutron scattering, which do not couple directly to
the spin-triplet excitonic channel.
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