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We study the electronic properties of dual-gated electron-hole bilayers in which the two layers are separated
by a perfectly opaque tunnel barrier. Combining an electrostatic and thermodynamic analysis with mean-field
theory estimates of interacting system chemical potentials, we explain the dependence of the electron and hole
densities on the two gate voltages. Because chemical potential jumps occur for both electrons and holes at
neutrality, there is a finite area in gate voltage parameter space over which electron and hole densities are equal.
In that regime the electron-hole pair density depends only on the sum of the two gate voltages. We are able to
explain a recent experimental study of electrically controlled bilayers by allowing for interlayer tunneling and
using a nonequilibrium steady-state transport picture.
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I. INTRODUCTION

Recent progress [1–14] in fabricating and processing two-
dimensional (2D) semiconductor multilayers has opened up
new opportunities to realize and study the properties of 2D
electron-hole systems. Provided that the tunneling between
layers is negligible, a bias voltage applied to a bilayer with
a spatially indirect band gap, like the one in Fig. 1, simply
adjusts the effective band gap. Above a threshold bias voltage
the effective band gap is reduced to zero so that electrons
are induced in the conduction band of one 2D semiconductor
layer, and holes in the valence band of the adjacent layer.
In the limit of low electron and hole densities, a regime
of bias and gate voltages exists in which the electrons and
holes pair into excitonic bound states, and separate electrical
contacts can then be used to adjust the exciton chemical
potential [15]. In the general case, however, the electron and
hole densities are unequal, allowing unprecedented access to
systems of fermions with attractive mutual interactions, whose
densities are unbalanced [16–19]. In this article we outline
a rigorous framework that relates the dependence of electron
and hole densities in the semiconductor bilayers on bias and
gate voltages to thermodynamic properties of the interacting
electron-hole fluid, focusing first on the case of perfectly
opaque barriers between the active layers and then discussing
transport and electronic properties in the case where charge
leakage between layers plays an important role.

Our paper is organized as follows. Section II presents
a formal analysis of the perfect barrier limit in terms of
relevant thermodynamic properties of the interacting electron-
hole fluid. In Sec. III we use a mean-field theory of the
electron-hole fluid to obtain some concrete but approximate
results which illustrate important key qualitative features, in
particular the consequences of the singularities that electron-
hole pairing produces in thermodynamic properties. In Sec. IV
we combine the results from the previous two sections and
show how the carrier densities in the two layers are controlled

by the gate voltages. We find that there is a finite area region
in the gate-control parameter space where the electron and
hole densities are exactly equal, which is especially interesting
for the study of exciton physics. Section V generalizes the
analysis to the case of nonzero leakage currents and provides
an explanation for the transport characteristics observed in a
recent experiment [1]. Finally, in Sec. VI we conclude with a
discussion of the prospects for realizing new physics in these
systems.

II. DUAL GATED ELECTRON-HOLE FLUIDS

We assume a dual gated structure like that illustrated in
Fig. 1. For definiteness we will focus on the case in which the
two gates are physically identical and held at the same voltage.
We choose the Fermi energy of the gates as the zero of energy,
and also set the zero of the electric potential at the gate planes.
We assume that the voltages on the contacts to the electron and
hole layers, −Ve and +Vh, can be varied at will, and that no
current can flow between layers. Under that circumstance the
contacts on the two layers act like reservoirs whose voltages
fix the electrochemial potentials of the electrons in those
layers. We also assume that Ve > 0 and Vh > 0 so that the
large voltages populate the conduction band in the electron
layer and the valence band in the hole layer, allowing us to
disregard the remote band degrees of freedom in both layers.

Starting from neutrality and increasing Ve, the electron
layer begins to charge when Ve reaches the threshold voltage at
which its electrochemical potential reaches the bottom of the
conduction band Ec, whereas the hole layer begins to charge
when its electrochemical potential reaches the top of the
valence band Ev . We focus on the regime in which both layers
are charged, which we refer to as the p-n regime. Applying
the Poisson equation we obtain the following relationship
between the electric potentials −φe and +φh and the free
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carrier densities n and p in the electron and hole layers:

4πne2

ε
= φe

de
+ φe + φh

ds
,

4π pe2

ε
= φh

dh
+ φe + φh

ds
,

(1)

where de and dh are the distances from top and bottom gates
to the electron and hole layers, and ds is the spacing between
electron and hole layers. Note that we have absorbed a factor
of electron charge e in the definition of φe/h and Ve/h so
that they have units of energy. The inverse of this linear
relationship is

φe(n, p) = 4πe2de

ε

(dh + ds)n − dh p

de + dh + ds
,

φh(n, p) = 4πe2dh

ε

(de + ds)p − den

de + dh + ds
.

(2)

Assuming that de, dh � ds, as is typical in experiment [1], we
see that n and p will typically be nearly equal in magnitude,
i.e., that this gating geometry favors nearly balanced electron-
hole fluids but allows for large values of the individual layer
densities:

n ≈ p ≈ ε

4πe2

φe + φh

ds
. (3)

Due to the small interlayer distance, the electric field between
the two layers is typically much larger than the electric field
between the active layers and the gates.

The dependence of the carrier densities on the bias voltages
applied to the active layers is determined by the following pair
of nonlinear equations:

φe(n, p) + μe(n, p) = Ve − Ec,

φh(n, p) + μh(n, p) = Vh − Ev.
(4)

Note that Ec and Ev in these equations refer to the conduction
and valence band edges in the absence of carriers and are
defined relative to the Fermi level of the gates. The left-hand
sides of these equations are functions of n and p with φe

and φh given by the electrostatic equations (2), and μe and
μh determined by the many-body physics of the electron-hole
fluid. In Eq. (4) μe and μh are defined as the electrochemical
potentials of the electron and hole layers relative to their
local band extrema. Experiments which measure n and p
as a function of Ve and Vh therefore provide a valuable
thermodynamic probe of electron-hole fluid properties. In
the following section we discuss mean-field theory estimates
for μe(n, p) and μh(n, p) that provide valuable insight into
expected properties. In general Eqs. (4) define two lines in
(n, p) space that intersect at the equilibrium carrier densities.
As we discuss below, however, singularities along the n = p
line associated with the formation of excitonic bound states
require special considerations.

III. MEAN-FIELD THEORY OF THE UNBALANCED
ELECTRON-HOLE FLUID

We consider a bilayer electron-hole system with electron
and hole densities n and p, neutralizing backgrounds in both

electron and hole layers, and the band extrema energies of
both the conduction band and the valence band set to zero.
With these conventions, the electron and hole chemical po-
tentials of the interacting electron-hole system correspond to
the chemical potentials μe(n, p) and μh(n, p) in Eqs. (4).
The mean-field Hartree-Fock Hamiltonian of the electron-
hole system is

HMF = Heh + HX , (5)

where Heh is the two-band single-particle Hamiltonian for
electrons and holes

Heh =
∑

k

(
h̄2k2

2m∗
e

a†
ckack − h̄2k2

2m∗
h

a†
vkavk

)
, (6)

where c and v stand for the conduction band of the electron
layer and the valence band of the hole layer. As explained
above, the zero of energy for the electron layer is chosen at the
bottom of the conduction band, and for the hole layer at the top
of the valence band. Because of the assumption of neutralizing
backgrounds there is no electrostatic mean-field potential, and
HX is the exchange self-energy [20–22]:

HX = − 1

A

∑
kk′

Vb′b(k′ − k)ρb′b(k′)a†
b′kabk, (7)

where A is the area of the two-dimensional system, b = c, v
is the band index, Vcc(q) = Vvv (q) = V (q) = 2πe2/εq is the
intralayer Coulomb interaction, Vcv (q) = Vvc(q) = U (q) =
V (q) exp(−qd ) is the interlayer Coulomb interaction at in-
terlayer distance d , and ε is the dielectric constant of the
surrounding three-dimensional material. In Eq. (7) ρ is the
density matrix calculated relative to the density matrix when
the conduction band is empty and the valence band is full:

ρb′b(k) = 〈a†
bkab′k〉 − δb′bδbv. (8)

Below we express lengths and energies in terms of
characteristic scales a∗

B = ε h̄2/m∗e2 and Ry∗ = e2/2εa∗
B,

where m∗ = m∗
e m∗

h/(m∗
e + m∗

h ) is the reduced effective mass.
For simplicity we perform numerical calculations only
for the m∗

e = m∗
h = 2m∗ case. This model approximates

MoSe2/WSe2 bilayers surrounded by hexagonal boron ni-
tride (hBN) dielectrics if we choose m∗ ≈ 0.2 me, and ε ≈
5, which implies that a∗

B ≈ 1.3 nm and Ry∗ ≈ 0.11 eV. The
calculations below are for the case d = a∗

B, corresponding
approximately to the case with one or two hBN layers between
the MoSe2 and WSe2 monolayers [23].

In order to provide an interpretation for the mean-field
theory results presented below, we first discuss a simple phe-
nomenological picture in which we assume that the electron-
hole fluid consists of paired (excitons) and unpaired electrons
or holes. If we assume that the physically preferred state of
the system is one with the maximum number of electron-hole
pairs, then the system consists of nx = min(n, p) excitons
and |n − p| unpaired electrons or holes. In this picture the
total energy per area of the system at small n and p can be
approximated by the simple expression

ε(n, p) = −εbnx + g

2
n2

x + α

2
(n − p)2, (9)

where εb is the exciton binding energy, g describes exciton-
exciton interactions, and α is the inverse thermodynamic
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FIG. 1. Electrically controlled electron-hole fluids. We consider
a dual gated geometry with both gates held at the same voltage. The
electron and hole layers are contacted by electrodes with voltages
−Ve and +Vh, respectively, relative to the gate.

density-of-states of the unpaired electrons or holes. This
expression implies that the total energy ε(n, p) has a cusp
at n = p. The chemical potentials in which we are primarily
interested are given by

μe(n, p) = ∂ε(n, p)

∂n
,

μh(n, p) = ∂ε(n, p)

∂ p
.

(10)

For n < p adding an electron adds an exciton and removes a
free carrier, whereas for n > p adding an electron simply adds
a free carrier. In a similar way, adding a hole simply adds a
free carrier for n < p, whereas for n > p it adds an exciton and
removes a free carrier. For this reason the chemical potentials
of electrons and holes jump in opposite directions by εb when
the n = p line is crossed. The chemical potential for excitons

μx = μe + μh (11)

is however continuous. For n = p = nx our ansatz energy
expression, Eq. (9), places all electrons and holes into pairs
and the exciton chemical potential

μx(nx ) = −εb + gnx. (12)

We now compare this simple physical picture with micro-
scopic mean-field theory calculations performed as a function
of n and p. First of all, in Fig. 2(a) we plot the exciton
chemical potential at n = p calculated as a function of nx

and compare it with Eq. (12). By linearly fitting the small-n
part of the curve we find that the exciton binding energy
εb = 0.77 Ry∗ and the exciton-exciton interaction parameter
g = −12 (Ry∗a∗2

B ). The negative value of g here implies that
the interaction between interlayer excitons would be attractive
at the considered interlayer separation d = a∗

B if electrostatic
interactions, which are suppressed at this stage because of
the neutralizing backgrounds in each layer in the reference
system calculation, were ignored. Technically this property
reflects the dominance of intralayer Coulomb interactions, and
agrees with previous studies [20]. At large exciton density
(nxa∗2

B � 0.02) higher-order interaction terms come into play,
the curve deviates from the linear relation of Eq. (12), and the
simple expression (9) is no longer a good approximation.

According to Eq. (9)

μe = α(n − p) − (εb − gn)
(p − n), (13)

where 
(x) is the Heaviside step function. The electron chem-
ical potential calculated from microscopic mean-field theory
is plotted as a function of n for fixed p in Fig. 2(b). The upward
jump in the electron chemical potential anticipated in the
ansatz expressions is prominent. The parameter α, the quasi-
particle inverse thermodynamic density of states, accounts for
the rate of change of electron chemical potential near the n =
p point. A linear fit gives α = −115 (Ry∗a∗2

B ). This negative
value of α is related to the negative compressibility property,
which applies also in single-component systems, and is due
to the dominance of exchange interactions in low-density
electron gases [24–26]. The size of the chemical potential
jump at n = p is plotted vs carrier density in Fig. 2(c). The
ansatz expression for this quantity is

�μ(nx ) = εb − gnx = −μx. (14)

However, comparison of Figs. 2(a) and 2(c) shows that the
behavior of −μx and �μ are very different when n is not
small. Fitting these two quantities at the small-n part yields
different slopes but almost identical n → 0 intercepts. This
implies that while the physical picture represented by Eq. (9)
is oversimplified, it does capture a large part of the truth.

The chemical potentials calculated in this section are based
on a temperature T = 0 mean-field theory, which yields an
electron-hole pair condensate ground state. Although this
theory is expected to become exact at T = 0 in the limit of
very low carrier densities, it is expected to fail at large carrier
densities. It is generally thought that [27–29] at high enough

FIG. 2. Chemical potentials as functions of carrier densities from mean-field calculations: (a) exciton chemical potential μx vs carrier
density n(= p); (b) chemical potential of electrons μe vs electron density n at fixed p; and (c) chemical potential jump �μ at neutrality vs
carrier density n(= p).
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carrier density a Mott limit is reached above which exciton
condensation does not occur. Although we use these chemical
potentials in the following section to discuss some qualitative
expectations, an equally important aspect of our analysis is
that it can be used in combination with experimental mea-
surements of the dependence of carrier densities on gate
voltages to extract chemical potential data from experimental
observations. Experiments of this type would be especially
valuable at higher temperatures where mean-field theory is not
expected to be reliable.

IV. GATE CONTROL OF CARRIER DENSITIES

The left-hand sides of Eqs. (4) are functions of n and p.
For given values of n and p, φe and φh are given by the
electrostatic equations (2), while μe and μh are more complex
quantities that depend on correlations in the electron-hole
fluid. For given gate voltages Ve and Vh, Eqs. (4) can have one
or more solutions, the latter instance would signal bistability
or multistability of the electron-hole system. In Fig. 3 we
plot φe/h + μe/h, calculated using mean-field theory chemical
potentials, as functions of total carrier density (n + p)/2 and
total charge density (n − p)/2. One important feature of this
plot is the jump in electrochemical potentials across the n =
p line discussed above. Aside from the jump at neutrality,
increasing net charge density changes the electrochemical
potentials rapidly mainly because of the electrostatic contri-
butions. φe increases with n − p, φh decreases with n − p, and
both changes are rapid because of the relatively large distance
to the gates. (Note the difference in scales for the x and y
axes in Fig. 3.) At fixed n − p, both electrochemical potentials
increase with n + p, mainly because of band filling.

FIG. 3. Color plot of φe + μe (upper panel) and φh + μh (lower
panel) as functions of (n + p)/2 and (n − p)/2. The black dotted
lines are contour lines along which φe/h + μe/h = 0.8Ry∗. For the
calculation of φe and φh we assume de = dh = 20a∗

B and ds = a∗
B.

FIG. 4. Color plot of (n − p)/2 as a function of Ve − Ec and Vh −
Ev . The black dotted lines are the boundaries of the n = p region.

From Eqs. (4) we see that the equilibrium values of n and
p for given values of the control gate voltages Ve and Vh

correspond to the intersections of the contour lines in Fig. 3
along which φe(n, p) + μe(n, p) = Ve − Ec and φh(n, p) +
μh(n, p) = Vh − Ev . Since the contour lines of φe + μe have
negative slopes when plotted with n + p along the x axis and
n − p along the y axis (as in Fig. 3) while those for φh + μh

have positive slopes, the lines never intersect more than once.
We conclude the bistability is unlikely when the electron and
hole layers are separated by an hBN tunneling barrier and the
gates are well separated from the active layers.

Special care must be taken along the n = p line where the
electron and hole electrochemical potentials jump, yielding
the horizontal portions of the contour lines in Fig. 3. The
electron and hole chemical potentials are ill defined along
these horizontal line segments because it is not energetically
allowed to exchange particles with individual reservoirs. It
is however possible to exchange an electron-hole pair with
the reservoirs via a two-particle correlated tunneling process
[15]. Correlated electron-hole tunneling is relevant when the
difference between Ve − Ec and Vh − Ev is smaller than the
chemical potential jump at neutrality, so that the horizontal
segments of two contour lines in Fig. 3 intersect. Under
this circumstance the exciton chemical potential is still well
defined, and its value at n = p = nx is determined by solving
the pair equilibrium condition

φe + μe + φh + μh = Ve − Ec + Vh − Ev. (15)

This implies a finite region (rather than a line) in the (Ve,Vh)
parameter space in which n = p as illustrated in Fig. 4.
The width of this region first increases with increasing gate
voltages and then narrows. Defining the right-hand side of
Eq. (15) as the bias voltage Vb we obtain the results for the
exciton density as a function of Vb shown in Fig. 5. The
system is supplied with excitons when Vb > −εb. Above the
bias voltage threshold the curve is initially linear because of
exciton-exciton interactions. The sum of electron and hole
densities varies smoothly with gate voltage in the entire
(Ve,Vh) plane as illustrated in Fig. 6.
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FIG. 5. Exciton density n = p = nx as a function of bias voltage
Vb when (Ve,Vh ) is in the neutral region.

V. LEAKAGE CURRENTS

The theory in the previous sections applies when there
is no current flowing between layers. In the presence of
a tunneling current, the theory still applies as a good ap-
proximation if the current is small enough so that we can
assume quasiequilibrium in each layer. In the following we
discuss the opposite limit, in which a large leakage current
between layers requires a nonequilibrium transport picture.
By analyzing this limit we are able to qualitatively explain
the transport characteristics observed in a recent experimental
study of electrically controlled electron-hole bilayers [1].

For definiteness we consider MoSe2/WSe2 bilayer systems
in which the MoSe2 layer is n type and the WSe2 is p
type. In a typical experimental setup, the two layers do not
perfectly overlap, leaving isolated monolayer regions between
the bilayer region and the electrical contacts. We sketch an
idealized geometry in Fig. 7 in which we divide the system
into three parts: Regions I and III are isolated WSe2 and
MoSe2 monolayer regions, while region II is the overlapped
bilayer region. Assuming that Vh is above threshold, region I is
filled with holes with density pI ∝ Vh − Ev . Imagine we now

FIG. 6. Color plot of (n + p)/2 as a function of Ve − Ec and Vh −
Ev . The black dotted lines are the boundaries of the n = p region.
The total carrier density is a smooth function of the voltage control
parameters.

FIG. 7. Schematic of electron-hole transport processes in a bi-
layer system with isolated monolayer regions near the contacts
and effective contact resistances that are larger than the effective
interlayer resistances. The thick black lines show the geometry of
the bilayer system and the top and bottom gates. The local bands of
MoSe2 and WSe2 are shown in blue and green, respectively, and the
dotted lines show the Fermi levels of the electron and hole bands set
by the gate and bias voltages. In this schematic the tunneling current
is limited by the injection current from region III, and regions II and
III in the MoSe2 layer are not able to reach equilibrium.

increase Ve from a small value. When Ve is below threshold,
there are no free carriers in the MoSe2 layer, so no current
flows and the electric field distribution is not affected by the
MoSe2 layer. The whole WSe2 layer is uniformly charged and
in equilibrium with the left lead. The electric potential on the
MoSe2 layer in region II is very close to that of the WSe2

layer due to the small interlayer distance, while in region III
the electric potential is the same as the gates since the whole
layer is neutral. The electric potential jump between regions
II and III implies a sharp bending of the MoSe2 bands at the
boundary.

When Ve increases above threshold, region III starts to get
charged toward electron density nIII ∝ Ve − Ec. Due to the
electric potential jump, current is injected into empty states
in region II and tries to fill the band to the same level as in
region III. The injection current Ie,inj is a function of nIII (and
therefore depends on Ve − Ec only). Importantly it does not
depend on the physics in regions I and II (as long as region II
is far from equilibrium with III). Were it not for the leakage
current between the two layers in region II, the whole MoSe2

layer would finally come to equilibrium with the right lead,
and the theory in the previous sections would apply. However,
as we schematically show in Fig. 7, a large leakage current
can prevent the system from establishing equilibrium. The
leakage current Ileak is a monotonically increasing function of
the carrier densities nII and pII. If nII and pII reach value such
that Ileak = Ie,inj before equilibrium is established, the system
will reach a nonequilibrium current-carrying steady state. The
current through the system is limited by the injection current
from region III, which depends only on Ve − Ec. Meanwhile,
the WSe2 layer in regions I and II maintains equilibrium with
the left lead.

Similar considerations apply to region I, which like region
III also has a maximum injection current Ih,inj that is a function
of pI ∝ Vh − Ev . When Ve is so large that Ie,inj > Ih,inj, the
tunneling current is limited by the injection current from
region I, while regions II and III stay in equilibrium with
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the right lead. The transition takes place when Ie,inj(nIII ) =
Ih,inj(pI ). Since Ie,inj(nIII ) and Ih,inj(pI ) are similar functions of
carrier density, roughly speaking this happens when nIII = pI,
or Ve − Ec = Vh − Ev . The most important conclusion from
this analysis above is that, as long as the system is in the p-n
regime, the tunneling current is determined by the following
equation:

I (Ve,Vh) = min{Ie,inj(Ve), Ih,inj(Vh)}. (16)

The leakage current consists of three parts (see Fig. 7):
Electron tunneling Ie, hole tunneling Ih, and interband
electron-hole phonon-assisted tunneling or optical recombi-
nation Ieh. Due to the relatively weak electroluminescence
observed in experiments, we assume that Ieh 
 Ie, Ih. Then the
tunneling current has a threshold when the chemical potential
in the electron layer is above the bottom of the conduction
band in the hole layer (or when the chemical potential in
the hole layer is below the top of the valence band in the
electron layer). Above threshold the tunneling conductance
far exceeds the corresponding injection current conductance
from monolayer regions at the same chemical potential. In this
case the total current is limited by injection from monolayer
regions as discussed above, and the details of the interlayer
tunneling process do not matter. One possible way to study
interlayer tunneling is to tune the chemical potential below
threshold, so that the tunneling current only has a single
weak component Ieh. This can be made easier by applying
a vertical electric field between the two layers to tune the
indirect band gap. The dependence of Ieh on carrier densities
n, p can provide clues that help us understand the correlated
electron-hole states and possibly provide evidence for exciton
condensation.

We now provide a crude estimate of the injection current by
considering the ballistic transport limit. Consider an electron
with momentum (k cos θ, k sin θ ) moving across a rectangular
region with length L and width W , with θ = 0 along the length
direction. The electron passes through the region in time
m∗

e L/h̄k cos θ , and therefore provides the current contribution

i(k, θ ) = eh̄k cos θ

m∗
e L

. (17)

Assuming that all electrons with kx > 0 contribute to the
current, we integrate over half of the Fermi sea (accounting
for valley degeneracy) to obtain

I = 2
∫ π/2

−π/2
dθ

∫ kF

0

kdk

(2π )2/LW
i(k, θ ) = eh̄W k3

F

3π2m∗
e

. (18)

Here the Fermi momentum is related to the carrier density by

π

2
k2

F = nW L
(2π )2

2W L
= 2π2n ⇒ k2

F = 4πn. (19)

For the monolayer region, it is a good approximation to as-
sume φ = Ve − Ec when Ve > Ec because of its large distance
from the gates. By simple electrostatics the carrier density is
given by

4πne2

ε
= φ

(
1

de
+ 1

dh

)
. (20)

For φ = 1 eV, de = dh = 25 nm, and ε = 5, we obtain n =
2.21 × 1012cm−2. Then for W = 3 μm and m∗

e = 0.4 me,
from Eq. (18) we estimate the current

I = 687 μA, (21)

which is, as expected, much larger than the current observed in
experiment due to the unrealistic assumption of perfect trans-
mission. The ballistic transport picture gives I ∝ (Ve − Ec)3/2,
in contrast to the I ∝ (Ve − Ec)3 relation found in experiment.
The difference can be explained by the fact that electron
transmission is not perfect and depends on energy. We can
make our result agree with the experiment by introducing a
phenomenological energy-dependent transmission probability
T (E ) ∝ E3/2 where E is the electron energy relative to con-
duction band bottom. With a similar analysis for holes, we
restore the cubic law found in experiment [1]:

I (Ve,Vh) ∝ min{Ve − Ec,Vh − Ev}3. (22)

VI. DISCUSSION

In this article we have analyzed how two gate voltages Ve

and Vh can be used to control the electron and hole densities
n and p, and hence all properties, of bilayer two-dimensional
electron-hole fluids. When there is no leakage current between
electron and hole layers contacted by electrodes with different
chemical potentials, bias voltages can be used to tune the
bilayer into an effective semimetal regime in which carriers
are present in both n and p layers. Because of jumps in
electron and hole chemical potentials related to electron-hole
pair bound state formation, which occur along the n = p
carrier-compensation line, there is a finite area in the (Ve,Vh)
gate-control region, instead of a line, within which n = p. In
this region the electron and hole chemical potentials are not
individually well defined. Instead their sum, identified as the
exciton chemical potential, is well defined and controlled by
the value of Ve + Vh. Figure 4 outlines the boundaries of the
excitonic area in the control space as estimated by mean-field
theory. We anticipate that the width of this region, which is
a measure of the chemical potential jumps at neutrality—
referred to as the exciton binding energy below—narrows
with increasing exciton density due to dynamic screening of
the electron and hole interactions [27–29], exciton-exciton
attractive van der Waals interactions [30], and other effects
that are not captured by mean-field theory. Although the fate
of this quantity, which has not previously been experimentally
accessible, is usually not explicitly discussed in the litera-
ture, the most common view appears to be that the exciton
binding energy drops suddenly to zero at a first-order Mott
transition. Another view is that the exciton binding energy
declines monotonically with increasing density in a crossover
between BEC and BCS limits, but never vanishes. Still an-
other possibility is that the exciton binding energy vanishes
smoothly at a continuous phase transition. Capacitive studies
of electron-hole bilayers should be able to provide a definitive
experimental answer to this question.

Within the finite-area exciton region of the gate control
space Ve + Vh acts as a chemical potential for excitons. By us-
ing contact pairs to establish exciton reservoirs with different
chemical potentials at different locations in a bilayer system,
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we anticipate that it will be possible to measure electrical and
thermal transport properties of excitons, and to design exciton
circuits. This exciting prospect is a principle motivation for
formulating the analysis presented in this article.

We have compared our analysis with a recent experi-
mental paper [1] that reports on important progress toward
electrical control of electron-hole bilayers, and therefore of
the their optical and transport properties. We conclude that
the transport properties reported in Ref. [1] are indicative
of electron-hole systems that are not in a quasiequilibrium
configuration, but instead in a transport steady state that is
strongly influenced by the intraband leakage current between
the bilayers. The leakage current is easily reduced, however,
by inserting dielectric layers between the 2D semiconductors,
or simply by reducing the area of overlap between the two 2D
semiconductor layers. We can anticipate that further progress
will enable accurate control of quasiequilibrium electron-hole
bilayers, and by staying within the n = p region, electrical and
thermal control of exciton currents.

The relationship between electron and hole densities and
gate voltages depends on both many-body correlations and
disorder within the 2D semiconductor layers. In this paper
we have ignored disorder and used a mean-field theory to
describe interactions in the electron-hole system. The mean-
field theory is expected to be accurate when n = p at low
electron and hole densities, but it is precisely in this regime
that disorder is most important. For small n �= p, weak dis-
order, and small layer separations we expect that additional
new physics will appear. In particular, it is clear from optical
studies [31–37] of spatially direct electron-hole systems that
there is an accessible regime in which the carriers organize
into excitons, trions, and free particles. Trion bound states

survive in spatially indirect systems out to substantial layer
separations [38,39] and have been identified experimentally
[40]. When trion bound states are present the phenomenolog-
ical expression for the electron-hole fluid energy density that
accounts only for excitons, Eq. (9), should be generalized to

ε(n, p) = −εxbnx − (εxb + εtb)nt

+ gxx

2
n2

x + gtt

2
n2

t + gxt nxnt + α

2
n2

u, (23)

where nt = min(n, p, |n − p|) is the density of trions, nx =
min(n, p) − nt is the density of excitons, nu = |n − p| − nt is
the density of unpaired electrons or holes, εxb is the exciton
binding energy, εtb is the trion binding energy, and gxx, gtt ,
and gxt are the coefficients of exciton-exciton, trion-trion,
and exciton-trion interactions. It follows from this expression
that the chemical potentials have jumps at n = 2p and at
n = p/2 in addition to those at n = p on which we have
focused. For example, at n = 2p (and n, p both small) the
chemical potential of electrons μe jumps by εtb. If samples
with sufficiently weak disorder can be fabricated, electrical
control should make it possible to identify trion binding in
the electron-hole fluid optically or capacitively, and to explore
the richness of the electron-hole fluid that flows from attrac-
tive electron-hole interactions to be studied in unprecedented
detail.
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